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1. INTRODUCTION 

The problem of the electromagnetic mass of the elec- 
tron is one of the most "ancient" problems of modern 
theoretical physics. Even before the creation of the 
special theory of relativity Abraham proposed a model 
of a classical electron in the form of a spherically 
symmetric system of rigidly connected (in the sense of 
classical mechanics) electric charges and investigated 
in the framework of this model the dependence of the 
electromagnetic mass on the velocity. Later, Lorentz 
modified Abraham's theory to bring it into accord with 
the hypothesis advanced by Fitzgerald and himself to 
the effect that all rigid bodies undergo a contraction in 
the direction of their motion in accordance with the ra -  
tio (1 - v2/c2)lh: 1. The appearance of the special theory 
of relativity led to understanding of the fact that the in- 
ertial mass (both electromagnetic and of other origin) 
must depend on the velocity, the connection always hav- 
ing the form m= E/c2, where E is the total energy of 
the system. A contradiction between the results of 
Abraham and Lorentz, which contain an extra factor % 
compared with the general relations of relativity theory, 
was resolved by Laue, Poincar6, and Fermi, who 
showed that this factor can be explained by the contri- 
bution to the energy of nonelectromagnetic interactions, 
whose existence is needed to ensure equilibrium of the 
charges; they showed that the factor does not arise in a 
consistent theory. 

In 1921, Fermi' investigated the influence of a homo- 
geneous gravitational field on the self-energy of an elec- 
tr ic charge. He showed that the electromagnetic inter- 
action, which gives r i se  to a change Am=AE,,, , /c2 in the 
inertial mass of the particle, simultaneously produces 
exactly the same change in i ts  gravitational mass, in 
complete agreement with the equivalence principle. For 
an inhomogeneous gravitational field, arguments based 
on the equivalence principle a re  not valid when the sys- 
tem a s  a whole is considered, and, in general, it i s  to 
be expected that the relationship between the self-energy 
of a charged particle and the shift of i t s  gravitational 
mass will be more complicated. 

of an additional force of repulsion in the direction of 
the black hole. Even earlier, unruhS had shown that a 
similar force acts on a test  charge placed within a thin 
hollow massive shell. Smith and Will4 and, independent- 
ly, the present authors5 obtained an exact expression 
for the energy of an electric charge at res t  in the field 
of a neutral black hole. This expression can be written 
in the form 

It is interesting to note that in this case the effects of 
the inhomogeneity of the field reduce to the appearance 
of a term vromrtional to the 4-acceleration w of the 
particle. It is the presence of this term that leads to 
the additional gravitational force of repulsion exerted 
on the charged particle by the black hole; a s  a result, 
the world line of the motion of the charged particle will 
differ slightly from a geodesic. Smith and Will also 
have a detailed "local" derivation of the expression for 
this force in the spirit of the general treatment of 
DeWitt and ~ e ~ i t t . '  The aim of the present paper is to 
extend the previously obtained results to the case when 
the black hole is charged, and to  investigate in detail 
the influence of the field of the black hole on the self- 
energy of a scalar charge (Sec. 21, and also to discuss 
the transition to the limit of a homogeneous gravitation- 
al field in the case under consideration (Sec. 3). 

In the present paper, the signature of the metric and 
the signs in the definition of the curvature tensors a re  
a s  in the book Ref. 7 and, except in the final expres- 
sions, we use a system of units throughout in which G 
= c = l .  

2. SELF-ENERGY OF ELECTRIC AND SCALAR 
CHARGES IN THE GRAVITATIONAL FIELD OF 
A CHARGED BLACK HOLE 

2.1. Classical charged particle in a static gravitational field 

For a particle in the field of a black hole, this is in- 
deed the case, and the corresponding corrections (in the Suppose a classical particle, i.e., a system of bound 
approximation GM/c2r<<  1) were obtained in Ref. 2, in electric o r  scalar charges, i s  held at rest  in a static 
which it was also shown that the effects of the inhomo- gravitational field by an appropriately chosen external 
geneity of the gravitational field lead to the appearance force. We denote by 6' the Killing vector field. Then 
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the energy of the system is 

where T p v  is the total metric energy-momentum tensor 
of the system. To be specific, we shall adopt a s  model 
of the charged particle a rigid nonconducting thin sphere 
of mass m, and radius E over whose surface there is 
uniformly distributed the electric (e) o r  scalar (g) 
charge. Let Yx, y) be the invariant distance between the 
points (t, x) and ( t ,  y) calculated along the geodesic join- 
ing these points; then the charge density of such a par- 
ticle at res t  at the point xo is proportional to 
6[Yx, x,,) - El. Having in mind a subsequent transition 
to a point particle, we shall assume that c is much less  
than the characteristic inhomogeneity scales of the 
gravitational field and the external electromagnetic (or 
scalar) field, and in the final result we shall ignore 
terms O(E). 

The total energy E is made up of: 1) Eo, the part of 
the energy association with the "mechanical" mass  
mo(Eo= 1 t2(x,,) llhrnoc2); 2) E,,!r , the self-energy, i.e., 
the energy of the self-interaction of the charge of the 
particle; 3) I&,, the energy of the interaction of the par- 
ticle with the external field; 4)E,,, the energy of the ad- 
ditional interaction that ensures the stability of the 
charged particle. The introduction of this additional 
interaction ensures fulfillment of Lave's theorem. If 
we denote by E, the equilibrium radius of the uncharged 
sphere, then 

and, choosing a sufficiently large value of the effective 
rigidity K, we can make the changes induced by the in- 
troduction of the charge in the value of the equilibrium 
radius, A&= E - co, and the energy, AE= E;,,(c) - E,,,(co), 
arbitrary small. In what follows, we shall ignore AE 
assuming that K is appropriately chosen, and, includ- 
ing Eo in the constant E:,,(co), we write the expression 
for the total energy in the form 

2.2. Electromagnetic interaction 

The original action for the electromagnetic field from 
the source J' in space-time with given metric g,, has 
the form 

1 
W [ A ,  I] = -,=I F # ' " G g  d4x+ ~ , A $ ' ~ g d ' g d ' r  

If we write 

then the metric energy-momentum tensor for the action 
(2.2) is T , ~ [ F ,  F]. For the charged particle, we have 

where a' is the field generated by the current j' of the 
particle, and A:,: is the external field (of the current 
J:,) which maintains the charge in equilibrium in the 
static gravitational field. The energy El,  for electric 
charge e is defined a s  the difference between the total 
energy of the system with this charge and the energy of 

the system for e = 0, and it is equal to 

The problem in which we a r e  interested consists of 
calculating the energy &,for the case when the charged 
particle is at rest  in the field of a charged bIack hole of 
mass M and charge Q. The standard Penrose diagram 
for the space-time in this case is shown in Fig. 1. In 
region I, which is covered by the coordinates ( t ,  r) , the 
metric is 

where 5%'= a, is the Killing vector field, and du2=d@ 
+dq? sin2e is the element of length on the unit sphere. 
In what follows, we shall regard the electric field 

of the black hole a s  part of the external field a,,,. 
The expression for the electromagnetic field produced 

at the point x = ( r ,  0, q) by a point charge e at  rest  at the 
point xf = (rf, 0', cp') in the gravitational field (2.4) was ob- 
tained by Leaute and Linet,'" who found and corrected 
a small e r ro r  in the expression derived earlier by Cop- 
son." It has the form 

n=II ( x ,  x') - (r-&I) ( r r - M )  - (Mz-Qz)). ,  

R=R(x ,  x') - - [ ( r -JI ) '+  (r'-,U)' (2.7) 

-2  ( r - M )  (rJ-MIA- ( M z - p )  ( I - A 2 ) ]  'lz, 

h=A ( x ,  x') =COS 8 cos 8'+ sin 0 sin 8' cos (cp-9'). 

This solution, obtained in region I, can be extended 
by analytic continuation to the whole of the space-time. 

FIG. 1. Penrose diagram of the Reissner-~ordstrim 
space-time of  the black hole. 
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However, it is then found (see Appendix 1) that the 
analytically continued solution has a singularity corre- 
sponding to the presence of an additional point electric 
charge - e at res t  in region 1'. If such charges a re  ab- 
sent and the charge e is the only field source, then out- 
side the domain of influence of this charge (i-e., below 
the past Cauchy horizon H-) a field must be absent: 
f ,," =O. The fulfillment of the vacuum Maxwell equa- 
tions in the neighborhood of H -  leads in this case to 
the appearance of an additional field f,,,@, , whose sup- 
port is concentrated on H'. The corresponding results 
are given in Appendix 1. 

The integration in (2.4) i s  over the complete space- 
like surface C, which intersects the horizon H+ (see 
Fig. 1). Note however that the integral (2.4) over the 
part of Z within the event horizon is the energy of the 
field within the black hole, and a corresponding contri- 
bution occurs a s  a part in the definition of the total mass 
of the black hole. Therefore, being interested in what 
follows in calculating the energy shift in the field of a 
given black hole, we assume that the mass  of the black 
hole is fixed and accordingly we shall integrate in (2.4) 
over the part of I; outside the black hole. For a static1' 
field, the value of E ,  does not change when there a r e  
deformations of C with fixed boundaries aC,,C H +  and 
aC,c i0 o r  deformations for which aZ: BH moves along H +  
and a C, along 7'. In particular, the values of E ,  
calculated for the surfaces C and C' (see Fig. 1) a re  
equal. Taking C to be the surface t = const, we have2) 

=-I/, j d3x j d'z'jt(x)~~,.,, (x, x') m j l ( x ' ) .  
r>rr r>rt 

Here, integrating by parts, we have used the field equa- 
tions a i ( 6 j o i ) = 4 ? r ~ j 0  and the fact that, since the po- 
tential a,(?',) is constant on the surface of the black hole 
and the induced charge AQ of the black hole i s  0, the 
surface integral, which is proportional to at(r+)AQ, also 
vanishes. 

Substituting in (2.8) the expression for the density of 
a charge distributed uniformly over a sphere of radius & 

with center at the point %=(yo, O,, cp,), 

and the expression (2.6) for  G,,,,(x, x'), and making the 
necessary calculations (see Appendix 3), we obtain 

So far, we have considered the case when the charged 
particle is at res t  in the field of and "eternal" black 
hole. However, the obtained expressions a re  also valid 
in the case when the black hole i s  formed in a process 
of gravitational collapse. The Penrose diagram for the 
space-time in this case is shown in Fig. 2. We choose 
an arbitrary spacelike surface Cr whose boundary azi,, 
on the event horizon H+ is situated outside the collaps- 
ing matter. Then it is easy to show that the minimal 
value of E$':! for fixed position of the charge is attained 
for this surface when the field i s  static in the neighbor- 

FIG. 2. Penrose diagram of the space-time of a charged 
black hole formed a s  a result of gravitational collapse. 

hood of I;', and the corresponding minimal value, which 
determines the self-energy of the charged particle, is 
obviously equal to the value Ef;) calculated for an 
eternal black hole. 

The expression (2.4) for @,::) can be readily trans- 
formed to 

E!?=- ( x ) ~ ) A ( . . , , , ( x ) d ' z = - e ~ , . . , , , ( x ~ ) .  
(2.11) 

Thus, the total energy of the electrically charged par- 
ticle at res t  near the charged black hold a t  the point %, 

is 
(2.12) 

Here, m, i s  the 'hechanical" mass  of the particle. For 
a particle f a r  from the black hole Am - 0, and rTz in the 
limit is equal to the expression m for the mass of a 
charged particle in flat space. The part of the energy 
AE = e2M/2,/2, associated with Am is due to the rear- 
rangement of the electric field of the charge in the grav- 
itational field of the black hole. 

Note that the appearance of this additional part of the 
energy is entirely due to the term M/rrr in the Green's 
function G@,,, (x, x'). In accordance with Hadamard's 
general theory, the Green's function in 3-dimensional 
space has the form 

G (x, x') =U (x, XI') [O (x, XI) ] -"'f v (x, XI) 

where o(x, x') is the square of the geodesic distance be- 
tween the points x and x', and u and v are  regular func- 
tions. The function u is determined uniquely but v is de- 
termined only up to  a solution of the homogeneous equa- 
tion and is fully determined by the choice of the bound- 
ary conditions. In the considered problem, the term M/ 
rrr in the Green's function G,,) (x, x') is the solution of 
the homogeneous equation. Thus, the appearance of the 
additional part  2 ~ m  of the energy of the charge is due 
to the global properties of our system, namely, the 
boundary conditions imposed on the field on the horizon; 
it is not due to  the local inhomogeneity of the gravitat- 
ional field near the charge. 

For a neutral black hole, Am can be written in the 
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form 

where w, is the 4-acceleration of the charged particle. 
This expression for the shift in the energy in the case of 
a neutral black hole agrees with the expression obtained 
earlier in Refs. 4 and 5. 

The equilibrium position of the charged particle is de- 
termined by the condition a~/ar , ,=O.  This condition can 
be written in the form 

where ua is the 4-velocity of the particle at r es t  and 

M 
p=m-e' - F'I8 (rJ.  (2.16) 

Mro-Qz 

Note that the "inertial" mass of the particle defined in 
this manner is not equal to &. The appearance in the 
expression (2.16) of the additional negative term is re- 
sponsible for the appearance of the additional repulsive 
force3' 

A f -  I Aj+Af,I"=-e2Mlr'. 

2.3. Scalar interaction 

The original action for a massless scalar field has 
the form 

where J is the source of the field. The surface term4' 
(K = T r  K, K,,  is the extrinsic curvature, and hi, is the 
induced metric of the boundary 8Vof is  important for 
consistency of the variational procedure in the deriva- 
tion of the complete system of equations for the metric 
g,, and the field cP. For a=+ and J = 0 ,  the action for 
the field * ts conformally invariant. The metric en- 
ergy-momentum tensor is 

The self-energy E,. , of a charge at rest  at the point x, 
with density 

Here - 
I,=-'/* J q j = d ~ x = - * / , J  j(x)Y-g(x) 

[G(,,, (x, XI)= l/R(x, x') is the static scalar Green's func- 
tion obtained by ~ i n e t ~ )  in Ref. 131. Substituting (2.20) in 
(2.19), we finally obtain 

For an uncharged black hoIe, Am has a form analogous 
to (2.14): 

where w is the modulus of the 4-acceleration of the 
charge. For a=0 ,  the corresponding correction is ab- 
sent. 

Comparing the equation of motion of a particle with 
mass p and scalar charge g in the external field cP,,,, 

d 
--[ (g-gcI'.,O LL"]  =g@;:r . 
d r  

with the equilibrium condition 

we obtain 

As in the case of the electromagnetic field, p is not, in 
general, equal to E(") . / c~ .  The case a =  0 i s  an excep 
tion. It i s  easy to show that the expression E(") a DL) . .(.  
+E!,! for the total energy is related the action (2.17) 
a s  follows: 

where W,, 1:: is the action calculated for a 4-volume V 
lying outside the black hold and contained between the 
surface t = t ,  and t = t 2 .  Note that in the absence of the 
surface term in (2.17) this equation is violated. 

3. UNIFORMLY ACCELERATED MOTION 

3.1. Transition to the limit of a homogeneous 
gravitational field 

In this section, we shall discuss the energy shift of a 
charged particle in a homogeneous gravitational field. 
For the transition to the limit of a homogeneous field, 
we proceed a s  follows. In the Schwarzschild metric 

2M 2M -' d s b - ( i  -;--) dl3+ ( I  -T) d r ' + r . ( d e z + ~ i ~ z t l d q 2 )  (3.1) 

we go over to new coordinates ( r , z ,  p, p) by means of 
the substitution 
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Here, r= F 1 ( z )  and ur is an arbitrary constant. The co- 
ordinate z is introduced in such a way that z-' is the 4- 
acceleration of the particle at res t  a t  the point r. If now 
for fixed (T, z ,  p ,  9) we let M tend to infinity, the expres- 
sion (3.3) goes over into the Rindler metric 

dsz=-zzw2d~'+  d z 2 f  dp2+P2dcPz, (3.4) 

which describes a static homogeneous gravitational 
field.'' The coordinate T is normalized in such a way a s  
to make i t  equal to the proper time for a particle at res t  
at the point z= w". 

In the described limiting process, the increase in the 
mass M is accompanied by an increase in the radius of 
the black hole's surface, so that in the limit the hori- 
zons H* are  transformed into null hyperplanes (the 
horizons z = 0  of the Rindler space). The invariant dis- 
tance to the horizon of a particle having acceleration 
l/z tends to the finite value z, and the maximal value 
of the curvature invariant I R , , ~ ~  R ' * ~ I ' / ~ =  4 a ~ / ~ ' ,  
which characterizes the inhomogeneity of the gravita- 
tional field, tends to zero everywhere outside the black 
hole. 

For the transition to  the limit of a homogeneous grav- 
itational field in the expressions (2.7) and Gts,, = R-', 
which describe the field of the test electric and scalar 
charges (for Q=O), we take the axis p=O passing through 
the point at which the charge is situated. Then, bear- 
ing in mind that 

A=cos0=[1-(p/4M)Z]/[l+(p/4M)2], 
Rz-- (r-M)'+ (r'-M)2-2 ( r - M )  (r'-M)h-M" ( 1 4 ' )  

1 -- -64nr {[ ( Z ~ + Z ' ~ + ~ ~ ) ~ ~ Z ' Z " ]  +O (M-')), (3.5) 
II= ( r - M )  (r'-M) -MZA='/,(zZ+z'2+pz) -I-O(M-~) 

we obtain up to omitted terms of order O(M") expres- 
sions for the field at the point ( z , ~ ,  g) produced by a 
point charge at the point (z', 0,O): 

If we set  z'= w-', then the expression (3.6) differs from 
the expression (111.3) given by Boulware" by the gauge 
term - ewdr. 

3.2. The "self+nergy" of a uniformly accelerated charged 
particle 

By means of the coordinate transformation T 
= z  sinh(w.r), Z=z cosh(w~),  X = p c o s  cp, Y=p sin 9, the 
metric (3.4) is reduced to  the standard expression for 
the metric of flat space: 

d s ~ = - d ~ + d ~ Z + d ~ 2 + d ~ Z .  (3.8) 

The line z,  p, cp = const i s  then the world line of an ob- 
server moving with constant 4-acceleration 1/z along 
the z axis, and W Z T  is his proper time. The coordin- 
ates (Y, 2, p, cp) cover only part (region I in Fig. 3) of 
the complete Minkowski space. The complete Minkowski 
space arises in a natural manner on the transition to the 
limit M - .cl from the Kruskal metric, and the expres- 
sions (A1.6) and (A2.5) go over into the expressions for 
the electromagnetic and scalar fields from a point 
charge moving with constant acceleration7' equal to W:  

FIG. 3. Penrose diagram of Rindler space-time. 

Here, z, is augmented by a term of the form 8&h)B( V), 
which leads to a singularity of the form 5 ( V )  in 7. The 
need for this term was noted by Bondi and Gold.18 

In the limit M - -, the Killing vector field Epap 
= 4Mwa, goes over into the Killing vector field a, 
in the Rindler space. Accordingly, the expression for 
the energy of the charged particle in the field of the 
black hole must go over into an integral of the motion 
of the form 

Using the expressions (3.6) and (3.7) and integrating 
(3.10) over the region z > 0, we obtain8' 

Comparison of (3.11) with the expressions (2.14) and 
(2.23) draws attention to the circumstance that the term 
in R~ se,,- proportional to the acceleration is equal to 
c 2 A r n \ ~  for a scalar field whereas there is a difference 
in the sign for the electromagnetic field. The reason 
for this difference is that the integral which determines 
E,. t i .  / ( I -  2M/r,,)1'2 does not have the property of uni- 
form convergence and therefore, in particular 

lim (E. . l t I ( l -2M/ro)  ") 
M-0 

may differ (and, a s  we have seen, does indeed differ for 
an electric charge) from the value of the integral for 
R ~ , , l . -  , in which the passage to the limit M- - is made 
under the integral sign. 

The expression RE$) i s  equal to the expression for 
the self-energy of a uniformly accelerated charge ob- 
tained earlier by  itu us" and investigated in detail by 
him in Ref. 20. It should be noted however that for a 
uniformly accelerated particle, in either a scalar or  
electromagnetic field, the inertial mass IJ. determined 
by means of the equations of motion does not contain 
corrections that depend on the acceleration. The proof 
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of this assertion fo r  an electric charge obtained by 
~ e r m i '  can be readily transferred to the case of a 
scalar charge. 

We thank V. L. Ginzburg, V. I. Ritus, and W. Unruh 
for stimulating discussions and valuable comments. 

APPENDIX 1 

In this Appendix, we give the main results relating to 
the properties of the electromagnetic field of a point 
charge e at the point Y =yo, 9=0 outside a Reissner- 
Nordstriim black hole with mass M and charge Q. 

In region I (see Fig. 1) in the coordinates (t, r, 6, cp) 
we have 

i=a,dz*- -- ' (M+II/R) dt, (Al. 1) 
rr ' 

where II and R a r e  defined by (2.7'). The nonvanishing 
components of the field f,, a r e  

f , , = ~ { ~ + ; ] - 2 F ( r o )  (ro-M-(r-M)cos0), 
Fro rR3 (A1.2) 

ere 
f@t==--- 

R' 
F ( r )  F (r,) sin 8. 

The horizons a r e  equipotential surfaces and the po- 
tential on them is 

lim at==-eh. 
r-r. 

The nonvanishing components of the energy-momen- 
tum tensor T $ = T t  [ f, f ] a r e  

Here and in what follows, F ( r ) =  1 - 2M/rt @/?. 

To obtain the analytic continuation of this solution 
in regions I, 11, 1', 11' (see Fig. I), we introduce co- 
ordinates (u, v, 8, q) regular in these regions and as- 
sociated in region I with the coordinates (r, t ,  8, cp) by 
the relations 

For - m< u, v <  a ,  (9, cp) E S 2  these coordinates cover 
the entire region I? 11, 1', II', and the analytic continua- 
tion of the Reissner-NordstrBm metric in them has the 
form 

dsz=-2Bdndu+?do2, (A1.5) 

2r+' (r-r+) (r-r-) r -r- 
B = -  e x p { -  s t ] .  

rZ (r+-r-)' r+ 

[ ~ o t e  that the transformations (A1.4) differ from the 
standard transformations given in Ref. 7 by the addi- 
tional factor 2 in the argument of the exponentials.] 
The nonvanishing components of the analytically con- 
tinued solution (Al.l), (A1.2) in these coordinates are  

n I. 
j"' = &{M + - - - [ r o - ~ -  ( r -M)  cos 01 ( r / - 2 ~ r ~ + ~ : ) } ,  

Bf ro R R3 
e sin 0 r,-r- 

f"" --T (ro2-2Mro+Qg) v, 
(A1.6) 

2rr0 R3 r+ 
e sin0 r+-r- 

f Y e  = - --- (rp'-2Mro+Q2) U. 
2rr, R3 r+' 

Note that this solution is invariant under the transforma- 
tion (u - - u, v - - v), which maps region I onto region 
1', and therefore, besides the singularity corresponding 
to the world line y of the charge, it also contains a sin- 
gularity on the line y' corresponding to the additional 
charge - e in the region 1'. If additional charges a r e  ab- 
sent, then in the regions I' and 11', which lie outside the 
domain of i~~fluence of the charge e, the field must be ab- 
sent. In this case, the corresponding solution can be ob- 
tained in the form 

When f ,,, is substituted in the Maxwell equations, we 
obtain the following equations for qpV : 

The solution of these equations restricted to H- is 

(M2-QZ)': M+ (MZ-Q') ' !  

$,,=-e sin 0 
(A1.9) 

r, r,-M- (M2-QZ)'l~ eos 8 ' 

the remaining components vanishing. The presence of 
the term with 6(v)  in (A1.7) ensures fulfillment of the 
vacuum Maxwell equations in the neighborhood0' of H-. 

The energy-momentum tensor is 

T u y = T p [ f ,  f J=T:,,,+P [ j ,  f ] 0 ( ~ ) .  

The tensor T P v [ f ,  f 1 is obtained by analytic continuation 
of (A1.3), and the nonvanishing components of T,!:,, are  

eZ(r+-r-)  sin' t) 
T : , ~ ~ ~ ~ ~ =  s B r + r  { g i - 0 ( r i  - h ( r ) ( l ( r )  

e3(r+-r-) sin' 8 r+-r- 
T,,",:,, = --6(~:)e(~') 

SnBr ..'ro2 I? 

x 1 ' I - =  1 ;a-;I- (J::- ' Y )  c ,  < 0 1 .  
For T,, we have for u = 0 (on H+) 

E'Tp" I U-~=Tt" ]  "-O=O. (Al . l l )  

APPENDIX 2 

Suppose a scalar charge g is at rest  in the gravitation- 
al field of a charged black hole. The solution to the 
equation 

9, W:k-47 ' j  
(A2.1) 

in the metric (2.6) with point source 

j=&7F'", 6 (r-r,) 6 (cos 0-1) 
2nF 

was found in Ref. 13 and has the form 
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A s  in the electromagnetic case, we shall seek the com- 
plete solution of Eq. (A2 .1 )  in the form 

@=(~ves)+t~(.rnr~* ~ + r e ~ ) = ~ @ ( v )  ~ w = q = W  ( u ) .  (A2.3)  

Substituting ijj in (A2.1) ,  we obtain equations for q~ 

If the black hole is not maximally charged, the only 
bounded solution i s  # =O. (For an extremal black hole, 
$ =const is also a solution, but this solution i s  not de- 
termined by the exterior scalar field and therefore 
bears no relation to the charge g.) 

Thus, P~,, ,~,  is zero and 

However, the energy-momentum tensor will contain a 
singular part: 

T;:) =TL:;;.~~+T;::!,~,). (A2 .6 )  

The tensor T : ) ~  has only two nonvanishing compo- 
nents: 

APPENDIX 3 

To calculate the integrals (2 .8 )  and (2 .20)  in the case 
in which are interested when the charge i s  uniformly 
distributed over the surface of a rigid sphere of radius 
c with center at the point r = y o ,  B = 0, we introduce the 
new coordinates ( x ,  y, 2) and coordinates ( q ,  w, 4) as- 
sociated with the coordinates ( r ,  8, cp) by the relations 

x=r sin tl cos p; x=q sin o cos 0 ;  

y=rsintl  sin$: y=q sin o sin@: (A3.1)  
d ~ ~ + P : ~ = r  cos 0-ro+grz sin2 8; z=q cos o, 

where for the considered Reissner-NordstrGm metric 

In these coordinates, in the neighborhood of the point ro 
the metric (2 .5 )  can be written in the form 

ds2=-F[ r (x ,  y, z ) ]  dt2+ (dx2+dy2+dz2) ( ~ + O ( X ~ + ~ ~ + Z ~ )  ) 

=-F [ r ( q ,  o, 0 ) ]  dt'+ [dqZ+qZ(do2+s in2  o d 0 2 ) ]  (I+ 0 ( q Z )  ) . (A3.3)  

In these coordinates, the invariant 6 function has the 
simple form 

8(1(x, xo)  - E )  = S ( ~ - E )  
(A3.4) 

and the integration in (2 .8)  and (2.20) reduces to calcu- 
lation of the integrals with respect to the angular vari- 
ables for fixed value q = &. The expansions to second 
order in & of the quantities in these integrals needed 
for their calculation have the form 

B R = a r o [ 2 ( l - A )  [ i + a  -(cos o + c o s o 0 )  , 
2 a  

A=cos o cos of+sin o sin of cos ((0-m'), 
I 

r=ro { l+ea  cos o + ' / z ~ z [ a 2 +  @ - a Z )  cosz a ] ) ,  (A3.5) 
II==(r-M) (f -M) -Mzh=rozaz+ (rO2-Mr,) (cos o+cos  a')-, 

rr'=ro2{i+ea (cos o+cos  or)  

+ e z [ a Z  eos o cos o'+'/ ,[aZ+ ( @ - a z )  (cosf o+cosa a ' ) ] ]  1. 

Substituting these expansions in the expressions (2 .8)  
and (2.20) for the self-energy, we obtain 

dQ=sin o d o d 0 .  
From this the results (2.10) and (2.20) given in the 

main text follow. 

' ' ~ o t e  that for fixed surface 2 (BXBpIC Hf), (aX,c iO) and 
given position of the charge on it the minimal value of 
E':~:' i s  attained in the case when fw is  static in the 
neighborhood of X .  It i s  for this reason that the energy 
of this lowest energy state is  appropriately regarded a s  
the self-energy. Note also that the integral E ' ~ ~ ~ ~ )  in (2.4) 
calculated over any spacelike surface C lying in the region 
I1 (see Fig. 1) with boundaries on r = r- and r = r, for 
the analytic continuation (A1.6) of the static solution is 
equal to zero. Therefore, in particular, for a Schwarzs- 
child black hole (r- = 0) the value of E':~:' is  the same 
if X is  a complete surface or a part of it lying outside 
the black hole. For a charged black hole, the analogous 
integral over the part of X in the region 111 between 7 

= r- and r = 0 i s  positive and diverges as  r- 0. Note, 
however, that the field in region 111 i s  not uniquely deter- 
mined by the Cauchy data in regions I' and I, since the 
choice of the boundary conditions a t  the singularity at r 
= 0 i s  arbitrary. In particular, this circumstance can 
be used to make the corresponding integral vanish. 

' ' ~ o t e  that if in the expression (2.4) that determines ~ $ 3 ;  
we take a s  X the surface X o  (see Fig. 1) containing be- 
sides the pa? t = const, r > 7, its continuation in I' and 
a s  f we use f (A1.7), then the terms containing f . c  np, 

lead to the appearance in the integrand of quantities pro- 
portional to ~ 6 ~ ( a ) .  It is  easy to show that the corres- 
ponding integral, whose definition must be augmented, is 
equal to the integral 

AE -J T , , [ ~ , ~ I V  dxv 

calculated over the part of IT containing Ptl iY- and de- 
scribes the flux of the electromagnetic field into the black 
hole when the charge e is  carried up to it. The quantity 
A E ,  which depends on the details of this process, deter- 
mines the correspondinf, cjange in the mass of the black 
hole. The substitution f -f (,.,,: and fixing AE= 0 cor- 
responds to the formulation of the problem that we have 
adopted in which the mass of the black hole is assumed 
given. 

 he equivalence principle i s  discussed in this connection 
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in Ref. 11. 
' k i t h  regard to the appearance of a similar surface term 

in the action for a purely gravitational field, s e e ,  for 
example, Ref. 12. 

5%e should like to take this opportunity of thanking Linet 
for pointing out to us that the expression for C(,,, (x. 
x ') obtained in our Ref. 14 can be transformed to the 
simple form l/~(x, x ') obtained by Linet in Ref. 13. 

"A discussion of the metric (3.4) in connection with the 
equivalence principle and of the equivalence principle in 
ccnnection with the question of the radiation of a uniform- 
ly accelerated electron can be found in Refs. 15-17. 

" ~ o t e  that these continuations of the solutions (3.6) and 
(3.7). which a r e  "static" in Rindler coordinates, de- 
scribes in region n (Fig. 3) a radiation field (see, for 
example, Ref. 17). Similarly, for an observer falling 
into the black hole (in region 11 in Fig. 1) the analytic 
continuations (A1.6) and (A2.5) of the solutions static out- 
side the hole a r e  a radiation field. 

"'The normalization of the Killing vector field is  chosen in 
such a way that the terms -E-' are  equal to the expres- 
sion for the self-energy of the particle a t  rest.  

"Similar questions relating to the definition of the field 
within a black hole produced by an electric charge (in 
connection with a discussion of Jean's hypothesis) were 
considered independently by Demianski and Novikov in 
their Ref. 22, which appeared after our Ref. 21. 
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