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A new method is proposed for finding the dispersion laws of collective excitations in systems described by 
non-Abelian gauge theories. The method is based on an expansion of the polarization and mass operators at 
high temperatures. By means of the method, the dispersion laws of collective Bose and Fermi excitations in a 
hot quark-gluon plasma are found explicitly. Without being inconsistent with the gauge and chiral 
symmetries, all the dispersion laws have an optical nature. Possible experimental consequences of the 
obtained results are briefly discussed. 

PACS numbers: 11.15. - q, 12.35.Cn 

5 1. INTRODUCTION 

At the present time, the only convincing theory of 
the strong interactions of elementary particles i s  quan- 
tum chromodynamics (QCD), which has had significant 
successes  in explaining spectroscopic data (especially 
for  charmonium), the results  of current  algebra, and 
scaling a t  large momentum transfers .  There i s  also 
hope that the phenomenon of quark and gluon confine- 
ment will be explained in the framework of QCD. 

All the above successes  of the theory a r e  associated 
with the treatment at ze ro  temperature and density. 

ed by analytic continuation of the corresponding thermal 
Green's function. 

In the ca se  of QCD, whose Lagrangian has  the form 

there a r e  both spinor and vector f ields,  and therefore 
the elementary excitations o f  the quark-gluon plasma 
will also have spinor o r  vector nature. In what follows, 
we shall,  for brevity, re fer  to the vector and spinor 
excitations a s  Bose and Fe rmi  excitations, respective- 
ly. 

However, the development of the branches of theoreti- 
The paper is arranged a s  follows. In Sec. 2, we de- 

cal and experimental physics associated with study- scr ibe  the general properties of quasigluon excita- 
ing the collisions of relativistic nuclei, the early Uni- tions, calculate the polarization operator of the gluons, 
verse ,  and neutron s t a r s  has posed the problem of and find the dispersion laws of t ransverse and longi- 
studying QCD a t  nonzero temperatures and densities. tudinal modes. In Sec.  3, we investigate quark-like 
It was established already in the f i r s t  papers devoted excitations similarly.  In Sec.  4, we discuss the con- 
to this question that because of the asymptotic freedom sequences of the results obtained in Sets. and 3 .  
of QCD quarks a r e  liberated a t  sufficiently high tem- 
peratures and densities, i.e., there  i s  a phase transi-  
tion from hadronic matter  to a quark-gluon plasma. 
The estimates made in Ref. 1 show that this phase 
transition occurs a t  temperatures of severa l  hundred 
MeV. 

The existence of the quark-gluon plasma presents us  
with the task of investigating i t s  properties. The 
thermodynamic properties of a quark-gluon plasma 
were considered in detail in Ref. 2, in which fairly 
good expressions were obtained for  i t s  f r e e  energy. 
However, to the best of our knowledge no investiga- 
tion has s o  far  been made of l e s s  trivial kinetic prop- 
e r t ies  of the quark-gluon plasma and i t s  collective 
excitations in particular (however, s e e  Ref. 3). 

In the present paper, we present the results  of an 
investigation of the collective excitations in a hot 
quark-gluon plasma. (By this we mean a plasma in 
which the masses  of the quarks a r e  small  compared 
with the temperature.) 

We recall that the propagation of smal l  excitations 
corresponding to some field cp is described by the 
equation 

G,a-' (k; k,)  cp (k; k,) =0, (1.1) 

in which G,z is  the retarded (or  advanced) Green's func- 
tion of the field p, which, a s  is well known: is obtain- 

52. ELEMENTARY BOSE EXCITATIONS IN  A HOT 
QUARK-GLUON PLASMA 

As we already noted in the Introduction, the propaga- 
tion o f  elementary Bose excitations in a quark-gluon 
plasma is  described by the equation 

0,"-'v.= ( o ; f , + C )  v.=o, (2.1) 

in which D,, and D,,,,, a r e ,  respectively, the exact and 
unrenormalized propagators of the gluons, and n;ET 
a r e  their polarization operator .  It is important that 
al l  these functions must satisfy retarded (or  advanced) 
boundary  condition^.^ To find a polarization operator 
satisfying this condition, we must ,  a s  is well known: 
calculate it f i r s t  in the framework of the thermal tech- 
nique and then continue i t  analytically in the space of 
the real  time. 

From the transversality of the polarization operator, 

k,II,,=O, (2.2) 

which a l s o  holds a t  finite  temperature^,^ and the fact 
of the existence of a distinguished 4-velocity vector of 
the medium, it follows that n,, has  the structure 

IIuV= (CS#~-%) k Z  A+(%- u,k,+u,k, + -) u,u,kZ B. 
uk ( u k )  (2.3) 

In the center-of-mass system of the quark-gluon plas- 
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m a  (u, = 1, u =  0),  in which the calculations a r e  usually 
made, (2.3) takes the form 

ktk1 II,,=II,,= --Ii., ( i ,  j=1,2,3).  
kZ 

Now, knowing the s t ruc ture  of n,,, i t  is not difficult 
to find the general  solution of Eq. (2.1), which has  the 
form 

In (2.5), ~ , ( k )  and k2 a r e  eigenvalues of D: and a t i ) ( k )  
and k, a r e  t he  corresponding eigenvectors. It can be 
s een  f rom (2.5) that in the quark-gluon plasma elemen- 
t a ry  Bose excitations of two types can propagate (not 
counting, of course,  the unphysical four-dimensionally 
longitudinal excitations). They a r e  three-dimensionally 
longitudinal excitations with dispersion law determined 
by the equation 

and three-dimensionally t ransverse  excitations with dis- 
persion law determined by 

k2-k,'+Amr(k; k,) =O. (2.7) 

It is here  appropriate to draw attention to the fact that 
a t  smal l  spatial momenta the polarization operator  
must be isotropic, which together with the t ransver-  
sality of II,, leads to the important relation 

By means of (2.8), we readily find from (2.6) and (2.7) 
that in the region of sma l l  spatial momenta the spec t ra  
of the transverse and longitudinal modes a r e  the s a m e  
and thus determine a characterist ic  frequency of the 
quark-gluon plasma. 

Thus,  to find the dispersion laws of the longitudinal 
and transverse modes it is necessary to find a cor rec t  
approximate expression for  (2.6) and (2.7) and then 
solve Eqs. (2.6) and (2.7). The spectra then obtained 
must ,  of course,  be independent of the gauge. Because 
of this and the gauge dependence of A and n4, particu- 
l a r  ca re  is needed in the solution of the dispersion 
relations. Note that the investigation of the dispersion 
laws in QED (Ref. 4) is in principle f ree  of such diffi- 
culties, since in that case  the polarization operator  
does not depend on the gauge a t  all.  

Bearing in mind these remarks ,  we turn to the di- 
rec t  finding of the dispersion laws of the t ransverse  
and longitudinal modes in the hot quark-gluon plasma. 

Calculation of the functions A and II,, in the single- 
loop approximation leads to the result  (Feynman gauge3) 

- 
X dknh"{(p2-p,2+4k2)lna+4ip, k In b ) ,  (2.9) 

0 

where Nf is the number of quark spec ies ,  and 

As in Ref. 3, we can  substitute the expressions (2.9) 
and (2.10) in (2.6) and (2.7) and then solve the resulting 
equations. However, following this procedure we en- 
counter ser ious  difficulties of both computational and 
fundamental nature. The lat ter  a r e  associated with the 
fact that in the framework of such an approach there  
a r e  no grounds for  expecting the dispersion law obtain- 
ed in such a manner to be independent of the gauge o r  
the corrections to it obtained when the higher approxi- 
mations of perturbation theory a r e  taken into account to 
be small .  The existence of these difficulties requires 
a different approach to the finding of the dispersion 
laws. One of the possible approaches i s  presented be- 
low. 

The essence of this approach consists  of finding the 
spec t ra  by means of the high-temperature (-T2) asymp- 
totic behavior of the polarization operator  with subse- 
quent exact solution of the obtained dispersion re la-  
tions. 

An important feature of the high-temperature asymp- 
totic behavior of the polarization operator  i s  the fact 
that allowance for  the diagrams of higher o rde r s  gives 
only smal l  correct ions to i t  and also that this  asymp- 
totic behavior i s  gauge invariant. The gauge invariance 
of the high-temperature asymptotic behavior, which is 
proportional to T2,  is readily proved by noting that in 
the polarization operator  the t e rms  of o rde r  T2 a r i s e  
only from the s t ruc tures  that diverge quadratically in 
the ultraviolet region and that the gauge-dependent 
longitudinal parts  of the propagators do not lead to such 
structures.  These features of the high-temperature 
asymptotic behavior make it very convenient for  find- 
ing the dispersion laws. We note that a somewhat 
s imi lar  high-temperature expansion was used in Ref. 
6 to investigate the restoration of spontaneously broken 
symmetry when the temperature is raised.  

In the framework of ou r  method, we find the spectrum 
of t ransverse  modes for a rb i t ra ry  momenta. The 
high-temperature asymptotic behavior necessary for  
this can be readily found from (2.9) and has the form 

Making now in (2.11) a n  analytic continuation to the 
retarded Green's functions by means of the substitution 
p ,  - i(w + i&) and calculating the obtained integrals, we 
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obtain the required gauge-invariant approximate ex- 
pression for A ~ ~ ~ :  

making the analytic continuation in it to the retarded 
functions p4 - i(w + ic)], and calculating the obtained 
integrals, we find the required gauge-invariant approx- 
imate expression for  n?FT: 

In (2.12), we have used the notation 

[F and wDl a r e  defined above by means of (2.13)]. 

With allowance fo r  (2.19), the dispersion relation for  
the longitudinal modes becomes 

With allowance for (2.12), the dispersion relation 
determining the dispersion law of the t ransverse  modes 
takes the form 

and has a n  undamped solution described by the para-  
e t r ic  equations 

and has a n  exact undamped solution which i s  described 
by the parametric equations 

By virtue of the gauge invariance of the high-tempera- 
ture asymptotic behavior (2.19) the dispersion law 
(2.21) i s  a l so  independent of the gauge. 

At smal l  momenta ( 1  << wDl), we readily find from 
(2.21) an explicit expression for  the dispersion law of 
the longitudinal modes: 

We emphasize that the spectrum (2.15) does not depend 
on the choice of the gauge by virtue of the gauge in- 
variance of (2.12). 

It i s  readily found from the expression (2.15) that at  
smal l  momenta ( I p 1 << w,,) the dispersion law of the 
t ransverse  modes is described by the expression 

Similarly,  a t  large momenta 

and at  large momenta ( I p 1 >> w,,) by the expression 

~ ~ ~ = p ~ + ~ / ~ w ~ ~ ~ .  (2.17) 

The spectrum of longitudinal modes described by Eqs. 
(2.21) for arbitrary momenta is shown in Fig. 1. 

All the above calculations were made in the frame- 
work of the single-loop approximation. In the consid- 
e r ed  ca se  of high temperatures,  it is  not difficult to 
improve the obtained dispersion laws by means of the 
renormalization group. The anomalous dimensions 
can  be ignored, s o  that the result  of applying the r e -  
normalization group reduces to replacing the coupling 
constant in (2.15) and (2.21) by an effective constant, 
i.e., i t  reduces to the substitution 

We note that the asymptotic behaviors (2.16) and (2.17) 
were obtained ear l ie r  in Ref. 3 by semi-intuitive (and 
very complicated) manipulations. 

For  arbitrary momenta, the spectrum of transverse 
modes described by Eq. (2.15) i s  shown in Fig. 1. 

The case  of the longitudinal modes can be investigat- 
ed similarly. Using (2.9) to find the high-temperature 
asymptotic behavior of a,,, 

o r  to the substitution 

The smallness of the effective charge in the region of 
high temperatures (and we consider the case  of a hot 
plasma!) guarantees that the expressions (2.15) and 
(2.21) after  the substitution (2.25) correctly represent 
the exact dispersion laws of the t ransverse  and longi- 
tudinal modes of the hot quark-gluon plasma. 

To conclude this section, we point out that the dis- 
persion law of the fictitious particles that a r i s e  in the 
case  of cor rec t  quantization of Yang-Mills theory in 
relativistic gaugesT i s  not changed when allowance i s  
made for the presence of the medium, i.e., in the case  
of the quark-gluon plasma a s  well the dispersion law 
of the fictitious particles has the form w2 = p2. This 
fact is readily verified by direct calculations, although 

FIG. 1. Spectrum of elementary Bose excitations in quark- 
gluon plasma. 
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i ts  validity is already clear from general considera- 
tions. 

53. ELEMENTARY FERMl EXCITATIONS IN A HOT 
QUAR K-G LUON PLASMA 

Fermi  excitations in a hot quark-gluon plasma can 
be investigated in complete analogy with the case of 
Bose excitations investigated in Sec. 2. Therefore, 
the propagation of small-amplitude Fermi  excitations 
in a hot quark-gluon plasma is described by the equa- 
tion 

which is completely analogous to Eq. (2.1). In (3.1), G 
and Go a r e  the exact and unrenormalized propagators 
of the quarks, and zRET is their mass  operator. It is 
important that a l l  these functions must satisfy retarded 
(or advanced) boundary conditions. 

Using now the fact that in the considered massless 
case the mass operator can, by virtue of y ,  invariance, 
be represented in the form 

we can invert the expression (3.1): 

Now, setting the denominator of (3.3) equal to zero, we 
find that the dispersion relation determining the spec- 
trum of the Fermi excitations has, with allowance for  
the subsequent analytic continuation, the form 

We consider the general structure of C,(p). If a 
medium is absent (T = 0), it follows from relativistic 
invariance that C, (p)  must be proportional to p, , and, 
therefore, the dispersion relation (3.4) has the unique 
solution p t  = 0 o r  w2 = p2. 

In the case of nonzero temperature, there i s  a pre- 
ferred 4-velocity vector u, of the center of mass  of 
the medium, and therefore Z,(p), like the polarization 
operator nu, (see Sec. 2), is determined by two scalar 
functions: 

& ( P )  =p"X(p; u ) + u u g ( p ;  4. (3.5) 

The last circumstance has the consequence that the 
dispersion relation (3.4) in the case T # 0 has two dif- 
ferent solutions, and the spectrum of elementary quark- 
like excitations has two branches, which may have an 
optical nature. 

Bearing in mind these general comments, we turn to 
the direct finding of the dispersion law of the Fermi 
excitations. We first find the mass  operator of the 
quarks in the thermal technique. In the single-loop 
approximation, it is described by the diagram 

whose calculation by means of the o r  dinar y expressions 
for the propagators and vertices leads to an expression 
of the form 

In (3.7), k and p have odd frequencies in units of nT 
and we have used the Feynman gauge (we shall discuss 
the dependence of the obtained results on the gauge be- 
low). Summing over k ,  in (3.7), we obtain the expres- 
sion 

in which z'~~) is the value of the mass operator 2 for 
T=O and, a s  usual, n:=[exp(k/~)-l]",n:=[exp(k/ 
T ) +  11-l. 

To separate from (3.8) the part that is affected little 
by allowance for the higher orders  of perturbation the- 
ory, we proceed a s  in 82, i.e., we restrict  ourselves 
to the first term in the high-temperature expansion: 

In the expression (3.9), for convenience in the analytic 
continuation to the retarded Green's functions, we have 
not calculated the integrals over z .  

Performing now in (3.9) the analytic continuation to 
the retarded  ree en's functions, p, - i(w + i ~ ) ,  and cal- 
culating the obtained integrals, we find that the required 
high-temperature asymptotic behavior of the mass op- 
erator which satisfies retarded boundary conditions 
has the form 

In (3.10), we have used the notation 

It i s  important that the expression (3.10) does not de- 
pend on the gauge, which is readily seen,  since the 
terms that depend on the gauge-fixing parameter a re  
proportional at high temperatures to T and not T ~ .  

With allowance for (3.4) and (3.10), the dispersion 
relation that determines the spectrum of elementary 
quark-like excitations takes the form 

and decomposes into the two equations 

In the region w > , the dispersion relation (3.13) 
does not have imaginary parts in accordance with (3.11) 
and can be solved exactly. It i s  then found that the 
spectrum of quark-like excitations has in accordance 
with the remark made in connection with (3.5) two (un- 
damped) branches described by the parametric equa- 
tions 

o,2ce) = p Z ~ , z c e )  ( I < E < - ) ,  (3.14) 
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in which the upper sign corresponds to one branch, and 
the lower to the other. In accordance with the gauge 
invariance of (3.10), the expression (3.14) is indepen- 
dent of the gauge, which is necessary fo r  an observable 
quantity. Note that in the case  of quantum electrody- 
namics we would obtain exactly the s ame  (up to an  iso- 
topic factor in 0:) dispersion laws, and therefore our 
results  can also be applied in  the ca se  of an  electron- 
photon plasma. 

It follows from (3.14) that in the region of sma l l  mo- 
menta both branches have an optical nature: 

The optical nature of the spectrum of the quark-like 
excitations is very nontrivial, since the y, invariance 
of the considered case  of a mass less  quark-gluon plas- 
ma prohibits the occurrence in the mass  operator  of 
the quarks of a part proportional to the unit matrix with 
respect to the spinor indices, i.e., the ordinary mass  
te rm of the quarks. An entirely s imi lar  situation ob- 
tains in the case  of a cold quark-gluon plasma, in 
which the spectrum of quark-like excitations also has a 
gap: o Z ( ~ ) = g 2 p 2 / 6 ~ 2  (p  is the chemical potential). 

At large momenta, the branches of the spectra a r e  
described by the expressions 

As in the case  of the spectrum of the Bose excita- 
tions, the expression (3.14) must be improved by 
means of the renormalization group, since i t  is only 
after this has been done that i t  will, by vir tue of the 
smallness of the effective coupling constant, correct ly 
represent the exact dispersion law of the quark-like 
excitations in the hot quark-gluon plasma. The anoma- 
lous dimensions can here  be ignored, so  that the result  
of applying the renormalization group to the expression 
(3.14) reduces to the substitution (2.24) in i t ,  i.e., to 
the substitution 

The behavior of the spectrum of quark-like excita- 
tions at  a rb i t ra ry  momenta [see (3.14)] i s  shown in 
Fig. 2. The spectrum shown in this figure i s  remark- 

FIG. 2. Spectrum of elementary Fermi excitations in quark- 
gluon plasma. 

able not only for i t s  optical nature but also on account 
of the fact that the branch w, has a minimum at  nonzero 
momenta. 

$4. CONCLUSIONS 

In Secs .  2 and 3,  we have investigated the collective 
excitations of a hot quark-gluon plasma and determined 
their  dispersion laws. These dispersion laws a r e  
good in that they do not depend on the choice of the 
gauge and in that the correct ions to them when the 
higher o rde r s  of perturbation theory a r e  taken into 
account a r e  small .  

The interest  in the collective excitations of the hot 
quark-gluon plasma i s  not purely academic, since they 
a r e  very important for  describing rea l  processes in 
quark s t a r s  and in collisions of relativistic nuclei. The 
obtained dispersion laws can also be readily generalized 
to the case  of the early Universe, filled with the plasma 
of a l l  elementary particles. 

We now turn to the direct analysis of the obtained 
dispersion laws of the collective excitations of the hot 
quark-gluon plasma. Here,  in the f i r s t  place, i t  is 
noteworthy that both the vector and spinor collective 
excitations have a mass  gap in their spectra.  The ap- 
parent contradiction between this fact and the gauge and 
chiral  symmetries disappears when we reca l l  that in 
the case  of quantum stat is t ics  there is no manifest rel-  
ativistic invariance. It is important that the optical 
nature of the obtained dispersion laws will be verified 
already in the very near future in the experimental 
analysis of collisions of relativistic nuclei, s ince in 
this case  the energies of the secondary particles will 
evidently be multiples of the energies of the correspond- 
ing quasiparticles, i.e., multiples of either w,, o r  wo. 

A second very important feature of the spec t ra  found 
above i s  the fact that one of the branches of the Fermi  
spectrum has a minimum at  nonzero momenta (see Fig. 
2). We do not completely understand the significance of 
this minimum, but it i s  not impossible that i t s  exis- 
tence could lead to a fundamental consequence such a s  
the formation of vortices in the quark-gluon plasma. 
It i s  also possible that this minimum could be an indi- 
cation of a spontaneous breaking of the translational 
invariance of the theory, this being expressed a s  a 
motion of the quark-gluon plasma a s  a whole. For  the 
final solution of the question of the significance of this 
minimum, it is necessary to solve the kinetic equa- 
tions for the system with the Hamiltonian H = C , W , ( ~ )  

and equilibrium initial conditions (a, and a; a r e  
the ordinary Fermi  operators of creation and annihila- 
tion). 

A third important feature of a l l  our spectra is the 
fact that the refractive indices obtained by means of 
them for the corresponding modes a r e  always l e s s  than 
unity, and therefore elementary particles passing 
through the hot quark-gluon plasma will not radiate 
coherently. The  finding of the connection between this 
fact and the results  of Ref. 8 undoubtedly warrants  very 
careful study. 

Finally, the dispersion laws we have found for  the 
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vector excitations a r e  also remarkable in that their 
functional form is identical to the functional form of the 
dispersion laws in a plasma of scalar particles, in an 
ultrarelativistic electron plasma, and in a degenerate 
plasma. It is clear that this identity is a consequence 
of some general principle which we have not as yet 
recognized. 

Finally, I should like to thank A. D. Linde, E. S. 
Fradkin, and 0. K. Kalashnikov for discussing the re- 
sults of the present paper. 
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