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The electron spectra and the electric conductivities of a normal metal with dV) ions and ordinary impurities 
and of a dV) metal with nonresonant impurities are investigated. Conditions are obtained under which a gap 
can appear in the electron spectrum. It is shown that the two considered scattering mechanisms make additive 
contributions to the resistance. The resistance due to c-dV) scattering is a maximum when the chemical 
potential is closest to the d V) level. 
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1. INTRODUCTION 

A characteristic feature of a large number of transi- 
tion (d) and rare-earth (f)  metals and of their com- 
pounds is that they contain localized atom-like d ( f )  
levels "imbeddedv in the conduction band (c) of the elec- 
trons. The ensuing degeneracy of the c and d( f )  states 
can be lifted both via single-particle'-3 and multiparti- 
cle4v5 hybridization. This situation has been investi- 
gated in considerable detail in the case of a regular 
crystal. The solid-state configuration fnca  i s  trans- 
formed in this case into fn+uca'a, and the valence of the 
d( f) ions becomes fractional: some of the electrons 
go over from one subsystem to the other. A gap ap- 
pears in the spectrum of the hybridized electrons, and 
the density of the electronic states near the gap in- 
creases sharply. 

The effect of mixing of the band and atom-like states 
on the parameters of such a crystal is particularly 
strong when the chemical potential is near the d( f )  
level. In this case, the criteria for the appearance of 
a magnetically ordered state ~ h a n g e , ~  the critical tem- 
perature of the superconductor may rise,= the gap in the 
electron spectrum becomes temperature dependent, a 
high-temperature electronic phase transition becomes 
p o ~ s i b l e , ~ * ~  and variable-valence effects appear (see 
the reviews). The model of intermixing c and d( f) 
states describes well a large class of compounds based 
on Ce, Yb, Sm,' Nd, Pm9, a s  well a s  compounds with 
A-15 structure. '.lo 

The properties of irregular d(f) metals and their 
compounds in the presence of c-d(f) mixing were much 
less investigated. The problem of the impurity d( f )  
ion in a normal metal was solved by Anderson.' Using 
the Hartree-Fock approximation for the d-states, he 
has shown that single-particle mixing leads to a broad- 
ening of the d level and to an increase of the state den- 
sity near this level. The influence of multiparticle 
c-d(f) mixing on the electron spectrum and on the 
state density was investigated in Ref. 11 both for this 
problem and for the problem of a normal substitutional 
impurity in a d(f )  metal. It has been shown that a t  a 
low density of the d(f )  impurities (c ,  << 1) the quasi- 
particles have a damping r, whereas the "gapv is 
-rc, (details follow), so  that the "gap" becomes washed 
out and the density of the ground states has a peak, 

just a s  in the Anderson model.' In the opposite limit- 
ing case (1-c, << I), the quasiparticle damping is 
-r(l-c,), and the gap -I?, therefore the state density 
has a dip with peaks on the edges. 

From among the kinetic properties of a metal with 
c-d(f) mixing, only the resistance was investigated 
the~re t i ca l ly . '~"~  In Ref. 12, the coherent-potential 
method was used to investigate the model of a binary 
alloy A,,B,-,, in which each atom A contributes to the 
conduction band a d ( f )  level with energy &,A, while the 
contribution of B is E:. The dependence of the electric 
resistance on the degree of non-negativity of the wave 
functions of the c and d electrons was considered in the 
Anderson non-orthogonal model in Ref. 13. A rather 
unusual result was obtained in Ref. 14, namely, the ex- 
istence of a finite residual resistance in a regular met- 
al. This was attributed by the authors to scattering of 
the conduction electrons by fluctuations of the occupa- 
tion numbers of the localized electrons. This would be 
possible i f  the ground (stationary) state of the regular 
crystal turned out to be for some reason translationally 
invariant (the quasimomentum i s  a poor quantum num- 
ber). The authors of Ref. 14, however, calculated the 
current by using Green's functions corresponding to a 
translationally invariant ground state. 

The present paper i s  devoted to a study of the be- 
havior of the resistance of a metal with c-d( f ) mixing 
in two limiting cases: low d( f )-ion impurity density 
in the normal metal (c, << 1) and few normal-metal im- 
purities in a d( f )  metal (1-c, << 1). Besides the scat- 
tering of the conduction electrons by this resonant im- 
purity (holes) we take into account also scattering by 
ordinary impurities. We use the same model a s  in Ref. 
11. 

2. HAMILTONIAN. EXPRESSION FOR THE CURRENT 

We consider a system of collectivized and impurity 
localized electrons described by the Hamiltonian 
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where 

Here ck, is the operator for the annihilation of a c-elec- 
tron with momentum k, spin a ,  and energy ck = E k -  p, 
reckoned from the chemical potential p ;  XPq = (p)(q 1 a r e  
the Hubbard operators that change the d( f) ion from the 
atomic state Iq) into the state ( p ) ;  12) i s  an fn+l config- 
uration with spin S = 0, and (a)  i s  a configuration with 
spin 1/2 and projection a ;  pdf= 1 if the si te f i s  occu- 
pied by an impurity d( f )  atom and pdf = O  in the opposite 
case; p"fs the analogous projection operator for the 
ordinary impuritiy; Af, i s  the effective mixing parame- 
ter  (single-particle on account of the crystal field and 
multiparticle on account of the intra-atomic Coulomb 
and exchange interactions); w = S1-p, where C2 i s  the 
energy of the transition between the states 12) and 1 a). 
We assume that the ion can be only in the states 12) and 
10): 

The quantity ~ ( k  - k') is the Fourier transform of the 
potential for the scattering of the conduction electrons 
by the ordinary impurities. l5 

An investigation12 of a similar  model has shown that 
in view of the strong localization of the f electrons, 
only conduction electrons contribute to the current. 
Using the procedure described in Ref. 15, we obtain 
in the Bloch-function representation the following ex- 
pression for the Fourier transform of the average 
current: 

Here G k l k 2 ( ~ )  =(Tckl, c&,) i s  the usual time-dependent 
Green's function15, A'(Q, v) i s  the P-component of the 
vector potential, and 

The double angle brackets denote configuration averag- 
ing over the impurity positions, and N is the number of 
unit cells with volume u,. We consider here only the 
paramagnetic state and leave out therefore the spin in- 
dices of the Green's functions. We use a diagram tech- 
nique15 for the electron variables. An equation for the 
Green's function Gklk20f interest to us  was obtained in 
Ref. 11 without allowance for the scattering of the c- 
electrons by the usual impurities. In our case, after 
excluding the X variables in the generalized Hartree- 
Fock approximation, which takes into account resonant 
~ c a t t e r i n g , ~  we obtain the following equation for the non- 
averaged Green's function: 

i nrlArlZ exp ( - i  (k -P)  f} GPW (El (7) 
+Gko(E) -xp' E-o-ib sign w 

IP 

G k o  ( E )  -- (E-St+is sign S k )  -I, AI=A~,=AI, -,, 
n~=ra,,=n, -m-<Xfaa)+<X112). 

Expressions (6) and (7) a r e  the basis for the calcula- 
tion of the electric conductivity in the two limiting cases 
c, << 1 and 1-c, << 1. The density c, of the normal im- 
purity will be assumed small  in both cases. 

3. LOW DENSITY OF THE d( f )  IMPURITIES 

To carry  out the configuration averaging we use the 
diagram technique of Ref. 15. Averaging over a phy- 
sically small  volume with uniform distribution of the 
impurities res tores  the translational invariance 

((Gk%k,(E) >=Gk,(E) 8kh. 

Iterating (6) and (7), we average each term of the re-  
sultant se r i e s  in accordance with the follawing rules: 

and se t  the analytic expressions in correspondence with 
the diagrams in the usual manner15-a solid line means 
G t ( E ) ,  a cross  means the potential of the normal im- 
purity p ; ~  (k - k') expi- i(k - k)f}, a triangle is the bare 
c-d( f )  interaction 

ulO(k-kt, E )  =p:nrI Af I Z  exp {-i (k-k') f)/(E-o+iS) , 

and a dashed line joins like nodes. Account must be 
taken in the averaging of the fact that p;pf = 0, since it 
is assumed that one site contain either a matrix atom or  
a normal impurity o r  else a d ( f )  impurity. 

The choice of the diagrams i s  similar  to that in Refs. 
11 and 15, and the equation for Gk(E) =((G,(E))) takes in 
our case the form 

Solving this equation we obtain 

i 
G . (E)=  [ E - E .  + g s i g n ~ -  E-o+ir  "'" sign E 1 -' ' 

is the relaxation time due to the normal impurities,15 
and go i s  the density of the electronic states on the Fer-  
mi surface. The poles of the function (9) determine the 
spectrum and the damping of the electrons. Depending 
on the relation between the parameters r, ril, and 
a2c,, two situations a r e  possible: 
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where 

Plots of Ekv2 a r e  shown in Fig. 1. We emphasize that 
the presence of a gap in the spectrum in case A does 
not mean a t  al l  that a gap exists in the state density. 
Indeed, a s  follows from (lOa), the gap width is 
-a2g0cd, whereas the damping of the excitation a t  
k = k, i s  (I' + 7i1)/2. Since we always have ~'g,c,  
<$(I- + 7i1), no gap can appear in the state density. 

We proceed to an analysis of the iteration ser ies  
for the vertex part, which we shall define a s  the quan- 
tity in the double angle brackets of Eq. (6). We de- 
note the corresponding vector (the result of the averag- 
ing) by II::P$E+". 

It i s  easy to verify with diagrams of the form 1, 2, 3 

and all  other diagrams with intersecting dashed lines 
contain integration in a wide range of momenta (just a s  
in the case of a normal metal15) and a r e  small  com- 
pared with the ladder diagrams. Diagrams of type 4 
a r e  taken into account automatically by using the effec- 
tive interaction (8b). The result is the following inte- 
gral  equation for the vertex: 

FIG. 1. Spectrum and damping of the conduction electrons 
for two cases: a) A: < 0; b) A: >O. The situation r > 7,' is  
presented. Jn the opposite case r < 7;' curves 1 and 2 of 
I ~ E ' * ~  change places. 

or  in analytic form 

where 

We shall be interested below in the static electric con- 
ductivity in the homogeneous case: 

oab(O, 0) = lim e P ( q = O ,  v). 
"-0 

A s  seen from (6), i t  is connected with the vector by the 
relation 

The effective mixing interaction i s  local and does not 
depend on the angles. Therefore the integration of the 
vector nh  over the angles at q=O in the last term of 
(11) causes the latter to vanish. Thus, in the homo- 
geneous case the contribution of the state mixing to the 
vertex (11) is not trivial. Equation (11) is solved next 
in the standard manner. l5 The difference lies in the 
form of the Green's function Gk(w): in the case of a 
normal metal it is necessary to put cd=O in (9). Solv- 
ing (11) and substituting the result in (13), we obtain 

Here 7, i s  the relaxation time due to the scattering of 
the c-electrons by the resonant d( f )-ion impurities 

and we have introduced the transport relaxation time 

~,;'=c,g~ J dm ~ ( e )  I ~ ( ~ - C O S  e)14n. 

Calculating the sum over k, in (14) we get ultimately 

where the zero subscript means that the quantities a r e  
calculated on the Fermi  surface 

Equation (16) shows that, since the potential of the 
mixing interaction has no angular dependence the con- 
tributions to the resistance from both mechanisms a re  
additive. It is seen also that the increment (15) to the 
resistance has a resonant character: i t  is a maximum 
when the chemical pofential coincides with d ( f )  level 
(w = 0) and decreases like w* with increasing distance 
from the chamical potential. If i t  is assumed that the 
density of the d(f)-ion impurities is cd=O. 01 and the 
state density on the Fermi surface is go = 0.1 ev-', 
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then we get from (1 5) 7;' 1014 sec-' at w = 0, and the 
mechanism of the resonant scattering will in practice 
always predominate. 

4. LOW HOLE DENSITY 

In this case we intr6duce for the analysis new pro- 
jection operators hf= 1 -pf and substitute them in the 
Hamiltonian (1)-(3) and in the equation for the non- 
averaged function Gkk.(E). We then obtain in place of 
(7) 

1 LnrlA,IZ 
G.., (E) =G:" (E) 6.kr-c:") ( ~ ) ~ g  exp {-i (k-p) f) G,kr (E) 

1 
t G:"' (E)%C psnu(k-p)exp{-i(k-p)f)G.kr (E), (17) 

1. 

where the bare Green's function i s  now 

c:' (E) - [E-Ek+i8 sign b - E-o+i6 A' sign o I-' ' 
The equation for the average Green's function takes in 
this case also the form (8), from which we get 

where 
1 2rA2 - = Ch 

.c~(E) (E-o)'+r2 
' 

In the limiting case when there a r e  no normal impur- 
ities, 7, - m ,  this expression coincides with that ob- 
tained in Ref. 11. The excitation spectrum determined 
from (18) consists of two subbands separated by a gap. 
This gap can appear only when A>> 7,' + 7,'. 

Equation (11) for the vertex part remains in force in 
the considered limiting case. A calculation perfectly 
analogous to (13) yields 

All the quantities in this equation a r e  calculated a t  the 
point E =0: 

As follows from (20), in this limiting case, too, the 
resistances due to the two mechanisms a r e  additive. 
The resonance relaxation time that enters in (20) has 
outwardly the same form a s  at c, <<l [(see (15) and (19)]. 
The difference is that the minimum value of w in (19) 
and (20) cannot reach zero and is equal to the half-width 
of the "indirectn gap A2/w ( w  is the width of the c-band). 
At w >> A2/w the principal mechanism contributing to the 
resistance is scattering by normal impurities. With 
decreasing w [when the chemical potential approaches 
the d(f )-ion transition energy] the resonance scatter- 
ing mechanism can become dominant, and this takes 
place against the background of a general increase of 

the resistance on account of the decrease of the state 
density when the edges of the gap a r e  approached. 

It must be noted that if the chemical potential is lo- 
cated directly near the gap, i. e . ,  when the lower sub- 
band is almost completely filled o r  the upper one is 
completely empty (the Fermi  momentum i s  small), dia- 
grams of the type l ,  2, and 3 and others with crossing 
of dashed lines no longer contain small quantities, 
since the requirement that all the electron momenta be 
close to the Fermi surface does not restrict  the range 
of integration over the angles. The same can be stated 
also concerning the choice of corrections to the Green's 
function. Therefore in the narrow region w < c,w + a 2 / w  
our results a r e  only qualitative. 

In conclusion, we note the following. The described 
abrupt change of the resistance for a normal metal with 
d( f )  impurities and for a normal impurity in a d(f) 
metal should be expected primarily in substances with 
variable valence under any action that changes the rela- 
tive position of the chemical potential and the d(f )  
level, e.  g . ,  when compounds based on Ce and Sm a r e  
alloyed. The same effects can apparently take place 
when high pressure is applied to a d( f )  metal. 

'P. W. Anderson, Phys. Rev. 124, 41 (1961). 
'D. A. Smith, J. of Phys. C1, 1263 (1968). 
3 ~ .  A. Kikoin and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 58, 

2184 (1970) [Sov. Phys. JETP 31, 1179 (1970)l. Fiz. Tverd. 
Tela (Leningrad) 13, 802 (1971) [SOV. Phys. Solid State 13, 
662 (1971)l. 

4 ~ .  M. Zaslavskii, E. V. KUZ' min, and I. S. Sandalov, Zh. 
Eksp. Teor. Fiz. 67, 1422 (1974) [Sov. Phys. JETP 40, 707 
(1975)l. 

5 ~ .  V. Kuz'min and I. S. Sandalov, ibid.  68, 1388 (1975) [41, 
691 (1975)l; Preprint ISFSG57K, Krasnoyarsk, 1977. 

6 ~ .  V. ~ u z ' m i n  and S. G. Ovchinnikov, Zh. Eksp. Teor. Fiz. 
69, 1688 (1975) [Sov. Phys. JETP 42, 858 (1975)l. 

'E. V. ~ u z ' m i n ,  S. G. Ovchinnikov, and I. S. Sandalov, Fiz. 
Tverd. Tela (Leningrad) 22, 424 (1980) [Sov. Phys. Solid 
State 22, 248J1980)l. 

'D. I. Khomskii, Usp. Fiz. Nauk 129, 443 (1979) h v .  Phys. 
Usp. 22, 879 (1979)l. 

$L. G. Meistrenko and V. M. Polovov, Zh. Eksp. Teor. Fiz. 
72, 285 (1977) [SOV. Phys. J E T P  45, 150 (1977)l. 

''A. V. Pavlyuchenko, Fiz. Tverd. Tela (Leningrad) 20, 1527 
(1977) [Sov. Phys. Solid State 20, 880 (1977)l. 

"E. V. Kuz'min, S. G. Ovchinnikov, and I. S. Sandalov, Zh. 
Eksp. Teor. Fiz. 73, 1564 (1977) [Sov. Phys. JETP 46, 822 
(1977)l. 

12F. Brovers and A. V. Vedyayev, Phys. Rev. B5, 348 (1972). 
135. Zielinski, P. Trzaskoma, and K. Witanski, Acta Phys. 

Polon. A57, 385 (1980). 
"A. M. Atoyan, A. F. Barabanov, and L. A. Maksimov, Zh. 

Eksp. Teor. Fiz. 74, 2220 (1978) [Sov. Phys. JETP47 ,  1155 
(1978)l. 

1 5 ~ .  A. Abrikosov. L. P. Gor'kov, and I. E. ~ z ~ a l o s h i n s k i ~ ,  
Quantum Field Theoretical Methods in Statistical Physics, 
Pergamon, 1965. 

Translated by J. G. Adashko 

151 Sov. Phys. JETP 55(1), Jan. 1982 K. S. Sandalov and M. Sh. Erukhimov 151 


