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The zero-radius-potential model is extended to include the case of deep impurity center interacting with two 
bands in a semiconductor with a narrow forbidden band. The spectral dependences of the photoionization 
cross sections of such a center are calculated. Some of their features due to the large difference between the 
effective masses of the electrons and heavy holes are discussed. 
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A deep impurity center  in a semiconductor is fre-  
quently described by using the Lucovsky model. It 
describes well in a number of cases  processes that a r e  
determined by the behavior of the impurity-electron 
wave function a t  distances la rger  than the radius of the 
potential of the center. The success of this model is 
due to the fact that i t  does not presuppose any concrete 
form of the potential of the center. All that is impor- 
tant for i ts  application is that the characteristic dis- 
tance over which the wave function decreases be la r -  
ger than the radius R, of the potential well. In this 
case the matrix elements of the transitions a r e  deter-  
mined by the behavior of the wave function outside the 
well, where it depends directly only on the binding en- 
ergy & and does not depend on the concrete form of the 
potential: 

The normalization of the function (1) is determined 
completely by i t s  asymptotic expression if nRO << 1. 
This condition means in fact that the binding energy of 
the level is much l e s s  than the depth of the potential 
well. The Lucovsky model i s  in essense an application 
of the zero-radius-potential to the theory of 
deep centers in semiconductors. 

second type a r e  designated h states,  a r e  chqracterized 
by a mass  m, and a r e  made up of the wave functions of 
the heavy holes. The h s ta tes  a r e  in fact single-band, 
and their analysis reduces to a generalization of the 
Lucovsky model to the case of a complex band. 

In this reasoning we did not take into account the 
split-off band; this is valid in the case  of large spin- 
orbit splitting A. For  a narrow-gap semiconductors 
i t  can be assumed that the wave function of an electron 
bound on a center is a linear combination of Bloch am- 
plitudes with coefficients (envelopes) that depend con- 
tinuously on the coordinates. (This is valid, a t  least, 
outside the range of action of the potential of the cen- 
te r .  ) It is natural to expect for  each of the two s k t e  
types that the largest  binding energy i s  possessed by 
states for which the envelopes contain s-waves. F Q ~  
the 1-c type, such a state is doubly degenerate in spin 
and has symmetry r,. For  the h type, only the four- 
fold degenerate state r, includes an s wave (in com- 
bination with a d wave). 

We obtain in this paper expressions for the wave 
functions of the 1-c and h states outside the well and 
use them to calculate the matrix element of the dipole 
moment for transitions from a deep center to a band. 
We also obtain expre$sions for the dependence of the 

Lucovsky used the wave function (1) to calculate the photoionization cross  section on the quantum energy. 
c ross  section for the photoionization of the deep im- 
purity center. The value of & was taken from experi- 
ment, and the mass  was assumed equal to the effective 
mass  of the nearest band. It i s  clear that this approach 
is good i f  the binding energy & <<E,  (E, is the width of 
the forbidden band) and i f  the nearest  band is simple. 

The purpose of the present paper is to generalize the 
zero-radius-potential method to  include the case of a 
complicated band, a s  well a s  to the case when the bind- 
ing energy c i s  comparable with E,. We assume here 
that we can confine ourselves to the two-band approxi- 
mation in the spir i t  of Kane's model. 

In this model the masses  m, of the electrons and the 
light holes a r e  equal and substantially smal ler  than the 
masses m, of the heavy holes. At m, << m,, a s  will be 
shown below, we can distinguish between two types of 
states connected with deep centers. One type, which 
we shall call the 1-c states a r e  characterized by a 
mass  m, and a re  constructed out of the wave functions 
of the conduction band and of the light-hole band. The 

Many recent papers a r e  devoted to the theory of deep 
impurity centers (see the l i terature cited in Ref. 8). 
In these papers, principal attention is paid to the inter- 
nal structure of the center. The photoionization c ros s  
sections a r e  calculated in an energy interval which is 
substantially larger than the width of the forbidden 
band. These calculations yield valuable information 
on the wave-function behavior near the impurity, which 
determines the binding energy of the ca r r i e r  on the 
center. It is practically impossible in this case, how- 
ever,  to ensure the accuracy needed for a comparison 
of the results  with the experimental data on the photo- 
ionization c ros s  sections, which a r e  observable in 
much smaller  energy intervals. 

A number of studies has been devoted specially to 
photoionization of centers with d electrons. lo-'' The 
starting point there i s  the bare atomic wave function of 
the d electron, and i ts  distortion in the crystal field of 
the lattice is obtained, i. e . ,  in fact an attempt is also 
made to perform the calculations on the basis of speci- 
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f ic  assumptions concerning the nature of the center. 

Our method, just a s  Lucovsky's method, does not 
yield any information on the internal s tructure of the 
center  o r  on the energy of the deep level, but on the 
other hand makes i t  possible to obtain with good ac-  
curacy the frequency dependence of the photoionization 
c ros s  section in a vital frequency interval. In addi- 
tion, i t  makes it possible to take into account also de- 
tai ls  that a r e  essential for  this interval, such a s  the 
influence of the spin-orbit interaction and the difference 
between the c a r r i e r  masses.  This explains a number 
of qualitative features of the behavior of the photoioni- 
zation c ros s  sections. 

1. WAVE FUNCTIONS 

We seek the wave function @ of the electron on the 
center in the form of an expansion in the wave functions 
#J,, if the f ree  electrons: 

Here n i s  the number of the band and k is the wave vec- 
tor. The function #J, sat isf ies the equation 

H$.k=Enk$,,, ( 3 )  

where H is the Hamiltonian of the electron in the crys-  
tal-lattice field and En, is the spectrum of the f ree  elec- 
t rons in the band n. The se t  of coefficients c, (k) spec- 
ifies the wave function @ in the k-representation, and 
I c,(k) 1' yields the distribution of the electron on the 
center over the bands and the quasimomenta. 

The function @ satisfies the SchrGdinger equation 

where V is the potential of the centel.2' and E is the 
level energy. From (2) and (3) follows an expression13 
for  the coefficients cn(k): 

C" (k) - j 9-t. V Y  dSr. 
E-E,t 

The denominator of (4)  i s  the energy distance between 
the level of the center and the band state nk. Thus, the 
contribution of a given band state to the wave function @ 

is inversely proportional to this distance. I t  is this  
which makes it possible to confine ourselves in the ex- 
pansion ( I ) ,  in the case  of semiconductors with narrow 
forbidden band, to the contribution of the neares t  va- 
lence bands and of the conduction band. 

We write down the band wave function in the form 

g,,t=~-sk~nt (r) em, (5) 

where u,,(r) is the Bloch amplitude and v is the nor- 
malization volume. We assume that the potential of the 
impurity V i s  characterized by an action radius R,, and 
find the coefficients c, (k) fo r  values of k such that 
kR, << 1. We then obtain 

'-* j u,,< V Y  hr .  c. (k) - - 
E-Ent 

For  the calculations that follow we must know the 
explicit dependence of the Bloch amplitudes unk on k .  

This dependence is provided, e .  g . ,  by the Kane model 
which makes i t  possible t o  express  u,, in t e rms  of the 
Bloch amplitudes u,,(r) of the band edges: 

uak (r) = zXnbm (k) ~ b r n  (r). 
brn 

Here b and m number respectively the edges of the 
bands and the corresponding degenerate states.  

We confine ourselves hereafter  for  the sake of argu- 
ment to straight-band semiconductors such a s  InSb, in 
which the band edges a r e  located a t  the r point, and 
A >> E,. In this case  b and m run through the following 
values: b = c and m = i 1/2 for  the bottom of the con- 
duction band, and b = v and m = * 3/2 and i 1/2 for  the 
tops of the heavy and light hole bands. We write down 
the functions u,,, s o  a s  to fix the choice of the phase 
shifts: 

u,, ,/,=St, u., -II,=S+, u,, n---2-"(X+iY)f, 
G, -r,=2-"(X-iY) 4 u ,  #=3-'1z[-2-'h(X+iY) $+2"tZt], 

u., ->,>=~-'"[Z-'~(X-~Y) ~+Z '&Z+ I .  (8) 

The band s ta tes  a r e  characterized by the number of the 
branch and by the index p that distinguishes between the 
degenerate subbands. We shall therefore use in place of 
the symbol n the two symbols 11 and p, with 17 = c and 
p = i 1/2 for  the conduction band, q = I and p = * 1/2 
for  the light-hole band, and = h and = *3/2 for  the 
heavy-hole band. We use the s o  called spherical ap- 
proximation, s o  that p denotes a projection of the angu- 
l a r  momentum on the direction of the wave vector 
(helicity). 

We assume that the potential V of the center has the 
point symmetry of the crystal ,  and consider two types 
of s tates on the center. 

1. Symmetry s ta te  l?, (I-c state). After substituting 
the expansion (7) in (6), only the integral containing the 
Bloch amplitudes of the bottom of the conduction band 
will differ from zero,  and we obtain 

where m = * 1/2 numbers the two degenerate c-center 
s ta tes  with different spins. 

Thus, the different band s ta tes  contribute to a wave 
function of the I-c type of an electron on a center only 
to the extent to which the Bloch amplitude of the bot- 
tom of the conduction band has been admixed to the 
given state. According to the Kane model5, the heavy- 
hole band does not have such an admixture and there- 
fore makes no contribution to the 1-c state. 

In the case  of a large spin-orbit splitting, A >> E,, we 
have according to Ref. 5 fo r  the electrons (c) and the 
light holes ( 1 )  

(10) 
where 

is the Kane spectrum of the electrons and light holes, 
D:, a r e  the finite-rotation matr ices  that align the co- 
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ordinate system containing the fixed quantization axis z 
with the coordinate system in which the quantization i s  
directed along k. In (111, y is a parameter connected 
with the effective mass  of the electrons a t  the bottom 
of the conduction band: 

Equations (9)-(12) determine the wave function of the 
1-c state accurate to a normalization constant A. This 
constant should be determined from the condition 

However, the integral in (13) diverges a t  large k, since 
the Kane spectrum i s  linear in k a t  large k. This 
means that the main contribution to the normalization 
integral i s  made by the region of k for  which one cannot 
assume that kRo << 1. An estimate of the normalization 
constant A will be presented below. 

An explicit expression for the function can be ob- 
tained in the coordinate representation from Eqs. (2), 
(5), and (9) in the form of an expansion in the Bloch 
amplitudes of the band edges. This calls for knowledge 
of the coefficients x : ~  not only for b = c, which have al- 
ready been written down [Eqs. (lo)], but also for b = v. 
At A >> E, they a r e  given by 

We now write down the expression for  the wave function *" of the electron in the center in the I-c state in the 
coordinate representation a t  m = 3: 

13 
- - ( x - i y )  u,;,~ 

2 

Here H is defined by 

where E+ and E. a r e  respectively the energy distances 
from the level center to the edges of the conduction and 
valence bands. 

The parameter y i s  connected with the effective mass  
m, by Eq. (12). On the other hand, y is expressed in 
te rms of a matrix element of the Bloch amplitudes of 
the band edges for A >> E, in the form 

An equation for Q-'" is obtained from (15) by reversing 
the signs of subscripts (3, -$-) of the Bloch amplitudes. 

An estimate of the normalization constant A is ob- 
tained by solving the problem for a rectangular spheri- 
cal well in the two-band approximation 

2. Symmetry state r, (h-state). When the expansion 
(7) is substituted in (6) in this case,  the only nonzero 
contributions a r e  made by the integrals containing the 

Bloch amplitudes u,, of the top of the valence band, and 
we obtain 

Here m = i 3/2 and *$- number the four degenerate 
states of the h center. The coefficients x,vrn(k) that de- 
termine the contribution of the top of the valence band 
to the various states a r e  written out for  the conduction 
and light-hole bands in Eqs. (14). Fo r  the heavy-hole 
band they take the form 

At m, >>m, we can neglect the contributions of the 
conduction and light-hole bands to the wave function of 
the h state, since the energy denominator in cru and 
c& is much larger than in c&. In the limit m, << m, i t  
can therefore be assumed that the h state on the center 
is made up exclusively of heavy-hole wave functions3): 

where 

determines the energy spectrum of the heavy holes. 

For  the h state,  the normalized integral (13) con- 
verges and we have 

Integrating with respect  to k in (21), we obtain the elec- 
tron wave function in the h-state in the coordinate rep- 
resentation. 

2. OPTICAL TRANSITIONS 

Optical transitions between a deep center and a band 
a r e  characterized by the transition matrix element 
(8,  p,  k 12. e (m) ,  where a is the dipole-moment opera- 
t o r  and e is the polarization vector. The matrix ele-  
ment is taken between the states of the electron in the 
band, (q, p ,  k 1, and the state I m) on the center. The 
transition probability is proportional to the squared 
modulus of this matrix element, summed over the de- 
generate subbands and the degenerate states on the cen- 
te r .  We introduce therefore the symbol 

In the calculation of D, we encounter the expression 

The quantity a characterizes the composition of the 
state on the center. Using the equation for c;, i t  is 
easy to verify that the matrix a i s  diagonal in the sym- 
bols p' and p": 

We then obtain 
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where g,.,..,,(k) is expressed in terms of the matrix ele- 
ments of the optical transitions between the band states: 

The state of 1-c type is made up only of functions of 
the conduction band and the heavy-hole band. We have 
for i t  

The h-type state is made up exclusively of functions of 
the heavy hole band (in the m, >> m, approximation), and 
i t s  only nonzero element is 

To calculate the quantities g,,,,,,,, which a re  deter- 
mined by the band functions, i t  is convenient to ex- 
press these functions in the form (we use the spherical 
approximation) 

'I. ,*. 

In (31), u,, are  the Bloch amplitudes of the band edges 
in a coordinate system in which the z axis i s  directed 
along k, and the symbol /.L identifies the projection of 
the angular momentum on the k axis. 

Simple calculations yield a set  of expressions for 
g,.,..,, and make i t  possible to calculate D,(k) with the 
aid of (27), (29), and (30). We present the results for  
the products D,(k)q(k), to which the probabilities of 
the optical transitions a r e  proportional. 4'  For the l-c 
center we can write 

The expression @,(w) for the transitions into various 
bands a r e  given by (v is the angle between k and e) 

(ha-e+)'E8(Ao+2e-)'(trw+e-)" 
'.(w)= ec, (hw)'(Aw-e++e-)" (35) 

For the h-center, Eq. (32) retains the same form but 
B and @ a re  now defined by the expressions 

3 eZA B=-- ,  
n E-mhWV 

(39) 

m, (ha-&+) (hw+e-) 
/hwEih [e-+--- (40) 

mh 

@ l ( w ) - ~ ( ~ ) " a  (~W-E-)'~(~W+S+)"'E~'@~ 

m. (Aw-E-) (hw+e+) 
Ea (41) 

(hW-e-)'~-' 
Qh(o)=4 (hw), ah7 (42) 

O,=0,=2 sin2 B, 0,-cosZ 6. (43) 

3. PHOTOIONIZATION 

The differential cross  section for the photoionization 
of an impurity center, i. e . ,  the effective cross sec- 
tion of the center for light absorption accompanied by 
emission of a carr ier  into the band q, per unit solid 
angle, is given by 

Here g is the degree of the degeneracy of the state on 
the center ( g = 2  for the I-c center and g = 4  for the h 
center). The wave vector k is determined by the ener- 
gy conservation law (Aw = &+ + &, at q = c, Aw = &.. + F, at  
q = l ,  A U = C - + E , , ~  a t  q=h) .  

For transitions from the 1-c state into various bands 
we obtain 

Here R,  is the characteristic scale over which the cen- 
ter  potential falls off, and x is given according to (16) 
and (21) by 

and determines the scale of the fall-off of the 1-c state 
wave function, while @,(w) is given by (35)-(38). 

The differential cross  section for the photoionization 
of the h-state on the center can again be written in the 
form (45), but now 

and @,(w) is determined by Eqs. (40)-(43). The total 
photoionization cross  section u is obtained by integrat- 
ing over the angles, and u=oo6,, where 6, is obtained 
from the corresponding @, by substituting 8n/3 and 
4n/3 for sin23 and cos23, respectively. 

Deep impurity states can be of either donor or ac- 
ceptor type. Strictly speaking, the equations obtained 
here pertain only tothe single-particle states of the cen- 
ter ,  The expressions obtained a re  directly applicable 
to electron transition from a donor into the conduction 
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band o r  to hole transition from .an acceptor into the In concluding this section, we examine the influence 
valence band. of the charge of the center. If the ionized center at- 

If in the course of the photoionization an electron goes 
from the valence band to  an empty donor o r  a transi-  
tion takes place accompanied by formation of an elec- 
tron in the conduction band and of a hole in an acceptor 
state, then the factor l/g does not appear in (44). In 
these cases i t  is necessary to use  fo r  the phototransi- 
tion cross sections equations in which a, is g t imes 
larger than given by (46) and (48). 

We discuss now the main features of the frequency 
dependences of the obtained photoionization cross  sec- 
tions. 

1 .  Transition from I -c center to conduction 
band. The frequency dependence i s  s imi lar  to the one 
that follows from the Lucovsky formula,' but the posi- 
tion of the maximum i s  somewhat closer to the thresh- 
old. When &+ changes from a value &+<< E, to a value 
E+ =E,/2 the position of the maximum shifts from Aw, 
= 2&+ to Awm= 1. 7&+. 

2. Transitions from I-c center to valence band. 
These transitions a r e  allowed and a r e  therefore pro- 
portional to (Aw - &-)'I2 near the threshold. A charac- 
teristic feature of the photoionization c ros s  section in 
this case i s  the presence of a sharp peak near the 
threshold, due to the transition into the heavy-hole 
band. The width of this peak i s  of the order  of 
m,&.c+/E,m,, and i s  consequently smaller  the smaller  
m,/m,.  The cause of this peak is easily understand- 
able. With r ise above the threshold, the wave vector 
k of the particle that takes part in the transition in- 
creases rapidly (owing to the large mass  of the heavy 
holes. On the other hand, the contribution of such 
values of k to the 1-c state decreases,  since the dis- 
tance from the center of the level to the energy E, of the 
corresponding state in the conduction band decreases 
just a s  rapidly (because of the small  electron mass).  
Observation of such peaks would be of interest for  the 
identification of 1-c states.  

3.  Transitions from h center to valence band. Tran- 
sitions into the heavy-hole band correspond exactly 
to the Lucovsky formula. Transitions to the light-hole 
band, however, lead a t  m, << m, to a c ros s  section that 
increases with increasing quantum energy in practically 
the entire measurable energy range (Ew < E,). As a 
result the total c ross  section may not have a maximum 
at  all.  A similar  frequency dependence of the cross  
section was observed in a number of studies. 14*15 

There i s  no maximum because in h-center-band tran- 
sitions k increases very slowly with increasing w 
(owing to the small  mass  of the light holes), and the 
contribution of these values of k to the h-center state 
barely decreases a t  all.  We recall that this contribu- 
tion i s  inversely proportional to the distance from the 
level of the center to the corresponding state in the 
heavy-hole band. 

4. Transitions from h center to conduction band. 
The character of the spectral  dependence of the c ros s  
section is close to the Lucovsky formula for allowed 
transitions. 

t rac ts  a photoexcited ca r r i e r  ( a  positively charged 
ionized donor o r  a negatively charged ionized accep- 
tor), this charge influences strongly the wave function 
of the ca r r i e r  and increases the probability of i ts  be- 
ing located near the center. This circumstance can be 
taken into account by ilitroducing into the formula for 
the photoionization the Sommerfeld factor 

Here E, i s  the Bohr energy of the shallow donor (ac- 
veptor), and Aw - E i s  the distance from the photoioni- 
zation threshold. This factor increases the c ros s  sec- 
tion for photoionization near  the threshold. In the 
case of a repelling center we must introduce into the 
formula a factor S -  that takes into account the decrease 
of the free-electron wave function near  the center: 

') The existence of two types of deepcenter  states was point- 
ed out by ~ e l d ~ s h . '  

'1 Strictly speaking, the center cannot be characterized by a 
single-electron potential; we shall use, however, this con- 
cept in the spi r i t  of the self-consistent-field approximation. 

3 ) ~ n  exception is the region of very small  k, namely k S  
(2m, 2, /h2)'", a s  well a s  the case when the level lies very 
close to the conduction band. 

4, The state density p,(k) in the band is  defined by the equa- 
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