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It is shown that quantum virial corrections due to the interaction between electrons and point defects lead to 
magnetic and structural phase transitions in both Boltzmann and degenerate semiconductors. The ferro- and 
ferrimagnetic ordering temperatures are calculated. The conditions of appearance of a periodic superstructure 
in the lattice and of the related electron charge density wave are determined. Zero-angle coherent scattering 
ensures the possibility of propagation of high-frequency spin waves in the electron and magnetic-defect 
system. Spectra of the two branches of such oscillations are obtained. Two solutions for EPR and spin 
oscillations in an external magnetic field are considered. 
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1. INTRODUCTION itself macroscopically in the fact that the magnetic 

The problem of electron scattering by point defects 
in conducting media arises usually in connection with 
the consideration of various kinetic properties of 
metals and semiconductors, for example in the cal- 
culation of the impurity resistivity. The interaction of 
electrons with defects, however, can also influence 
strongly the thermodynamics of a conducting medium. 
Thus, in a cold ionized gas, the virial corrections to 
the free energy, due to the interaction of the electrons 
with the neutrals, lead to possible second-order phase 
transitions in the system. These transitions are  due 
to the appearance of magnetic ordering in the gas, 
namely a ferro- and ferrimagnetic structure, or  else 
to the onset of a spatial periodic structure-a charge- 
density wave. ' Similar effect due to the interaction 
between electrons and localized point defects can take 
place also in condensed conducting systems. The re -  
sults reported below pertain mainly to semiconductors 
with impurities, interstices, o r  vacancies, although in 

part of the free energy of the system acquires a virial 
increment proportional to the scalar product of the 
magnetizations of the electronic and impurity compo- 
nents. At sufficiently low temperatures, the thermo- 
dynamics favors the spontaneous onset of equilibrium 
magnetic moments for each of the indicated compo- 
nents. Depending on the character of the interaction of 
the electron with the impurity (attraction or  repulstion), 
the magnetic moment of the electron subsystem and the 
magnetic moment of the impurities have either a paral- 
lel (ferromagnetic structure) o r  an antiparallel (ferri- 
magnetic ordering) orientation relative to each other. 
Thus, in the presence of delocalized electrons and 
localized magnetic defects, direct exchange in the 
scattering of an electron by a defect can be the mech- 
anism responsible for the magnetism of the system as 
a whole. This may be precisely the mechanism that 
explains the magnetic properties of narrow-gap doped 
semiconductors. 

some cases the employed calculation scheme is a good In analogy with magnetic phase transitions, the inter-  
model for the description of doped metals, solid solu- action of electrons with defects when the temperature 
tions, and other metallic compounds. When dealing, is lowered can lead to a spontaneous change in the den- 
however, with a degenerate electron system in the sities of the electrons and defects. This condensation 
presence of magnetic impurities, we shall not consider o r  rarefaction of the electrons and of the defects lowers 
here long-range order effects connect with the Ruder- the free energy of the system. On the other hand, such 
man-Kittel-Kasuya-Yosida mechanism. a redistribution of the electrons, which violates the 

The calculation of the contributions made by elec- 
tron-defect collisions to all the thermodynamic func- 
tions does not require in essence any special assump- 
tions. The corresponding terms in the total free ener- 
gy of the system a re  expressed in terms of the exact 
electron-defect scattering amplitude. The natural 
small parameters of the problem a re  the densities of 
the electrons and of the defects. Therefore, even 
though their interaction with one another is in no way 
weak, all the thermodynamic quantities can be obtained 
in the form of virial expansions in powers of the low- 
densities, i.e., in the form of the thermodynamic per-  
turbation -theory series.  The amplitude of electron 

electroneutrality of the system in macroscopic regions, 
leads to the appearance of a macroscopic electric field 
and i s  accompanied by an increase of the Coulomb cor- 
relation energy of the interaction of the electrons with 
the ion lattice. It i s  these two competing mechanisms 
which make possible the formation in the system of a 
periodic spatial structure in the distribution of the 
densities of the electrons and defects. The principal 
ion lattice i s  then accordingly modulated, i.e., a 
unique superstructure is produced in a defect-contain- 
ing lattice. We emphasize that this situation corre- 
sponds to the existence of a spontaneous periodic elec- 
tr ic field inside the conductor. 

scattering by a paramagnetic impurity depends signi- The interaction of electrons with point defects causes 
ficantly, owing to exchange effects, on the combined also new nonstationary phenomena. Quantum refrac- 
spin of the electron and the defects. This manifests tion and scattering of electrons by defects introduces 
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into the kinematic part  of the kinetic equation a specific 
term that is linear in the forward-scattering amplitude 
and can be regarded a s  a unique self -consistent field 
of the Fermi-liquid In analogy with the Landau 
t h e ~ r y , ~  the presence of such a term in the kinetic 
equation makes possible the propagation of collective 
zero-sound o r  spin-wave modes. We investigate in 
this paper, within the framework of the indicated ap- 
proach, the high-frequency spin dynamics of semicon- 
ductors doped with mgnetic defects. We consider the 
oscillations of the magnetization in a system of local- 
ized paramagnetic defects coupled to the oscillations 
of the electron magnetic moment. 

2. INTERACTION ENERGY 

We consider the effect of the interaction between 
electrons and point defects on the thermodynamic 
properties of semiconductors. If we a re  not interested 
in the disposition the defects in the crystal lattice, 
they can be described a s  stochastically distributed 
particles with infinitely large mass. We can use in 
this case the usual gas equations, and let the defect 
mass tend to infinity in the final expressions. We as -  
sume that the defect density N, is small enough, N,r; 
<c 1, where r, i s  the radius of the interaction of the 
electron with the defects, so that the scattering of the 
electrons by each separate defect can be considered. 
The electron density N, will also be assumed small: 
Neri<< 1. If the electron gas i s  magnetically polarized, 
then i ts  equilibrium density matrix n$' i s  expressed in 
terms of a linear combination of Pauli matrices o,,: 

where a and ~3 are  spinor indices, p is the momentum 

me is a unit vector in the direction of the magnetic 
moment of the electron system, and n: and n; are  the 
Fermi occupation numbers for the electrons with spins 
oriented parallel and antiparallel to the magnetic- 
polarization vector Tm,: 

In (2.2), T i s  the temperature and the values of p* are  
determined by the normalization conditions: 

while the densities N: of electrons with spins directed 
parallel and antiparallel to me specify the degree of po- 
larization a, of the electron gas: 

For simplicity, we consider a crystal with cubic sym- 
metry or an isotropic solid in which the electron ener- 
gy spectrum c (p )  has the particularly simple form (2.2) 
with a scalar effective mass me. Analogous expres- 

sions hold for a polarized system of defects with spin 
1/2, namely 

Expansion of the thermodynamic functions in powers 
of the small densities Ne and N, is equivalent to func- 
tional expansion in powers of the ideal-gas density ma- 
tr ices (2.1) and (2.4) for electrons and defects. The 
contribution of the electron scattering by defects to the 
total free energy is then determined by the expression 

Summation over repeated indices i s  implied. Since 
the two-particle interaction does not depend on the 
spins in the nonrelativistic approximation, the interac- 
tion function O,,,,,(p,pl) of (2.5) does not depend on 
the magnetic structure of the system and coincides 
with i t s  value in the absence of polarization. This i s  
also due to the fact that in the employed approximation 
of the thermodynamic perturbation theory the function 
Oms, pv(p, pl)  is not a functional of n r i  and n$, and by 
the same token does not depend on the magnetic mo- 
ments of the electrons and defects. Thus, the spin 
dependence of the interaction function has in the ex- 
change approximation the usual form 

In the Boltzman region T >>E, ( E ,  = (2a2)213ti2~213/m e e 
is the Fermi-degeneracy temperature for the elec- 
trons), calculation of the functions $(p,pl) and c(p,pl) ,  
which i s  similar to the calculation of the second virial 
coefficient for gases in the quantum case,4 leads to the 
result 

~n (2.7), r , ,  and r,, are  the amplitudes of the singlet 
and triplet scatterings, r ( 0 )  is the forward-scattering 
amplitude, p is the reduced mass  of the colliding 
particles, and 2q = p  -p'. In scattering of an electron 
by a neutral defect (for example, a neutral impurity 
level), the interaction radius r, i s  of the order of 
atomic dimensions, so  that the condition T <<ti2/m,rE 
i s  therefore always satisfied in practically the entire 
region of existence of the semiconductor. We have 
then a system of slow electrons, and i t  suffices to re-  
tain in expressions (2.7) only the principal term in the 
expansion of the scattering amplitudes r,, and r,, in 
powers of the small relative momentum qr,<< 1, i.e., 
a constant independent of the momenta: 
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where a,, and a,, a re  the s -scattering lengths for col- 
lisions in the triplet and singlet states, and p - me. 
Substituting (2.8) in (2.6) and (2.5), we obtain the con- 
tribution of the interaction of the electrons with the 
defects to the free energy of the semiconductor: 

We have introduced here the notation a, =3a,, +a,, and 
a, =a,, -a,, . In the scattering of an electron by a 
charged impurity, the role of the interaction radius is 
played by the impurity -potential screening parameter 
A: 

where e i s  the electron charge. It is easy to verify 
that the criterion for slow scattering of Boltzmann 
electrons by defects T << fz2/qA2 is equivalent in this 
case to satisfaction of the condition 

Since fiZ,m N:'~ and E,E N:'~, i t  follows that for not 
too high electron densities N,a; << 1, a, = fz2/m,e2, a s  
is the case in practically all  semiconductors, there 
certainly exists a temperature region (2.11) in which 
low -energy scattering takes place and expression (2.9) 
is valid. We emphasize that to calculate the scattering 
lengths a,, and a,, one cannot use in this case pertur-  
bation theory in terms of the interaction, since the 
condition T >>mee4/E for the applicability of perturba- 
tion theory contradicts a t  Neai<< 1 the criterion (2. l l ) ,  
i.e., mee4/E2 >>Pis&. Equation (2.9) contains thus the 
exact amplitudes of s-scattering of slow electrons by a 
screened Coulomb potential of a charged impurity. 

The interaction energy €IF,,, of (2.9) does not depend 
explicitly on the temperature (only the electron and 
defect densities N, and N, depend on the temperature), 
and retains the form (2.9) for any degree of degeneracy 
of the electron gas. Expression (2.9) for an arbitrary 
degree of degeneracy of the electrons can be obtained 
also by the known renormalization method in the slow- 
collision limit. In this case the real  interaction po- 
tential is replaced by a certain arbitrary potential 
having the same values of a,, and a,, , but which admits 
of the use of perturbation theory. The pseudopotential 
is expressed in the final results in terms of the s - 
scattering length. The calculation of the interaction 
energy by this method leads to Eq.  (2.9) in first  order 
in qla(/fz<< 1. 

We have spoken so  far only of electron interaction 
with point defects. Scattering of holes by defects can 
be described in perfect analogy. In the calculation of 
the thermodynamic characteristics i t  is necessary to 
take into account the contribution made by scattering 
of carr iers  of both types. To avoid excessively cum- 
bersome equations, however, we shall consider here- 
after semiconductors in which the majority ca r r i e r s  
are ,  say, electrons. The results  can be generalized 

without difficulty to the case when an appreciable num- 
ber  of holes i s  present in addition to the electrons. 

3. MAGNETIC PHASES OF SEMICONDUCTOR 

To investigate the thermodynamics of the magnetic 
phenomena in a doped semiconductor i t  is necessary 
to know the magnetic part  of the f ree  energy of the 
system. The principal ion lattice of the semiconduc- 
tor is assumed to be nonmagnetic. Then, since the 
distance between defects is much larger than the lat- 
tice constant, the defects behave from the magnetic 
point of view like atoms of an ideal gas with a suscep- 
tibility that obeys the Curie law. The magnetic free 
energy, with allowance for exchange effects in the in- 
teraction (2.9) of electrons with the defects, is then 

where Fe(cr,) i s  the magnetic energy of the electron 
system, and the following notation i s  introduced: 

We have also neglected in (3.1) electron-electron ex- 
change corrections that a r e  small compared with (2.9) 
and decrease in power-law fashion with rising tem- 
perature. 

Minimization of the free energy with respect to the 
angle B between the directions of the magnetizations of 
the electrons IDZ, and of the defects !Dtd does not lead 
direct to the conclusion that a ferromagnetic structure 
with B = T, i .e ., with antiparallel equilibrium magnetic 
moments of the electrons and defects, is realized when 
the exchange scattering length is positive, a, > 0. If 
the exchange scattering length is negative, a, <0 ,  fer -  
romagnetic ordering with B= 0 takes place, wherein 
the magnetization of the electrons i s  parallel to the 
magnetic moment of the defects. 

We minimize next the free energy (3.1) with respect 
to cue and a,. The conditions 

lead to a system of equations 

where E,  = nfz2/2m,a~ and the "gas" parameters y,, 
= Ne 1 az 1 and y,, = N, I a, 1 have been introduced. The 
condition for the compatability of Eqs. (3.2) deter-  
mines the magnetic phase-transition temperature T,. 
The calculated T, for an arbitrary degree of degeneracy 
of the electron gas, a s  well a s  the phenomenological 
conditions for the onset of magnetic instability in a 
semiconductor with defects, a re  given in the Appendix. 
We confine ourselves here to an investigation of the 
limiting case of high temperatures T >>c, and of the 
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region T<<cI, of strong quantum degeneracy of the 
electrons. 

As will be seen from the result, the region of ap- 
plicability of the Boltzmann statistics for the calcula- 
tion of the transition temperature T, >>zp corresponds 
to the following condition imposed on the electron den- 
sity: 

In this case F, is determined by the classical expres- 
sion 

and the condition for the compatibility of (3.2) specifies 
the magnetic-ordering temperature: 

At a defect density on the order of several percent, 
Eqs. (3. 3) and (3.5) correspond to values N,  << 1016 cm-3 
and T << 10' K.  

Near the phase-transition point T I  (T, - T)/T, << 10' K 
we obtain from Eqs. (3.2), taking (3.3) into account, 
the equilibrium values of the polarization cu, and a,, 
i.e., of the order parameters: 

It i s  seen from (3.6) that in the Boltzmann case the 
electron spins are  polarized much more strongly than 
the spins of the magnetic defects. At c << T << T, the 
electron component i s  practically completely polarized: 

a.=1-exp[-2(T,/T)"], (3.7) 

while the degree of polarization of the impurities i s  
still small: 

The situation i s  entirely different if the phase tran- 
sition takes place in the region of the Fermi degenera- 
cy of the electron component, i.e., if T, <<E,,. For a 
strongly degenerate electron gas we have 

F.='I,EF[(l+a,)s'i+ (I-a,)'!'], E,=3/,e,N.. (3.9) 

Substitution of (3.9) in (3.2) leads to the following ex- 
pression for T,: 

The condition T,<<E= i s  then equivalent to an inequality 
inverse to (3.3): 

The electron density should in this case not be too 
high, y, << 1, in order for Eqs. (2.9) and (3.2), which 

were derived for low-energy scattering, to remain 
valid. Near the temperature of the magnetic phase 
transition, the spontaneous magnetizations of the elec- 
trons and of the defects a r e  given by 

(3.12) 
If the electron density i s  high enough: 

N , / N ~ ) ~ ~ '  B ~ ~ ~ ~ ,  (3.13) 

then the parameter x << 1, and the degree of polariza- 
tion of the defects greatly exceeds the degree of po- 
larization of the electrons a, << 4 << l.  When condition 
(3.13) i s  satisfied, the same relation between a, and 
ad holds also a t  T << T,, when the defect mechanization 
i s  close to the nominal value: 

and the electron gas is only insignificantly polarized: 

At intermediate values of the electron density 

I~?BN,/N,> y,az, (3.16) 

when x >> 1, the values of (Y, and a, near T, a r e  also 
determined by Eqs. (3.121, and a, << a,, << 1. At the 
temperature T* = 2413~, /3  the electron magnetic mo- 
ment reaches i t s  nominal value a,(T*) = 1. Near T* 
the value of a, approaches unity in power-law fashion 

and a, remains small a s  before: 

At a defect density - 0. 1°/0, the conditions (3.11) and 
y, << 1 correspond to electron densities 1013 << N, 
<< loz2 ~ m - ~ ,  with 1 K << T,<< lo3 K. Equation (3.10) 
for the phase-transition temperature can be general- 
ized also to include the case when account i s  taken of 
the Fermi-liquid interaction between the electrons: 

where 2, and F, a r e  the coefficients in the expansion 
of the Landau f-function3 in Legendre polynomials. 
We note that i t  follows from (3.6) 43.18)  that N,a, 
>>Neae in all  cases. 

Expressions (3.51, (3. lo) ,  and (3.19) a r e  in essence 
the equations for  the phase-transition temperature, 
since the electron and hole densities N, and N,, which 
enter in yZe and y,,, a re  themselves functions of tem- 
perature. It is clear, however, that Eqs. (3.5), 
(3.101, and (3.19) always have solutions for  semicon- 
ductors with a sufficiently narrow energy gap (at a low 
ionization potential of definite impurity levels) which 
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determines the number of electrons in the conduction 
band. 

4. STRUCTURAL PHASE TRANSITION 

We are  not interested in the specific structure of the 
undistorted crystal lattice of the semiconductor. We 
therefore describe i t  simply by specifying the ion 
density, i.e, the average number N, of ions per unit 
voiume. The free energy F per unit volume of the 
semiconductor is a function of the temperature T and 
of the densities N,, N,, and N,. If the particles were 
to have no charge, the thermodynamic conditions for 
the stability of the system with respect to stratification 
(i.e ., to the onset of spontaneous 6N,, bN,,  and 6N,) 
would reduce simply to the system of equations 

which indicate that the free energy is a minimum. 
Since, however, the lattice ions and the electrons a re  
charged (we assume hereafter for the sake of argument 
that the defects a re  neutral), this stratification, which 
violates the macroscopic homogeneity of the system, 
i s  accompanied also by the onset of a macroscopic 
electric field. The corresponding equilibrium condi- 
tions, in which the appearing external electric field 
must be taken into account, should therefore be sup - 
plemented by the self -consistent Poisson equation that 
describes this field. In the approximation linear in 
6N, we obtain 

where cp i s  the potential of the electric field, and r e  
stands for the charges of the electron and ion. When 
Eqs. (4.1) a re  used to describe a fully ionized gas 
(N, = O), the usual formulas for the Debye screening 
a re  obtained automatically. 

Eliminating 6N,, 6NI, and 6N, from the f i rs t  three 
equations of (4.1) and substituting the obtained expres- 
sions in the Poisson equation, we get 

where we have introduced the symmetric 3 x 3  matrix 
IIA:ll with elements 

Ank=A,"=il'FIi3N,dN,, k=e, i, d .  

The quantity 477e2DC4:) determines the character of the 
screening of the electrostatic field in a semiconductor 
with defects. At D(A:) < 0 Eq. (4.2) has an oscillating 
solution with wavelength A, = nl/'/e 101 '", which cor-  
responds to a periodic spatial distribution of the elec- 
trons, ions, and defects (and of the electric field) 
inside the semiconductor, i.e., to the appearance, in 

the electron gas, of a charge-density wave and of a 
matching superstructure in the crystal lattice with 
defects. The temperature values a t  which D(A: ) = 0 
determine the points of the structural phase transition. 
In principle, of course, i t  is possible for the function 
D(T) to be only the tangent to the temperature axis a t  
one .or several points. At these points we then have 
D(A:) = 0, and a t  al l  the remaining temperatures DM: ) 
> 0 and no structural phase transition takes place. The 
points a t  which D(A:) = 0 correspond to a pure Coulomb 
solution of Eq. (4.2) for the potential cp. 

The use of expression (4.2) for a weakly ionized gas 
leads to the results of Ref. 1 for the temperature of the 
structural transition and for the period of the charge- 
density wave. In our case, the addition made to & 
by the interaction of the electrons with the defects i s  
also equal to n E  2a1/2m,, but the calculation of all the 
elements of the matrix IIA3l calls already for invoking 
concrete model concepts concerning the thermody- 
namics of the crystal lattice and of the electrons, on 
which we shall not dwell a t  present. We emphasize 
that it i s  meaningful to speak of a charged density wave 
only when the wave-length A, of the periodic super- 
structure i s  macroscopic in scale: 

5. KINETIC EQUATION 

We do not consider in this paper dissipative relaxa- 
tion processes connected with scattering of the elec- 
trons by the defects. We therefore confine ourselves 
to simple gaskinetic estimates, in the T approximation, 
of the kinetic -equation collision terms that a re  quad- 
ratic in the scattering amplitude. On the other hand, 
quantum refraction effects (without dissipation! ) lead 
to the appearance, in the kinetmatic part of the Boltz- 
mann equation, of an additional term that i s  linear in 
the zero-angle scattering amplitude. To calculate this 
essentially quantum correction, we use the renormal- 
ization method employed in Ref. 6 to determine the 
coefficient of refraction of a particle beam by a r a re -  
fied medium. We introduce a certain effective poten- 
tial of the electron-defect interaction: 

which satisfies the condition lu 1 << t i 2 / p r E  for the ap- 
plicability of perturbation theory, and define i t  in such 
a way that in the Born approximation it yields the true 
value of the zero-angle scattering amplitude raB, pV(0), 
i.e., 

The effective Hamiltonian of the electron system is 
in this case (it i s  assumed that the main contribution 
is made by electron scattering by defects) 
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where E , ,  i s  the single-electron energy spectrum, uz  of the distribution function. Using the optical theorem 
= (irl u Iks) i s  the corresponding matrix element, &, 
6, and 5;, 6, a re  the Fermi creation and annihilation lp-p'l 

Im FspSpv (0) = - O ~ P , V V ,  

operators with the usual commutation relations 4nh (5.10) 
3att+ait6 +a++-a++ 

(5.3) 
O~P.PV = 7 

[d., ik+] [&, &+I =6,b 4 

We define the single-particle density matrices of the 
electrons f and of the defects fit '  by the relations 

The kinetic equation for f i;' is obtained by averaging 
the Liouville equation for the operator f i;' =ii&: 

a '  i - 5( [a, f:;)i ). 
(5.5) 

In Eq. (5.5) we left out of the total Hamiltonian of the 
system those terms this correspond to defects and 
commute with f ,';). In the first  approximation in u we 
obtain from (5.5), with the aid of (5.21, (5.3), and 
Wick's theorem 

In standard manner (see, e.g., Ref. 7) in (5.6) from 
fj:: ;,., to the Wigner momentum distribution function 

we obtain the kinetic equation for the polarization ma- 
trix of the electron density n:; (p), which takes in the 
weakly inhomogeneous case the usual quasiclassical 
form: 

where [Ê,;],, i s  a commutator in spin space, and the 
renormalized excitation energy is expressed with the 
aid of (5.1) in terms of the forward -scattering ampli - 
tude 

In (5. S), & 'O; @) is the unrenormalized single-electron 
energy, n$ is the polarization density matrix of the 
defects. The collision integral I,, contains terms 
quadratic in u ,  which we have left out when deriving 
the kinetic part of Eq. (5.8), and a term linear in u,  
which is proportional to Im l?,,,,,(O), and which i s  the 
principal term in the expansion of I,, in the gradients 

where o,,,,,, is the total scattering cross  section, we 
obtain the gradient correction to the local collision 
integral: 

In the gaskinetic approximation, 

where v,, i s  the thermal velocity, h, is the deBroglie 
wavelength of the electron, and k is  the wave vector 
of the inhomogeneity . 

For the scattering of long-wave electrons la,, I /Ae 
<< 1 and la,, I /he << 1, the real gradient term in the left- 
hand side of the kinetic equation (5.8), 

which describes a quantum self-consistent interaction 
of the Fermi-liquid type, greatly exceeds the imagina- 
r y  nonlocal correction (5.11) in the collision integral 

and allowance for the collective effects connected with 
the zero-angle electron scattering is not an exaggera- 
tion of the accuracy. Thus, for the interaction of 
slow electrons w&th defects, in the principal approxi- 
mation in r,/A,, the Fermi-liquid theory scheme can 
be used3, namely, the excitation energy i s  defined as a 
variational derivative E aB = 6E/6na, (E i s  the total en- 
ergy of the system) and &,, is then substituted in the 
Boltzmann quasiclassical equation. 

6. SPIN WAVES 

We shall use the collisionless kinetic equation (6.8) 
to study the high-frequency oscillations of the mag- 
netic moment in a semiconductor. Just  a s  before, we 
consider a cubic lattice, in which the unrenormalized 
energy spectrum of the electron has the simple form 
E $ = (p2/2me)6,,. To describe the magnetic dynamics 
of the defects we likewise use Eq. (5.8) and the rela- 
tions (2.1)-(2.4), and go in the final results to the 
limit of an infinitely large defect mass  m, - m. We 
assume that the small perturbations of the polarization 
density matrices 

relative to the equilibrium values (2.1) and (2.2) vary 
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in the spin-wave field in proportion to exp(iwt - ik *r),  
where w and k a r e  the frequency and wave vector of 
the oscillations. Taking the foregoing into account, 
the linearized kinetic equations for the electrons and 
defects take the form 

where v, =p/me, v, =p/m,, and Zo= f i z a , / p .  In a 
magnetically ordered semiconductor, the vectorsX?l, 
and& a re  collinear o r  anticollinear (see Sec. 2). 
The expressions obtained below a re  valid also a t  tem- 
peratures above the magnetic phase transition i f  the 
polarization of the spins of the electrons and defects 
i s  reached by different dynamic methods (injection of 
polarized particles, optical pumping) andfD?, -m, = i1. 
Equations (6.1) must be supplemented by Maxwell's 
equations, but we confine ourselves here to an investi- 
gation of transverse oscillations, which do not involve 
Maxwell's equations. We choose the z axis in the X?l, 
direction. In this situation Eq. (6.1) become much 
simpler: 

Here &;.: = (2Z0/tt)a,Ni, i = e or d ,  the upper signs 
correspond to the ferromagnetic structureme .Dl, = 1, 
and the lower to the ferrimagnetic o rde rm,  .m, = -1, 
and the circular components 

were introduced. The equations for v; and v; a r e  ob- 
tained from (6.-2) by making the substitutions w - -w 
and k -  -k. Integrating (6.2) with respect to dp, we 
obtain a system of equations whose compatibility con- 
dition determines the dispersion law of the magnetiza- 
tion oscillations: 

where the functions R,,,(x) and Q,,,(x) are  given by 

2 n,+-n - 
Q{(.Z)= ,x----; i=e.d. 

x-kv, 

Within the accuracy l imi ts ,  n: in (6.1)-(6.4) should be 
taken to mean the occupation numbers of the ideal gas 
(2.2) neglecting the interaction of the electrons with 
the defects. 

At high temperatures, in the Boltzmann region T 
>>E= we have for the functions r,(x) and Q,(x) 

where v2,, = T/m, i s  the thermal velocity and the func- 
tion F ( y )  i s  expressed in terms of the probability inte- 
gral: 

y " e-"dz n"' neY 
F ( ~ ) = ~ J - ,  -[F(y")fF(-y',')]=-Erfc(iy'"). (6. 6) 

- - 2-Y 2~ zy'" 

With the aid of the asymptotic representation of the 
function F(y)  (see, e.g., Ref. 8) 

we obtain the long-wave (kv,, << a::, kv,, << R,(::) solu- 
tions of the dispersion equation (6.3): 

and in this case the collisionless damping i s  exponen- 
tially small. We emphasize that in this case, even in 
the exchange approximation, without allowance for the 
weak relativistic interactions, a high-frequency spin 
wave with a gaplike dispersion law (6.8) (an Uoptical" 
magnon of sor ts )  exists besides the traditional gapless 
branch (6.7). 

The results, in the form (6.7) and (6.8), can be used 
to describe the oscillations of the magnetic moment in 
a weakly ionized gas.' In our case of localized defects, 
it is necessary to go in (6.7) and (6.8) to the limit m, - m: 

With the aid of Eqs. (6.7), (6.8) and (6. 9), (6.10) i t  is 
easy to verify that the spectra of the gap and Goldstone 
spin modes always diverge in different directions and 
never cross.  In the Boltzmann region, the condition 
wr >> 1 that the relaxation absorption be small calls for 
an appreciable spin polarization. Inasmuch a s  in a 
magnetically ordered Boltzmann semiconductor, a s  
follows from (3.3) and (3.6)- (3.8), we have Nu a, 
<< Nd%, a wave -vector region 
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in which both the collision and the Cerenkov absorption 
a re  small exists, and observation of a weakly damped 
spin wave i s  possible only for  the gap mode (6.10). 
The existence of the region (6.11) i s  ensured by satis-  
faction of the inequality 1 >>T >> (y2,y )'I2 near T, and 
of the obvious relation (TV/TI2 >> (a,r/Ae a t  c, << T << T,. 
At a defect density of several percent, the wavelength 
of the weakly damped oscillations of the magnetization 
should exceed 10^4-10-3 cm. The existence of a gap- 
less spin wave calls for a stronger magnetic polariza- 
tion of the system, which can be reached both by dy - 
namic-polarization methods and by turning on a suf- 
ficiently strong external magnetic field (see below). 

In the case of strong quantum degeneracy of the elec- 
trons T<< c,, the functions R,(x) and Q,(x) in the dis-  
person equation (6.3) take the form 

3N.a. 3N.+ 3N.- 
Q . ( x ) =  -+ -(I-s+v w ( s + )  - T ( ~ - ~ - )  W ( S - ) ,  

fix fix 

s s+ l  (6.12) 
W ( S ) = - l n - -  1 ,  

2 s-1 

where g, = 3N:/m,v: a re  the state density on the 
separated Fermi surface corresponding to electrons 
with different spin orientations, and zi, a r e  the limiting 
Fermi velocities. Substituting in (6.3) the functions 
Re and Q, from (6.12) for the electrons and expressions 
(6.5) for the defects, we obtain in second order in kv,/ 
Q,:, <c 1 the magnon spectra (m, - .o) 

In a spontaneously magnetized semiconductor we a1 - 
ways have N,ol,>>N,a,, so that Fqs. (6.13) and (6.14) 
become even simpler. Just a s  in the Boltzmann r e -  
gion, the condition (6.11) can be satisfied here only 
for the gap mode (6.14) a t  T >> y;i3 if x <; 1 [see (3.12)] 
and at T >> y:d i f  x >> 1. 

7. SPIN WAVES IN A MAGNETIC FIELD 

We consider also the important case when the polar- 
ization of the electron and the defect spins i s  produced 
by turning on an external magnetic field H. In this 
case i t  i s  necessary to add to the kinetic equation a 
term that takes into account the Lorentz force acting 
on the charged particle in the magnetic field, a s  well 
a s  a term due to the increment f l a a B S H  to the single- 
particle energy. We consider for the sake of argu- 
ment a semiconductor a t  T > T, with neutral magnetic 
defects (the assumption that the localized defect is 
neutral i s  not restrictive, since i t s  mass  is assumed 
to be infinitely large in any case). In the s-wave ap- 
proximation, the collisionless kinetic equations for 
transverse oscillations of the magnetic moment take 
the following form: 

where w, = WH/E i s  the electron-spin free -precession 
frequency. Integrating.(7.2), we obtain 

and substituting next (7.3) and (7.1) we obtain an inte - 
gro-differential equation for v:, which takes in cylin- 
drical coordinates in p-space the form 

av + 

i ( w + w 0 - . Q ~ ~  -kLvl, cos ~ + k ~ u Z ~ ) v ~ + - l - w L . ~  = i22 [F 
acp 

where k -v, = k#v,, + k,v,, cos cp and w,, =eH/m,c i s  the 
Larmor frequency, which depends in contrast to w, 
on the effective electron mass m,. To solve (7.4) we 
use a method similar to that employed in Refs. 8 and 
9. We introduce the notation 

o f  oo-Pc!,~~-k,u, ,  ~ L U L .  
-6, -- 

Or. OL. 
- 79 (7.5) 

The change of variable v', = e-iY8Lu 'g reduces (7.4) to 
the form 

Solving this equation with the aid of a Fourier expan- 
sion with respect to the variable cp: 

we obtain 

where Q, a r e  the coefficients in the Fourier expansion 
of the function eiY"' 'Q(cp). Integrating (7.8) with r e -  
spect to d p / ( 2 ~ E ) ~  and recognizing that the equilibrium 
distribution functions nz do not depend on cp, we ob- 
tain ultimately the sought dispersion equation 
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where J,,,(y) is a Bessel function. Equation (7.9) can 
be used to describe the transverse oscillations of the 
magnetization in a cold plasma1 in the presence of an 
external magnetic field. In the case of localized de- 
fects we have 

Equation (7.9) becomes substantially simpler near the 
cyclotron resonances 

Under these conditions, to determine the oscillation 
frequency in the vicinity of the 1 -th resonance i t  suf- 
fices to retain in the right-hand side of (7.9) only one 
term of the sum with m =l. 

The solution of (7.9) at k= 0 corresponds to electron 
spin resonances (ESR) in a semiconductor with mag- 
netic defects. At k=O only the term with m = 0 r e -  
mains in the right-hand side of (7. g), all the remaining 
terms vanish, and the dispersion equation becomes 

Equation (7. lo) ,  which determines the ESR frequen- 
cies, has two solutions: 

with a, = t anh(p~ /T)  and ct, = a, in the Boltzmann case 
T>> c , ,  while in the Fermi-degeneracy region the val- 
ue of a, i s  given by 

Thus, there a re  two ESR frequencies whose values can 
differ strongly in sufficiently strong magnetic fields 
and at not too low a density of the defects (or electrons). 
We emphasize that the appearance of the second fre- 
quency is of pure exchange origin. 

To avoid cumbersome expressions, we confine our- 
selves here to spin waves propagating strictly parallel 
to the external magnetic field, i.e ., at kL = 0. In this 
case, too, only the term with m = 0 remains in (7.9), 
which is then equivalent to Eq. (6.3) in which w i s  r e -  
placed everywhere by w + w,. Accordingly, the mag- 
non spectrum i s  determined in this case by expressions 
(6.9) and (6.10) o r  by (6.13) and (6.14), to which i t  is 
necessary to add also the energy gap (-o,) due to the 
interaction of the spins of the free Fermi particles 
with the magnetic field. For  the region (6.11) to exist, 

a sufficiently strong magnetic field is needed, to en- 
sure  the necessary degree of spin polarization. Thus, 
for example, to observe the weakly damped branches 
(6.9) and (6.10) a t  N ,  - N ,  the magnetic field must be 
such that 

tli @ H I T )  > I a, Ilh., 

which is reached a t  H -100 kOe already a t  high tem- 
peratures T << lo3 K. 

I amgrateful to A. F. Andreev and L. P .  ~ i t a e v s k i i  
for numerous and helpful discussions, to V. F. Gant- 
makher and V. L. pokrovskii and the participants of 
the Eighth (Odessa) Symposium on Theoretical Physics 
for valuable remarks and discussions. 

APPENDIX 

From the phenomenological point of view, the question 
of the possibility of a magnetic phase transition in a 
system of electrons and defects reduces to a test of the 
stability of the quadratic form obtained when the total 
free energy i s  expanded in powers of the small mag- 
netic moments of the electrons M e  and of the defects 
w :  

(A. 1) 

where X, and X, a r e  the paramagnetic susceptibilities 
of the independent subsystems of electrons and defects, 
and xint i s  the susceptibility increment due to the inter- 
action of the subsystems. Indeed, when an external 
magnetic field H i s  applied, the increment to the mag- 
netic free energy due to the interaction is 

~P=' / ,x~ . ,H~.  (A. 2) 

On the other hand, for example in the Boltzmann case, 
the calculation of 6F by means of Eqs. (2.5), (2.6)- 
(2.8) leads to the result 

(A. 3 )  

For the localized defects n,(p) = ( 2 ~ f f ) ~ ~ , G ( p )  and 

(A. 4 )  
P 

o r  in the s -wave approximation in the principal order 
in H 

(A. 5) 

In similar fashion an expression is obtained for xi,, 
also in the quantum degeneracy region. Depending on 
the sign of xi., , the expansion (A. 1) corresponds to 
ferromagnetism M e t +  M, (at x,., <O) or  else to a fer-  
remagnetic structure M ,  4.) M, (at  xi., > 0). The com- 
patibility of the equilibrium conditions aF/aM,= 0 and 
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aF/aM,  = 0 specifies an equation that determines the 
phase-transition temperature T,: 

a 
X I . I = X . X ~ ,  (A. 6) 

where xi,, i s  given by (A. 2)-(A. 51, X, = P 2 ~ , / T ,  X, i s  
determined by the usual equations for  an ideal Fermi  
gaslo: 

and i s  the chemical potential. 
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