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The dependence of the impedance of a compensated-metal plate on a magnetic field H perpendicular to the 
plate is investigated theoretically and experimentally. The calculation was performed for a model in which the 
hole Fermi surface has the shape of a corrugated cylinder, and the electrons are local. The dependences of the 
smooth part of the impedance, of the doppleron-oscillation amplitude, and of the Gantmakher-Kaner 
oscillations (GKO) on the magnetic field are obtained for the two circular polarizations of the exciting field, 
assuming diffuse reflection of the carriers. The calculation results agree with the experimental data. The 
nonlocal Fisher-Kao effect is observed in thin specimens. The behavior of the GKO amplitudes is found to 
differ qualitatively in thin and in thick films. It is shown that the substantial difference between the GKO 
amplitudes for the different circular polarizations, observed in the vicinity of the doppleron threshold, is due 
to the diffuse reflection of the carriers. 

PACS numbers: 72.15.Eb 

The surface impedance of a metal plate in a perpen- cular polarizations. . . 

dicular magnetic field has been the subject of many 
studies. The f i r s t  theoretical calculations were per-  
formed under the assumption of specular reflection of 
the ca r r i e r s  from the metal surface. It turned out in 
this case that the impedance of a semi-infinite metal 
has a resonant maximum a t  the doppleron threshold ( H  
=HL),  and it is determined above the threshold com- 
pletely by the normal skin effect in the magnetic field. 
It was shown in addition that the oscillating part  of the 
plate impedance, due to the Gantmakher-Kaner effect, 
does not depend on the sign of the circular  polarization 
of the radio-frequency field. The results  of experi- 
ments performed on a number of metals have shown 
that the behavior of the smooth part  of the impedance 
does not follow the rules predicted by the theory. In 
particular, a kink ra ther  than a maximum of the im- 
pedance is  observed a t  the doppleron threshold. The 
oscillating parts  of the impedance also behave differ- 
ently in experiment and in the theory. Thus, in the the- 
ory the amplitude of the doppleron oscillations de- 
c reases  with increasing magnetic field much more  rap- 
idly than in experiment. In addition, in the field region 
H<HL a strong difference was observed between the 
amplitudes of the Gantmakher-Kaner oscillations (GKO) 
in the two circular  polarizations. 

These discrepancies have stimulated the development 
of a theory for  the case  of diffuse reflection of car r ie rs .  
It was demonstrated f i r s t  that in this theory the imped- 
ance of a semi-infinite metal does indeed have a kink 
a t  the doppleron threshold. Since the calculation of the 
plate impedance under diffuse reflection, in the general 
formulation of the problem, is  extremely complicated, 
a simple lucid theory was developed, which i s  valid in 
strong fields H>> H,. It turned out that nonlocal effects 
al ter  radicallv the character  of the skin effect under 

We have previously1 developed a more  general method 
of solving the problem of the plate impedance, in which 
its behavior can be investigated in the entire range of 
fields." In the present paper we calculated by this 
method the smooth and oscillating par t s  of the plate im- 
pedance for  the corrugated-cylinder model and show, 
in particular, that in the doppleron-threshold region the 
amplitudes of the GKO in the two circular  polarizations 
can differ greatly. The impedance of tungsten and 
molybdenum plates was measured and the results  of the 
theory and experiment compared. 

1. CALCULATION OF IMPEDANCE 

1. We consider a compensated-metal model in which 
the hole part  of the Fermi  surface (FS) is  in the form 
of a corrugated cylinder, while the electron part. i s  a 
right circular  cylinder.' The axes of both cylinders a r e  
parallel to the normal to the plate and to the constant 
magnetic field H, whose direction we align with the z 
axis. In this case  the nonlocal conductivity for  circular  
polarizations of the field i s  of the form 

Nec Nec 
( =  i q =  - { ( y 2 - q l - ' h - y  (1) 

H 

where k is  the wave vector, Nand  I a r e  the concentra- 
tion and mean f r ee  path of the holes, S(p,) is the a r e a  
of the intersection of their FS with the plane p, =const, 
u is  the maximum displacement of the holes during the 
cyclotron period, and yl is  the rat io of the electron- 
collision frequency to their  cyclotron frequency. We 
shall  consider hereafter the magnetic-field region 
where y < < 1  and yl<< 1. 

diffuse-reflection conditions. This theory, however, i s  The f i r s t  t e rm in the curly brackets of (1) describes 
not valid for  moderate and weak magnetic fields, where the Doppler-shifted cyclotron resonance (DSCR) of the 
many singularities appear in the observed phenomena: holes, and the second describes the local conductivity 
a doppleron threshold, a maximum of the doppleron 0s- of the electrons. Since a parallel exposition for the two 
cillations, and a difference between the GKO in the c i r -  polarizations can lead to confusion, we obtain f i r s t  the 
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results for positive and then for negative polarization. 

The dispersion equation for the field in an unbounded 
metal is  of the form 

D ( q )  --qz-b,s(q) =0,  to=oNeuZ/ncH. (3) 

This equation can be extended over the entire two-sheet 
Riemann surface. It then becomes equivalent to a bi- 
cubic equation, whose solutions p, can be represented 
with the a i r  of the relations 

P:+,==PY.; 
2 Znin K 

Yn=i--3t+T exp - 2nin 
(4) 

' [ ( T+T)  - f e x p  (-j--$)I; n-O, I ,  2; 

In (5), the "square root" function is defined on the 
first  sheet with a cut along the negative real  axis. The 
six roots a r e  disposed pairwise symmetrically about 
the origin. We shall designateby Dl, p,, and p, the 
roots located in the upper half-planes of both sheets of 
the Riemann surface of the function D, with p, and p, 
located on the first  sheet, and p, on the second. In the 
region of strong magnetic fields, where (,<<I, the root 
p, is close to -1 and corresponds to a doppleron, while 
the root p, is  small and corresponds to the skin compo- 
nent of the field. In the vicinity of the doppleron 
threshold (5 = 2), pl and p, a r e  of the same order. Be- 
low the threshold ([,> 2) the root p, becomes small and 
p, large and almost pure imaginary. In this field re-  
gion, p, corresponds to the skin component of the field, 
and p, to a "damped helicon" due to the local conduc- 
tivity of the electrons. To describe the skin component 
in the entire field region by a root having the same des- 
ignation, we introduce new definitions: 

General expressions for the plate impedance Z under 
antisymmetrical excitation were obtained earlier.' It 
was shown that they become much simpler when the os- 
cillations a r e  relatively small and, in addition, the 
Fisher and Kao effect3 takes place in a field that ex- 
ceeds H, noticeably. We shall assume these conditions 
to be satisfied. Substituting the function D(q) in Eqs. 
(12), (13), and (15) from Ref. 1 and carrying out the 
transformations described in the Appendix, we repre- 
sent the expression for the impedance in the form 

8nq0 4nq0 - = - + atD' (q , )  e'QIL 

cz, cz, (9) 

2E i za exp[irL(( l+z2)"-1)  1 dz 
g,, ( L )  - - e'" nr  o[ ( I + z ' ) ~  ' 

(13) 
where q, = wu/2rc, L = 2rd/u, w = 2rf is  the field f re-  
quency, d is  the plate thickness, and Z, is the imped- 
ance of the semi-infinite metal. 

The smooth part  of the plate impedance is  determined 
with the f i rs t  term of (8), i.e,, by 2,. The quantity q, 
in (10) and the second term in (9) represent the contri- 
bution of the skin component of the field, and the pres- 
ence of the second term in (9) may not be necessarily 
large compared with the damping depth of the skin com- 
ponent. The term q, in (10) is connected with excitation 
of the doppleron in the metal, and the remaining terms 
in (lo),  while expressed in terms of q,, q,, and q,, 
constitute the contribution of the integral along the 
edges of the cut (see A.4), i.e., they a r e  connected with 
the excitation of the Gantmakher-Kaner component 
(GKC). The second term in (8) represents the oscillat- 
ing part of the plate impedance. The term proportional 
to exp(iq&) is due to the penetration of the doppleron 
through the plate, while the term with g,,(L) is due to 
the GKC. It is  appropriate to mention here that in the 
case of specular reflection of the carr iers  the imped- 
ance oscillating part connected with the GKC is equal to 
(8sqo/c). 2g,,(L). 

We consider now the cases in which Eq. (8) -(13) be- 
come noticeably simpler. The integral (13) can be cal- 
culated a t  large and small  values of L5,'. Neglecting 
small terms proportional to y ,  we have 

In the region of strong magnetic fields, where 5, << 1, 
the right-hand side of (10) is equal to 5/r +ql; in addi- 
tion' 

As a result, the expressions for the impedence take 
the form 

The behavior of the impedance in strong fields was in- 
investigated However, since different 
parts of (15) and (16) were contained in Ref. 2 and 5, 
while the equations of Ref. 4 contain e r ro r s ,  we have 
presented the complete equation for Z. An expression 
for the smooth part of the plate impedtnce, similar to 
(16), was first  given by Zherebchevskii and 
Nabere~hnykh.~ A later paper by the same a ~ t h o r s , ~  
however, devoted to a comparison of (16) with experi- 
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ment, contains an incorrect interpretation of this equa- 
tion. It is  stated that (16) describes the contribution of 
the normal skin effect in the entire field region where 
q,<< 1, while the contributions connected with doppleron 
excitation in the GKC "should be small by virtue of the 
smallness of the wavelength compared with the skin 
thickness." Actually, Eq. (16) is  valid in the field re-  
gion [,<<I. In addition, the normal skin effect is  de- 
fined a s  the situation wherein all  the components of the 
field can be neglected compared with the skin compo- 
nent. Although a t  to<< l the electric field of the skin 
component i s  much stronger than the remaining compo- 
nents, the magnetic field may turn out to be also weak- 
er. It is  precisely the term t,/n which characterizes 
the magnetic field of the GKC. Therefore the normal 
skin effect sets in only in very strong fields when these 
terms can be neglected (5, << y for thick plates d >> I ;  
tOL << 1 for thin ones). In weaker fields, (but still with 
to<< 1) the GKC magnetic field predominate and there- 
fore the screening of the field in the metal (the skin ef- 
fect) is determined simultaneously by the skin compo- 
nent and by the GKC. 

In the field region 5,- 1 ,  all  three components (skin, 
doppleron, and GKC) participate in the screening of the 
field. Unfortunately, in this field region the integral 
(12) cannot be expressed in terms of elementary func- 
tions. 

In weak fields, when 5,- 1, the amplitudes of both the 
skin components and the GKC turn out to be small on the 
metal surface and the screening of the field in the metal 
is determined by a damped helicon (qo^i5,'/2). Neglect- 
ing the terms that contain y,  calculating the integrals in 
(12), and simplifying (9) and ( lo) ,  we obtain for the im- 
pedance the expression 

It follows from (18) that in this field region the GKO 
amplitudes for diffuse and specular reflection differ by 
a factor (1/8) exp(-2q)- 0.039. 

We present analogous expressions for the minus po- 
larization. The solutions of the dispersion equation a r e  
given by 

q:+l -a~n;  (19) 
y,=1-z/3t+i/si{exp [I/,ni(n-2) +'/,K] -t2 exp [-2/,nt (n-2) -'l,K] }; 

n=O, 1, 2, 

K--ln{i"[-i[t8- (t3-"/,g2)z] ]'h+i(ta-11/2g") ; (20) 
t-1-El, ~$-err,, g=EolrS, r=l+iy, r,-l+iyl. (21) 

As before, the roots q,, q,, and q, a r e  those lying in 
the upper half planes, with q, and q, on the second 
sheet and the root q,, which characterizes the skin 
component, on the f i rs t  sheet. The doppleron root 
turns out to be on the second sheet in accordance with 
the fact that there is no doppleron in this polarization. 
The factor -i in the equation for K is introduced under 
the square-root sign to ensure that the roots of the dis- 
persion equation do not fall on the cut of the "square 

root" function. 

The expressions for the plate impedance a r e  obtained 
with the aid of transformations similar to those used in 
the derivation of (8)-(13). The final result is  obtained 
from (8)-(13) in which the quantities r, r,, 5, and 6 ,  
a r e  replaced by new ones in accordance with (211, b ,  
in (8) i s  set  equal to zero, and Eqs. (10) and (11) a r e  
replaced by 

8nqo - - 1 1  czk) -q1--r-- 
41 kl arc sin - r - gp arcsin 92 r - q9 a r c s i n 5  r } , 

(22) 

From now on we shall designate the polarization by the 
index (-1. The asymptotic expression for the function 
g,(;) at large and small values of LI; a re  obtained 
from (14) by complex conjugation. The expression for 
the plate impedance 2'-' in strong fields differs from 
(15) in that the second term in the square brackets, 
which is connected with the doppleron, is  missing and 
that gli' is replaced by g(';) (q i - )  =q?) in this field 
region). 

In the weak fields, the roots q , ,  = *51,/'+i, which a r e  
located on the second sheet, turn out to be close to the 
cuts and in the distribution of the field in the metal it is  
possible to separate three components: skin compo- 
nent, GKC, and the components connected with the roots 
q,,,, which we shall call a quasihelicon. Just a s  for the 
plus polarization, the amplitudes of the skin component 
and of the GKC turn out to be small, and the smooth 
part of the impedance is determined by the quasihelicon. 
The expression for the total impedance i s  

We note that the asymptotic forms (18) and (24) for weak 
weak fields, just a s  Eqs. (8)-(131, can be used only s o  
long a s  the electrons canbe  regarded a s  local. In addi- 
tion, in calculating the asymptotic forms we have neg- 
lected the quantities y and Y,, assuming that Y = Y ,  = 0, 
but these quantities increase with decreasing field. 

2. Equations (15) and (16) can explain the behavior of 
the GKO amplitude g (H) in string fields 5, << 1. In spec- 
ular carr ier  reflection, the GKO amplitude, increasing 
like HI/', reaches a maximum in a field L t t -  1, and 
then decreases like H"/2. The position of the maximum 
with respect to the magnetic field HZ varies with the 
plate thickness like ~,!&a In the case of diffuse 
reflection, the behavior of the GKO is entirely differ- 
ent, since an important role is  assumed by the factor 
Icdl/8nqo 1 '. The factor qi2 is proportional to Hz, 

while IZ1l2 increases monotonically in the region 5, 
<< 1 and reaches saturation in fields exceeding the value 
H,,, a t  which the surface resistance R,(H) of the plate 
has a maximum. If H,> H:! (we assume hereafter 
this condition to be satisfied), the maximum of the GKO 
amplitude may turn out to occur in a field H,, much 
stronger than Hg&. 

In what follows we need to know the value of H,,, a s  a 

177 Sov. Phys. JETP 55(1), Jan. 1982 Voloshin et at. 177 



function of the plate thickness d and of the average ca r -  
r i e r  mean f r ee  path I ,=u/a(y + y, ) .  We express the 
function Rl(H) in the form 

8nod sh s-sin s shx-sins 
ch r-cos x 
( sh x+sin x )'I-' 

+ cht-coss ' 

where u, i s  the value of u a t  H =HL. 

We have used here  in place of (16) and (17) a more  
general expression valid for  a model with arbitrary 
resonant singularity of the nonlocal conductivity; a and 
b a r e  numerical coefficients that depend on the FS mod- 
el. The coefficient a i s  defined by Eq. (12) of Ref. 5, 
and b is  defined a s  

which is  the expansion of the function s(q) in powers of 
q'. It follows from (27) and (3) that to=  b(H,/H)3. For  
the corrugated-cylinder model a = 2/71 and b = 2. Dif- 
ferentiating (25) with respect to the magnetic field and 
equating the derivative to zero,  we obtain an  equation 
for  H,(d, I,, H,). Since the equation contains combina- 
tions of the quantity lo, d, and H,, i t  i s  useful to find 
a universal function x,(P), where x, i s  the position of 
the maximum of the function Rl(x). Curve 1 of Fig. 1 is  
a plot of the function (Px,)-' against P-'. The choice of 
the coordinate sca les  becomes clear  from an  analysis 
of (26). This plot illustrates the dependence of H, on 
the thickness d a t  fixed values of I, and H,. At the s ame  
time, by using this plot it is  possible to plot H, a s  a 
function of I, a t  fixed d. 

The expression for  the field H,,, in the limiting cases  
of strong (d << I,) and weak (d >> 16) spatial dispersion 
were  obtained by us earlier. '  Although Eqs. (21) and 
(22) of Ref. 5 give the correc t  dependence of H, on d 
and I,, we made e r r o r s  in the coefficients [this per-  
tains a l so  to the intermediate formulas (14)-(2011. The 
expressions for  H, should be 

In the second par ts  of the equations we have expressed 
u, in t e rms  of the period AH of the GKO, namely u, 
= AELI/H, (the product  AH^ does not depend on d), and 
substituted the numerical values of the constants a and 
b for  our mcdel. In (29) we have retained the second 
t e rm of the expansion in the parameter  Z,/d. While this 
t e rm is  small ,  it plays an essential role. It demon- 
s t ra tes  that the asymptote ( d - a )  of the H,(d) curve 
does not go through the origin, and it intercepts on the 
ordinate axis  is  

2 loHL 6H 0 ( 2 n & ' ) " -  --(/)". 
"- 2.254 bAHd 2.254n" AHd 

We note a lso  that addition of the number to /3 under 
the square root in (28) makes it possible to use (28) 
a l so  in the region P-1. Moreover, i t  turns out that a l -  
lowance fo r  the next t e rms  is  inessential down to p 
-0.2, when Eqs. (28) and (29) become joined within 3%. 

To find the maximum of the function g ( H )  we rewrite 
it in the field region H>H2K, using (15)-(17) and the 
lower expression of (14), in the notation of (26): 

2~20U" lQli - x~12 
sh x-sin x ) '+ ( sh x+sin x ) 'I -' 

a-~'~Pd + ch x-cos I ch s-cos x ' 

(31) 

We have separated here the exponential decrease of the 
oscillations, due to the finite mean f r ee  path I. We note 
that in the case  when the conductivity has a singularity 
of a different type it i s  necessary to replace (14) by the 
appropriate expression for  g,,. As a result ,  the func- 
tion g will be described by an equation similar  to (31), 
in the numerator of which it i s  necessary to change the 
degree of the quantity x and the numerical factor. Let 
us find the position x,, of the maximum of the function 
g. For smal l  thicknesses (P>> 1) we usually obtain 

Thus, the GKO turn out t o  have a maximum in a field 
only 14% weaker than H,(d), and var ies  in proportion 
with it with increasing plate thickness. Starting with a 
certain value of d (P=  0.1), the situation is  changed. In 
addition to the maximum, which var ies  a s  before with 
the maximum of the function Rl(H), the curve g(H) ac-  
quires a new maximum whose position in t e r m s  of the 
field H, is practically independent of the plate thickness. 
In the region P << 1, the positions of the two maxima a r e  
determined by the equations 

Curves 2 and 3 of Fig. 1 show plots of the functions 
(Px,,)-' and (Px,)-' a s  functions of P-'. The maximum 
that var ies  with the maximum of Rl(H), f i r s t  increases 

5 with increasing d a t  8>> 1 like d'j4, and then decreases  
in the region << 1 in proportion to d-'. The new maxi- 
mum, however, decreases  like d-'/'. Starting with P 
= 0.06, the new maximum becomes relatively higher. 
Curves 4 and 5 of Fig. 1 show the values of both maxi- 

0 5 10 ma. The evolution of the function ed",g(~) with chang- 

FIG. 1. Positionsof the maxima of R,(H) and of the amplitude ing thickness d i s  illustrated in Fig. 2, which shows a 
of the GKo (curves 1-3, left-hand scale) and of the maximum se t  of curves corresponding to different thicknesses a t  
GKO amplitude (curves 4 and 5, right-hand scale). a fixed mean f r ee  path I,. 
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FIG. 2. Shapes of GKO envelopes. Curves 1-6 correspond to 
P=O.O2, 0.05, 0.1, 0.3, 1.5, and3. 

3. We proceed now to discuss the diffe.-ence between 
the GKO in the two circular polarizations. It was shown 
earlier718 that in the case of specular reflection the 
GKO amplitudes a r e  the same for the different polari- 
zations. In strong fields, when to<< 1, these amplitudes 
coincide also in the case of diffuse reflection.' A dif- 
ference between the GKO oscillations in circular polar- 
izations was experimentally observed in Ref. 2. Mukh- 
tarov and Gorshkovg calculated the ratio ,',"/g I,' and 
showed that the statement that the GKO amplitudes co- 
incide in plus and minus polarizations is not quite ex- 
act. Namely, the ratio of these amplitudes reaches a 
minimum at L[:= 1, and differs from unity by an 
amount of the order of 5,. This difference is actually 
insignificant. To observe the oscillations it is neces- 
sary to satisfy the inequality L >> 1. Therefore 5, << 1 in 
the region L5:- 1. In addition, in this field region the 
amplitudes of the doppleron oscillations and of the GKO 
a r e  comparable, and the phases a r e  indistinguishable, 
so that the difference between the GKO amplitudes is 
observable. 

In diffuse scattering of the carr iers  there is another 
cause of the difference between the GKO amplitudes in 
the circular polarizations.' In this case the different 
components of the radio-frequency field influence one 
another and their amplitudes a r e  interrelated. In the 
strong-field region 5, << 1 the principal field components 
that determine the skin effect a r e  the skin component 
and the GKC, and the amplitudes of the skin components 
a r e  practically equal in the two polarizations. As a r e -  
sult, the GKO amplitudes a r e  also equal. In the weak 
field region to>> 1, the principal components a r e  a 
damped helicon a t  plus polarization and a quasihelicon 
a t  minus polarization. Their amplitudes a r e  equal, and 
again the GKO amplitude is independent of the sign of 
the circular polarization. In intermediate fields, the 
doppleron amplitude becomes appreciable. In the vicin- 
ity of the doppleron threshold, where the wavelength of 
the skin component and of the doppleron turn out to be 
close and they interact resonantly, the doppleron am- 
plitude has a maximum. It is precisely in this region 
that it is natural to expect the large difference between 
the GKO amplitudes in the circular polarizations. The 
amplitudes can differ not merely by several dozen per- 
cent, a s  in the field region L<i- 1, but by several 
times. The minimum value of the ratio Ig "'/g " ' 1  de- 
pends on the mean free path I,. Under real  conditions, 

it depends also on the details of the FS and of the total 
damping of the doppleron. 

2. EXPERIMENT 

1. In the experiment we investigated the impedance 
of single-crystal tungsten and molybdenum plates in a 
magnetic field produced by a superconducting solenoid. 
The field was oriented along the [loo] axis, whose di- 
rection was normal to the plate within 2'. The tungsten 
(molybdenum) samples were cut by the electric-spark 
method from stock pieces with relative resistivities 
pSmK/p4 = 50 000 and 35 000 (50 000); the pla:e surfaces 
were finished by the method described by Boiko and 
Gasparov." The ranges of the tungsten and molybde- 
num plate thicknesses were 0.09-2.89 and 0.47-1.83 
mm. The samples were disks of diameter 7 and 4 mm 
in the case of tungsten and 3.5 mm in the case of moly - 
bdenum. 

The measurements were made in a circularly polar- 
ized radio-frequency field in the temperature interval 
1.5-5 K. The real  and imaginary parts of the imped- 
ance were measured with an amplitude bridge and an 
autodyne." The impedance oscillations AZ were re -  
corded by separating the signal V ,  at  double the mag- 
netic-field modulation frequency. In the case of har- 
monic oscillations V,m aZJ2(2nh/AH), where J, is a 
Besselfunction, h is the modulation amplitude, and AH 
is the period of the oscillations. The value of h was 
chosen to satisfy the condition 2nh/AH=3.1, which cor- 
responds to the first  maximum of the function J,. This 
has made it possible to decrease considerably the mea- 
surement e r ro r  due to the instability of the field h, a s  
well a s  to facilitate the comparison of the amplitudes of 
the oscillations in samples of different thickness. The 
principal results were obtained a t  500 kHz in one and 
the same pair of crossed coils of dimension such that 
the filling factor in all cases did not exceed 10%. It 
should be noted that measurement of the impedance of 
thick samples encounters experimental difficulties. The 
field-distribution inhomogeneity due to a sample thick- 
ness comparable with the diameter, a s  well a s  the 
presence of a large lateral surface, cause the regis- 
tered signal to differ from the impedance Z, of an in- 
finite plate. Thus, a t  H =  11 kOe the ratios R(d) /R ,  at  
d =  1.3 and 2.89 mm a r e  respectively 1.2 and 1.8 and de- 
crease with increasing field, approaching unity in fields 
H>H,. The oscillating part of the impedance is  simi- 
larly distorted. 

2. We consider now the results of the measurements 
of the smooth parts of the surface impedance of the 
tungsten samples in a magnetic field. The R, curves 
reach a maximum at  a certain field H, whose value de- 
pends on the plate thickness. The measured values of 
H,(d) a r e  shown in Fig. 3. It follows from the data of 
Fig. 3 that the H,(d) dependence is not linear, a s  it 
might be in the case of the normal skin effect in a mag- 
netic field.3 The values of H, for thick samples de- 
crease noticeably with decreasing temperature. For the 
thinnest samples, both the shape of the R(H) curves in  
fields H <  H,(d) and the position of the R(H) maximum 
are  practically independent of temperature in the inter- 
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FIG. 3. Dependence of the values of H, and H G ~  on the plate 
thickness: 0 )  H ,  for samples with resistivity ratioP300~/p4K 
= 50 000; 0) LI, for samples withp300K/p4K = 35 000; A) mea- 
sured values of H G ~ ;  A )  calculated HGK ( L O  = l mm); curve- 
result of calculation of &(lo = 1 mm). (At d < 0.5 the values 
of HGK are  indistinguishable from H,,, and a re  therefore not 
shown). 

val  1.5-5 K. 

Figure 4 shows plots of the AR, oscillations of a 
tungsten plate 0.58 m m  thick f o r  the two c i rcu la r  polar-  
izations of a radio-frequency field. The oscillations in 
the  minus polarization a r e  due t o  the propagation of the 
GKC, while in plus polarization they a r e  superposi t ions 
of GKO and doppleron oscillations.12 All these  osci l la-  
tions a r e  connected with the DSCR of the holes of the  
octahedron located in the second Brillouin zone. It is 
s e e n  that in both polarizations they a r e  of comparable 
amplitude. (It must  be  borne in mind that in  thin s a m -  
ples  the doppleron oscillations a r e  not harmonic near  
the threshold, s o  that  their  envelope can  be distorted.) 
F o r  thicker samples ,  the GKO a r e  correspondingly de-  
creased.  This  is illustrated by curves  1 and 2 of Fig. 
5 ,  which a r e  the  envelopes of the plots of a, f o r  a 

FIG. 5. Experimental envelopes of the oscillations of AR+ 
(curve 1) and AR- (curve 2) for a tungsten sample with d = 2.89 
mm; T = 4.2 K; j- = 500 kHz. 

plate  2.89 m m  thick. In the region of the maximum of 
the  envelope, the  AR, oscillations a r e  due mainly to  the  
doppleron. It  i s  s e e n  that the identification of the os -  
cillation in tungsten, a s  well  a s  in o ther  metals ,  en- 
t a i l s  no grea t  difficulty. 

The period of the oscillations in  s t rong  magnetic 
fields i s  inversely proportional,  in both polarizations, 
t o  the  sample  thickness  and amounts to  71 Oe a t  d =  2.89 
mm. F r o m  the measurement  data  f o r  the holes of the  
octahedron we  obtain the value 

which a g r e e s  with the  resu l t s  of Ref. 12. The  product 
a H d  f o r  tungsten i s  equal to  20.5 O e e c m .  The field va l -  
ue HZ = 3 . 1  kOe a t  f = 500 kHz was  determined f r o m  the 
plots of a+ in the  thinnest samples ,  where  the t r u e  
doppleron threshold i s  l eas t  masked by i t s  damping. 

In weak magnetic fields, (H < H,), oscillations a r e  ob- 
se rved  on the aR,(H) curves ,  with a period c lose  t o  the 
period of the  GKO in s t rong fields. They a r e ,  however, 
of relatively s m a l l  amplitude and a r e  hardly distin- 
guishable on the curves  of Fig. 4. F igure  6 shows plots 
of &,(H) in  the weak-field region, obtained a t  a l a r g e  
gain. It i s  s e e n  that  the oscillations in the  minus polar-  
ization a r e  s e v e r a l  t i m e s  l a r g e r  than in the plus polar-  
zation. 

According to Figs. 4 and 5, the GKO amplitude h a s  a 

I I 1 I 1 I 
0 S 111 I5 W Z H, css esu 

FIG. 4. Oscillations of AR, in tungsten (d=0.58 mm; T =  4.2 
K; f = 500 kHz). Curves 1-3) result of calculation of the a m p  
litudes of the oscillations of AR,, AR-, and the doppleron 
oscillations, respectively. 

FIG. 6. Oscillations of AR, and AR- (curves 1 and 2) in tung- 
sten ( d =  0.61 mm; T =  4.2 K; f = 500 kHz). 
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maximum at  a certain value of the field HGK.  For most 
samples, HGK turns out to be close to the value of the 
field H ,  and increases together with H ,  with increasing 
d (see Fig. 3). For thick samples (d = 2.08 and 2.89 
mm), the growth of HGK is  no longer monotonic. De- 
spite the large thickness difference, the values of the 
field HGK for thick samples turn out to be close and 
much smaller than H,(d). Moreover, the values of HGK 
for these two samples a r e  less than for HGK for  a plate 
1.3 mm thick. 

For a subsequent comparison with the theory i t  is  ad- 
vantageous to obtain from the measurement data plots of 
g '-)/ IZl'-' 1 '  against the magnetic field, which charac- 
terize the behavior of the function Hg,,(H) (see Eq. 
(15)]. The corresponding plots a r e  shown in Fig. 7 in a 
log-log scale. The arrows on the figure .nark the value 
of the field HGK;  the thin vertical segments a r e  the 
fields values for which L5: =0.2. According to the the- 
o r y , ' ~ ~  in the field region L5,'<< 1 the function Hg,,(H) 
should vary like H ' Z 5  (the dashed line of Fig. 7) .  The 
observed difference beheen  the experimental relations 
and the H - 2 ' 5  law can be explained in the following man- 
ner. In the region LC: > 0.2 the experimentally deter- 
mined exponent a is smaller than 2.5 because the pa- 
rameter LS; is not small enough. In strong fields, the 
exponent cr increases monotonically and exceeds 2.5. 
The additional decrease of the GKO amplitude in strong 
fields can be due to the imperfection of the sample, 
namely to its deviation from plane-parallelism and its 
surface roughness. With increasing field, these fac- 
tors should exert an ever more noticeable influence, 
since the displacement of the carr iers  in strong fields 
becomes commensurate with the parameters that char- 
acterize the imperfection of the plate. For not too thin 
samples, in fields HaHGK, the function g '-'/ 12,'-' 1 '  
varies approximately like H-*'. 

At the chosen plate preparation method, the values of 
a in identical magnetic fields LC:<< 1 differ insignifi- 
cantly. It was therefore possible to determine, from 

s'-v\ z;'IS arb. un 
Inn r 

FIG. 7. Dependence of g ( - ) / I ~ ~ ( - ) f  on the magnetic field. 
Curves 1-5 correspond to samples with d = 2.89, 2.03, 1.30 
0.58, and 0.28 mm. 

the measured GKO amplitude and from the smooth parts 
of the impedance of plates with different thicknesses in 
fields L<i<< 1, the mean f ree  path I of the resonant 
carr iers  under the assumption that it is  the same for 
all the samples cut from the same ingot. The value of 
1 is given by 

where A, and A, and 2,'' and 2,"' a r e  respectively the 
GKL amplitudes and the smooth parts of the impedance 
in the minus polarization in samples of thickness dl and 
d,. All the quantities must be obtained a t  the same val- 
ue of the magnetic field. The accuracy is higher the 
greater the difference between dl and d,. According to 
the measurement data obtained for different pairs of 
samples, 1 = 1 i 0.2 mm. 

The path length 2 can in principle be determined from 
the doppleron oscillations. In a strong field (5, << 1) 
their amplitude is proportional to 12:' 1 ' ekp(-d/l). Un- 
fortunately, in this field region the doppleron-oscilla- 
tion and GKO amplitudes a r e  comparable, so  that it is  
difficult to discern the doppleron contribution on the 
AR, plots. The value of 1 is  difficult to distinguish on 
AR, plots also in a weaker field (where the GKO a r e  
small), because of the already mentioned anharmonic- 
ity of the oscillations. A more correct value of Z could 
be determined from the doppleron oscillations in R+(H) 
in weak field. The corresponding calculation of the 
mean f ree  path in fields H, < H < 1.5 HL yields values Z 
=0.4-0.7 mm, while measurements in a stronger field 
give larger values of I. This means that in the consid- 
ered field region the doppleron damping length is less 
than the resonant-hole mean free path. 

We shall be interested hereafter also in the mean free 
path 1, averaged over the FS. It can be estimated from 
the static resistance and from the data, e.g., of Ref. 
13. This estimate yields a value g =  1.2-1.3 mm a t  T 
=4.2 K. 

3. DISCUSSION OF RESULTS 

1. W e  shall compare, for the sake of argument, the 
theory with the experimental data obtained a t  T=4.2 K 
and f = 500 kHz. It is  necessary to substitute in the 
equations of Sec. 1 the parameters (8s/8pg),, , H,, y 
=u/2sl,y1 =u/*l, -y, which must be reconciled with the 
experimental conditions, and carry out a numerical 
calculation. In the preceding section we obtained 
(8S/8pg) ,,,, = 3.13 EA-' and 1 = lmm. -. 

The skin component of the field and the short-wave 
components connected with the DSCR depend, generally 
speaking on the different collision frequencies of the 
holes and electrons. In our model, however, the hole 
scattering is described by a single parameter y. This.  
shortcoming can be eliminated by choosing the param- 
eter y, to agree with the mean f ree  path I, and by not 
assuming it to determine the frequency of the electron 
collision. We put tentatively I, = I = 1 mm. 

In the theory, the threshold field H, must not neces- 
sarily coincide with the experimental Hi. The point is 
that our FS model describes correctly the resonant sin- 
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gularity of the nonlocal conductivity, but not its value 
far from resonance, since it does not take into account 
the details of the real  FS. We a r e  therefore justified 
in claiming quantitative agreement with experiment in 
strong fields, but can count.-only on a qualitative agree- 
ment in weak fields in the vicinity of the doppleron 
threshold. To determine the parameter H, we use the 
H,(d) plot of Fig. 3. According to (28), the value of H, 
in the case I ,  >> d is determined by the value of HL and 
is practically independent of 1,. It turns out that it is  
possible to choose a value H,= 3.15 kOe such that the 
theoretical curve H,(d) (solid line in Fig. 3) passes near 
the experimental points that pertain to thin samples. 
This is  evidence that for thin samples there is  realized 
the nonlocal effect of Fisher and Kao. This is con- 
firmed also by the fact that H, of the thinnest samples 
is independent of the temperature and of the residual 
resistivity. The proximity of the theoretical value of 
H, to the experimental Hi  =3.1 kOe shows that our 
model describes correctly the nonlocal conductivity far  
from resonance, too. 

It is  seen from Fig. 3 that with increasing H the theo- 
retical curve deviates noticeably from the experimental 
points. We did not determine exactly the value of the 
parameter I, in our analysis. By choosing this param- 
eter it would be possible to obtain better agreement be- 
tween theory and experiment for H,(d) also in the re- 
gion of large d (without disturbing the agreement for  
small d). The value of 1, can be approximately ob- 
tained, e.g., from the slope of the line drawn through 
the experimental H,(d) points for thick samples, or 
from its intercept on the ordinate axis [see Eqs. (29) 
and (30) a s  well a s  Fig. 31. In this case, however, 1, 
turns out to be too large (3 mm), greatly exceeding the 
value 1: = 1.3 mm estimated from the static resistance. 
Since lo determines also the static magnetoresistance, 
it must not exceed c. The discrepancy between theory 
and experiment a t  large H is apparently due to the fact 
that thick samples can not be regarded a s  plates. One 
can attempt to determine lo from the behavior of the 
quantity X,/(R, - X I )  in the field region H, < H < H, [see 
Eqs. (16) and (17)]. Unfortunately, this method yields 
values of I, scattered in the interval 0.6-2.5 mm. 

2. We discuss now the behavior of the maximum of 
the GKO amplitude. In accordance with the theory, the 
maximum-amplitude field HGK in thin samples is in the 
vicinity of the field H,. In thick samples d =  2.03 and 
2.89 mm, the fields KG, turn out to be much weaker 
than H,(d) and differ little from each other. This is  
evidence that in thick samples there apprears the new 
GKO-amplitude maximum described in the theory. Un- 
fortunately, a direct quantitative comparison of the re-  
sults of the theory and of the experiment is  impossible. 
Owing to the imperfection of the samples, in a strong 
field the quantity g/ IZ,"' 1 decreases in proportion to 
cu raised to a power higher than the theoretical 2.5, and 
this power increases with H (see Fig. 7). As a result, 
the position of the new maximum H, may not coincide 

which the maximum of the GKO amplitude is observed 
in thick samples, the factor R/R, can be regarded a s  
constant, so  that we shall neglect its effect on H,). 

If the power 2.5, which determines the decrease of 
the function Hg,,(H), is replaced in the expressions of 
the theory by an arbitrary power a ,  then the position of 
the new maximum will be given by 
H p  (loH,2/nAHd)'h.  2 (4-a) {[if (a-2) (4-a)] "+a-I)-', 2<a<4. 

(36) 

An important role is played by the value Po(cu) a t  which 
the new maximum for a given power of a! f i rs t  appears. 
For thick samples the values of a in the vicinity of the 
maximum of the GKO amplitude a re  a,., = 2.6.t 0.2: 
a,.,, = 2.82 0.2: a,., = 2.82 0.2. The calculated values 
of P,(a!) in this a interval, a s  well a s  the value of yo( a!) 
= l/x,[P,( cull, a re  

From the condition that the new maximum appear al- 
ready for the samples with d =  2.03 and 2.89 mm, it is  
possible to estimate from a,,, and cu,,, that the aver- 
age mean free path lo< 1.3 mm. *Therefore the old max- 
imum is still observed in a sample with d =  1.3 mm, and 
with the aid of a!,.,, we obtain the lower-bound estimate 
1,<0.5 mm. The upper-bound estimate can be refined. 
Using the approximate constancy of y,(a) in the given ff 

interval, we can write down for the samples in which 
the new maximum is observed the inequality 

Substitution of the numerical values yields lo< 1.1 mm. 
The e r ro r  in cu does not make it possible to determine 
I ,  more accurately also from the value of H, [see Eq. 
(36)j. We assume lo= 1 mm. Figure 3 shows the cal- 
culated values of the field of the GKO maximum. It i s  
seen that they a r e  in fair agreement with experiment. 

The value of P for our samples ranges from 3 to 0.1. 
The change of the maximum of the GKO amplitude, 
multiplied by ed", with increasing d is small and 
agrees with the character of curve 5 on Fig. 1. 

Knowing the values of I,, 1, H,, (8S/ap , ) , , ,  ,, , we can cal- 
culate completely the plate impedance in both strong 
and weak magnetic fields. The calculated behayior of 
the smooth part of the impedance a s  a function of the 
magnetic field, in the case of samples that a r e  not very 
thick, agrees well with experiment. The theoretical 
maximum of R agrees approximately within 5% with ex- 
periment. The calculated behavior of the amplitude of 
the oscillations with changing magnetic field, in both 
polarizations, for samples with d < 0.61 mm, agrees 
well with experiment. The calculated results for d 
= 0.58 mm a r e  shown by the dashed curves in Fig. 4 
(curve 3 represents the doppleron oscillations). Only 
near the strongest fields do the oscillations in the ex- 
periment decrease markedly more rapidly than in ex- 
periment, owing to imperfection of the samples. 

with the calculated one, and the sec-ond maximum, The absolute values of the oscillation amplitudes dif - 
which is close in position to H,, which remains in the fer  systematically in theory and experiment. For d 
theory, is  not observed in experiment because of the = 0.28 mm they a r e  2.5 times larger than in experiment 
strong increase of a. (In the field region q, < to, in in the field interval 9-22 kOe. At d=0.58 mm, this 
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which enter in the expression for the plate impedence, 
a r e  given by 

FIG. 8. Ratio of the GKO amplitudes in plus and minus polari- 
zations: 1) calculation for specularity coefficientp= 0; 2) 
calculation for p = 1; points-results of measurements on tung- 
sten sample (d= 0.61 mm; T = 4.2 K; j = 500 kHz). 

difference is  2.2. Accordingly, we chose for the cal- 
culated curves in Fig. 4 a scale smaller by a factor 
2.2. The reason why the amplitudes differ is possibly 
that the carr ier  reflection from the plate surface in 
tungsten is not completely diffuse. 

We note that according to theory the maximum GKO 
amplitude in pure diffuse reflection is much larger than 
in specular reflection. Thus, for d=0.58 mm the ratio 
of the amplitude is 370. There is therefore puzzling 
why it is concluded in Ref. 14 that the oscillations de- 
pend little on the character of the reflection and that the 
results of measurements on tungsten a r e  comparable 
with theory for pure specular reflection. 

3. Finally, we examine in greater detail the GKO in 
weak fields. Figure 8 shows the calculated plot of the 
ratio of the GKO amplitudes in plus and minus polari- 
zations. The square brackets on the abscissa axis 
mark the field region where the amplitude of the dop- 
pleron oscillations exceeds the GKO amplitude and no 
different between the GKO in different polarizations is 
observable. The same figure shows points correspond- 
ing to the ratio of the GKO amplitudes a s  obtained from 
experiment. The vertical segment indicates the mea- 
surement e r r o r  due to the difficulty in determining the 
amplitudes of the investigated GKO, which a r e  ob- 
served in weak fields against a background of oscilla- 
tions having different periods (see Fig. 6). It follows 
from an examination of Fig. 8 that experiment and the- 
ory a r e  in qualitative agreement. For comparison, the 
same figure shows curve 2, which represents the anal- 
ogous ratio for the case of pure specular reflection. 
Thus, the noted deviation of the character of the re-  
flection from specularity causes the GKO in the vicinity 
of the doppleron threshold to be substantially lower in 
its polarization than in the opposite polarization. It ap- 
pears that a similar situation obtains in cadmium below 
the hole-dopperlon threshold. 

We have compared above the conclusions of the theory 
with the measured impedences of tungsten samples. 
The results of the experiments with molybdenum reveal 
the same regularities a s  for tungsten. 

The authors a r e  deeply grateful to V. A. Gasparov for 
helpful discussions and for supplying the samples. 

APPENDIX 

According to Ref. 1, the quantities Z,, I, and g,,, 

where D'(z) is  the derivative of D(z), the contour C, 
encircles clockwise the cut drawn from the point -I? to 
*, and the contour Cl encircles counterclockwise the 
cut drawn from the point r to -*. 

Integrating the right-hand side of (A. 1) by parts and 
deforming the integration contour to the contour C,, we 
obtain 

where account was taken of the contributions of the two 
poles of the function Df/D a t  the points q =  -ql and q 
= -9,. The second term in the brackets can be left out, 
since it has no branch points. 

We represent the function D in the form D = A  - B,  
where A is the rational part of D, and B  contains the 
square root. It is convenient to represent the integral 
in (A.4) in the form 

The first  term in the parentheses has a simple pole a t  
the point q = -r (B - * a t  this point), and its integral is  
equal to -r/2. The integral of the second term, which 
has a branch point, will be calculated by the method de- 
scribed in Ref. 4. This integral does not change if the 
integrand i s  multiplied by the function (2/a)arcsin(-q/ 
r). Since the integrand is odd, the integral along the 
contour C, is  equal to half the integral over the closed 
contour C,, made up of the contour C,, the contour C, 
traced in the opposite direction, and two infinite semi- 
circles. The integrand has inside this contour only 
simple poles a t  the points iq,, +q,, *q,. Recognizing that 
B =A for the roots of the dispersion equation that a r e  
located on the f i rs t  sheet, and B =  -A for the roots on 
the second sheet, we find that the integral of the second 
term in the parentheses of (A.5) is 

Adding to this the previously obtained term, we arr ive  
a t  Eq. (10). 

We now transform the integral (A.2). We note f i rs t  
that 

To prove this, we subtract from the integrand the 
quantity 2/2, the integral of which along the contour C, 
i s  zero, and taking into account the fact that theintegral 
of the obtained function is equal to half the integral over 
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the contour C,. The latter is equal to the number of 
roots of the dispersion equation on the first  sheet, tak- 
en with opposite sign. 

If we now use (A.7), take the residue to the integrand 
in (A.2) a t  the pole located a t  the point z = -r, reduce 
the integrals along the edges of the cut to a single inte- 
gral, and make the substitution z = - rx ,  then the ex- 
pression for Z(q) takes the form 

(A. 8) 
Making the change of variable x = (z2 + 1)" ', we arrive 
a t  expression (l2),  which is more convenient for cal- 
culations. 

Finally, to obtain (13) it is  necessary to substitute 
the function D(q)  in (A.3), reduce the integral along the 
edges of the cut to a single integral, and to make the 
same variable changes a s  before. 

')Unfortunately, the upper integration limit was not printed 
in the two basic integro-differential equations solved in 
Ref. 1. It should be in (1) and equal to L in (23). 
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