
Correlation functions of one-dimensional systems 
V. Ya. Krivnov and A. A. Ovchinnikov 

L. Ya Karpou Scientific Research Institute of Physics and Chemistry 
(Submitted 10 July 1981) 
Zh. Eksp. Teor. Fiz. 82,271-277 (January 1982) 

The correlation functions are found for a one-dimensional Fermi gas with strong repulsion between the 
fermions. At zero temperature, the correlators fall off at large distances according to a power law with the 
exponents simply expressed in terms of the velocity of sound. At T*, they fall off exponentially; the 
correlation radius K T-'. The results are compared with those found for a model with a linear spectrum. 
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A problem of great interest in the theory of one-di- 
mensional systems i s  the finding of various types of 
correlation functions. In particular, their behavior at 
large distances determines the transition temperature 
in actual quasi-one-dimensional systems. 

So far,  exact expressions for the correction functions 
have been found only in a few special models. Even 
Bethe's method, which makes it possible to calculate 
exactly the energy of the ground state and the spectrum 
of excitations for a 6-function potential, proves inade- 
quate for finding the correlation functions. 

this limit, which is in itself of interest, the correlation 
functions can be found exactly and compared with those 
obtained for the model with a linear spectrum. 

We consider a system of Fermi particles (for sim- 
plicity spinless) with the Hamiltonian 

We shall also assume that the interaction potential ~ ( x )  
is long-range. For example, we may choose for V(x) 
potentials of the form 

On the other hand, in papers of Efetov and  arki in' v ( ~ )  = e - ~ ~ = ~  . V(x)=lxl-",  - .  . . 
and of Luther, Emery, and ~ e s c h e l ~ - ~  it has been sug- etc. Although the whole subsequent treatment is inde- 
gested that the behavior of the correlation functions of pendent of the specific form of the interaction potential, 
one-dimensional Fermi systems at large distances is special attention will be given to the potential 
determined by the long-wavelength gapless excitations. - - - 

A characteristic feature of correlation functions found I; (x) =x-', (2 
on the basis of this hypothesis is their power-law de- because in this case the energy of the ground state, the 
crease at large distances when T = 0 and the continuous excitation spectrum, and all the thermodynamic char- 
variation of the corresponding critical exponents with acteristics a re  known exactly."9 For this potential, 
the interaction constant g. It has also been showni that the wave function of the ground state is also known for 
the correlation functions calculated in this way coin- arbitrary g ;  in the sector xi <. . . Cx, it has the form 
cide with those found for a model with a linear spectrum 
(the linear model), where the corresponding calcula- 9 (x,, . . . , zN) =$o' (x,, . . . , xN), a(a-1) = g / 2 ,  (3) 
tions can be carried out e x a ~ t l y . ~ - ~  It must be noted, where I),, is the wave function of the ground state of (1) 
however, that the hypothesis regarding the decisive for g=O,  which is  (JV odd) 
role of low-lying excitations in shaping the features of 
the correlation functions does not have a rigorous ba- n 

r~.(xt,. . . , x.)= J-J sinT (x,-z,) 
sis.  ,>h 

In estimating the validity of this hypothesis, one must (L is the length of the system). 
take into account the fact that the asymptotic behavior 
of the pair correlation function at large distances may 
be determined by singularities of the structure factor 
S(k) with k = 2kp (4kF, 6kp, etc.) and may therefore not 
be due to excitations of the acoustical type. 

As regards the approach that uses linearization of the 
real  quadratic fermion spectrum, i ts  most serious 
shortcoming is the absence of the necessary symmetry 
of the total wave function of the system. If such a lin- 
earization i s  correct at all, it is probably so only for 
small values of g. This is indicated in particular by 
the fact that the single-particle density matrix of the 

The possibility of exact treatment of a system with 
the Hamiltonian (1) for g- m and for sufficiently low 
temperatures is due to a well known fact: the formation 
of a Wigner crystal with a lattice constanti' a =p-' 
= L/N. On making the change of variables 

x,=na+E, 

and expanding the potential energy in (1) through terms 
quadratic in 5,, we get 

- - 

linear model agrees with the density matrix of a slight- which is the Hamiltonian of a system of harmonic os- 
ly nonideal Fermi gas with a quadratic spectrum, a s  cillators with long-range action. Vanishing of the terms 
found by us5 only qualitatively. containing the first derivative of V(X) occurs, strictly 

The present paper will consider another limiting speaking, only for a potential periodic with period L. 
case, namely strong repulsion between fermions. In In other words, instead of the original potential V(x) it 
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is necessary to consider a potential - 

but in the limit a s  L- .o the two potentials coincide. 

The Hamiltonian (5) reduces in the usual way to a 
system of noninteracting phonos, whose spectrum has 
the form 

.(q)=2 [ g g  Vrl (no)  ( i -eosqna)  , -n<qo<n 
"-1 I" 

therefore the energy of the elementary excitations of a 
Fermi gas wheng- .o i s  w(q). These excitations have 
acoustical character for q- 0 and a r e  periodic with 
period 2kF (kF = ~ p ,  where p i s  the particle density), a s  
i s  characteristic of one-dimensional Fermi systems. 
In particular, for the interaction potential (2) 

for g >> 1, this agrees with the exact expressionB 

The wave function of the ground state of (5) has the form 

where w(q) i s  defined by the expression (61, and where 
5, i s  the Fourier transform of 5,. For the potential (2) 
wheng>> 1 (a >> I ) ,  the function $ can be obtained direct- 
ly from (3) by taking into account that according to (4), 
$,,(xi,. . .,x,) attains i ts  maximum in the sector x ,  < . . . 
< x, when 

Then $ has the form (91, with w(q) defined by (8). 

We turn now to the calculation of the pair correlation 
function G ( R ,  t): 

where p(R, t) is the time-dependent density operator. 
The averaging in (10) reduces to the calculation of 
Gaussian integrals and leads t o  the following expres- 
sion for G ( R ,  t): 

0 

-i J eos qm s in ( .  ( q p )  i) w - ~ ( ~ ~ )  dq }, p= ( k ~ ) - * .  
0 

The expression (11) is correct for cp>> kT, where the 
velocity of sound according to (6) is 

c= (2g)'':a [ 2 v-(na)nz  1" 
n-i  

When I R  +ctI>> a,  the function G ( R ,  t) has the form - 
G ( R ,  t )  -p2=h (R ,  t )  =2p2 cos ( 2 k = s ~ )  esp[-4n2s2q ( ~ p ,  t )  1, (1 3) 

8 - 1  

q (x, t )  =p(2nc)  - ' [F(x+cp t )  +F(cpt-x)  1, 

F ( y )  =In {Pep sh(l yln/pcp))-'/,in sign y. 
(1 4) 

Substituting (14) in (13), we get 
DD 

h(R,  t )  =2p2 Z c o s  (2kFsR) exp[in2psZc-'(sign(R+ct) 

The asymptotic behavior of this correlator i s  deter- 
mined by the f i rs t  t e rm of the sum in (15). When t=O, 

As follows from (17), the function h(R, 0) falls off at 
T = O  in power-law fashion, with an exponent that de- 
pends on g ;  at T #  0, it falls off exponentially, with cor- 
relation radius =T". In connection with formula (171, 
we note the following fact. The correlator h(R,O) at T 
= 0 was calculated by sutherland6 for the model with the 
potential (2), for two special values of g: g = 0 (the 
trivial case) and g = 4. As R - m we have 

h ( R ,  0) -R-2, h ( R ,  0 )  -R-I 

for g = 0 and for g = 4, respectively. If we use the fact 
that in this model the exact expression for c is accord- 
ing to  (8) 

and if we substitute (18) in (16), we find that formula 
(1 7) is also correct at T = 0 for these special values of 
g. 

It is interesting to compare (15) with the expression 
for h @ ,  t) obtained by Luther and peschelS4 for the 
linear model. Functionally these expressions coincide 
[in Refs. 3 and 4, only the leading term of the asymp- 
totic expression, corresponding to s = 1 in (1 5), was 
found]. The corresponding exponent, however, differs 
from p and does not coincide with it a s  g- .o. If we 
suppose, in light of the fact mentioned above, that (15) 
and (16) a r e  correct  for al l  g > 0, then a s  g-  0 the ex- 
ponents coincide to  t e rms  of the first order ing.  

Together with the correlator G (R, t), an important 
role is played by i ts  Fourier transform, the dynamical 
form factor ~ ( k ,  w), which determines the scattering 
probability of neutron and x-ray beams. It has the form 

Replacing q ( m ,  t )  by i ts  asymptotic expression (141, we 
get at T=O a s  k--0 

S ( k ,  a )  =Nn-' (cp)-'kc[ (~~-~'k~)/(~p)~]~0(o_~lkl), 
(20) 

h=-l+k2/2npc 

and a s  k42kFn, ff =&I ,  52, . .. 
S ( k ,  w )  =16N(n/c)3n'p[  ( ~ ~ c ~ ( k - 2 k , n ) ~ ) / ( c ~ ) ~ ] ~ ~ ~ - ~ 0 ( w - c l k - 2 k ~ n l ) .  

(20') 
According to (20) and (20'1, S(k, w) has a power-law di- 
vergence near the absorption threshold w = c  I k - 2kFn I 
for al l  n satisfying the inequality 

where At T # 0, these singularities a re  smoothed out; and in 

163 Sov. Phys. JETP 55(1), Jan. 1982 V. Ya. Krivnov and A. A. Ovchinnikov 163 



particular, for k = 2kFn (n # 0) and w = 0 

In the linear model,s4 ~ ( k ,  w )  also has a power-law 
singularity of the form (20)-(20'), but only for n =*l,  
and with an exponent that does not coincide with (-1 
+ P I .  

In closing this section, we consider the correlator 
~ ( k ) ,  the so-called structure factor, defined by the re- 
lat ion 

Substituting (19) in (22), we find that for T = O  

S ( k )  = I  k l lc,  k+O, 

S ( k )  =4n2nZpc-$1 (k-2k,n)/p12pn'-1, k+2kpn ( n f  0 ) .  
(23) 

According to (23), ~ ( k )  diverges in power-law fashion 
when k- 2kFn (n# 0) for n satisfying the inequality (21). 
It is easy to see that the divergence of ~ ( k )  a s  k0*2kF 
corresponds to the asymptotic expression h m ,  0) [ see 
(17)]. The singularities of ~ ( k )  at k =i4kF, i6kF, etc. 
correspond to subsequent t e rms  of the expansion (s =2, 
3, etc.) in (15). 

For T # 0, the singularities (23) are  smoothed out, and 
and ~ ( k )  is finite at all k: 

S ( 0 )  =2/$ca, S (2kpn)  -cth(2nzn'/pc'). 

Figures 1 and 2 show the function ~ ( k )  calculated by 
formulas (22) and (19) for the potential (2), for certain 
values of a and T. 

Together with the correlation functions considered 
above, an important role is played by the single-par- 
ticle density matrix, which at T = 0 is 

Unfortunately, the integral (24) has not been sucessful- 
ly calculated even in the limit g- a ,  i.e., when $ is a 
function of the form (9). On the other hand, the corre- 
lator p(R) was calculated by us earl ier5 for a slightly 
nonideal (g- 0) one-dimensional Fermi gas with an ar-  
bitrary interaction potential. The corresponding calcu- 
lations5 were based on the following representation for 
the wave function of the ground state of a Fermi gas: 

where Jlo i s  defined according to (4). It was shown 
earlier5 that the asymptotic behavior of p(R) as R -a 

FIG. 1. The function S ( k )  for a, = 100 and T =  0. 

FIG. 2. The function S ( k )  for a = 10. Solid curve, k T / p 2  = 3 / 5 ;  
dashed curve, k T / p 2  = 3 .  The numbers in  the figure indicate 
the heights of the peaks o f  S ( k )  at k = 2kF. 

i s  determined by the behavior of the Fourier trans- 
form of S ( x ) ,  the function ~ ( k ) ,  a s  k-0. To the 
f i rs t  order in g ,  we have5 

o(k)=n(c , -c) /2c , l  k l ,  k+O, (26) 

where c and co are  the velocities of sound to  terms -g 
and at g = 0, respectively. Calculation of ~ ( k )  to high- 
e r  orders in g involves significant difficulties. There 
is, however, a basis for supposing that formula (26) is 
correct  to  all  orders of perturbation theory, i f  the 
t e rm c in (26) is the exact velocity of sound. Thus, for 
example, it is easy to  test the correctness of (26) for 
the model with the interaction potential (2). In fact, it 
follows from (3) that ~ ( k )  for this model is 

o ( k ) = n ( l - a ) / 2 l k l .  (27) 

Since for this model, according to (1 8), c = 2akF, the 
expression (26) coincides with (27) for a l lg .  The fol- 
lowing fact may also serve a s  indirect corroboration of 
the validity of (26). We consider the correlator ~ ( k )  for 
T = O  and k-- 0. To calculate it, we may use a diagram 
technique developed earlier.5 Separating in the diagram 
of the expansion for S(k), by analogy with Ref. 5, the 
principal terms a s  k- 0, we get 

S ( k )  = ( k l  [ f - 2 o ( k )  1 k l / n ]  -*(2k, ) - ' .  

Substitution of (26) in (28) gives 

The expression (29) agrees with the well-known for- 
mula of Feynman, coincides with the exact answer for 
weak (g-- 0, Ref. 5) and strong[g - a ,  cf. (2311 inter- 
actions of general form, and does s o  also for the Suth- 
erland m0de1~'~ with the potential (2) withg =-$ and 
with g = 4, for which ~ ( k )  has been found exactly.6 

We turn now to calculation of the correlator pm). As 
follows from Ref. 5, the nonoscillatory part of pm)  a s  
R - a is given by the expression 
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Substituting (26) in (30), we get 

x = 1 if g = O  and x = c/2c0 a s  g- m. In particular, 
n(m) =g1'2/2 for the potential. 

In conclusion, we make two remarks. 

1. We have considered the correlation functions of a 
spinless Fermi gas. It is clear,  however, that the 
considerations regarding crystallization of a Fermi 
gas at large values of g hold also for a Fermi gas with 
spin. In particular, the energy of density excitations 
is given by formula (7). The presence of spin leads to  
the appearance of a new spin-wave branch of the spec- 
trum. For g- m, however, the energies of these ex- 
citations are exponential smalli0 and can be neglected. 

2. Although the asymptotic behaviors of the pair- 
correlation functions of a spinless Fermi gas were 
calculated by us for g << 1 ,  there i s  a basis for expect- 
ing that the corresponding expressions a r e  correct for 
all g > 0. Here the critical exponents a re  expressed 
according to (16) in a simple way in terms of a renor- 
malized velocity of sound. There asymptotic expres- 
sions coincide functionally with those found within the 
framework of the linear model. The corresponding 
critical exponents, however, are  different for g-- 
but they coincide for g<< 1. 

In a similar way, the critical exponent (31), char- 
acterizing the powerlaw decrease of p(R), agrees with 
the exponent found in the linear modeli1 only accurate 
to t e rms  -g2. This fact enables us to  conclude that lin- 
earization of the spectrum is correct  only when g<< 1. 
Although this last remark is quite trivial (and has been 
made repeatedly), there a re  a significant number of 
papers in which the results  of the linear model are  ex- 
trapolated into the range of intermediate values of g. 

 he picture of a Wigner crystal with weakoscillations is ap- 
plicable if the inequality EM>> Eo is satisfied (EM is  the Made- 
lung energy, Eo the energy of the zero-point oscillations). 
In particular, for power-law interaction potentials this in- 
equality is  satisfied at large g. For an exponential potential, 
the corresponding criterion has the form g>>xi2 exp(a/xo) for 
xo cc a ,  g>> ax? for a<< xo (q = Y-' is  the interaction radius). 
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