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For a uniaxial ferromagnet with large anisotropy, one-dimensional oscillations of the domain structure, 
propagated in the direction of the normal to the wall, with a wavelength exceeding the domain width, are 
investigated and their spectrum is obtained. It is shown that there are two branches of the oscillations, 
analogous to the acoustical and optical branches of the oscillations in ionic crystals. The maximum 
frequencies of these oscillations are such that at temperatures appreciably exceeding 1 K, classical theory is 
adequate. 

PACS numbers: 75.60.Ch 

This article investigates oscillations of the domain 
structure of a uniaxial ferromagnet under the condi- 
tions considered below, when the domains a r e  of stripe 
type. We shall consider a crystal with a large aniso- 
tropy constant, 10; then1 a structure of the type2 
without closure domains i s  energetically more favor- 
able than a structure3 with closure domains. 

The quasi-elastic force necessary in the theory of 
oscillations was introduced earlier  phenomenological- 
ly. 4'7 It was first  calculated by Gorobetss; an approxi- 
mate model was used, and therefore the author ob- 
tained only one of the two branches of the oscillations. 
For a crystal with small anisotropy, P << 1 (a domain 
structure with closure domains3), the quasi -elastic 
force was determined in the preceding paper. 

In a deformation of the domain structure consisting of 
displacement of the walls, which in the oscillations 
considered by us remain plane and perpendicular to the 
x axis, there i s  a change of the energy of the self-field 
H produced by the discontinuities of magnetization on 
the surface of the crystal. In calculating this change, 
one may neglect the field due to the discontinuities of 
magnetization that occur at the exit of a wall on the 
surface of the crystal, since the dimension of the wall 
i s  much smaller than the domain width. Since the 
magnetization in a domain, IM, = i M o  (M, i s  the satura- 
tion magnetization), i s  independent of 2, and since H 
= -grad a,  we have 

I d s '  
- 

(x-x') (2-d/2)' m = Jm = - a ~ ,  J dz,ilI(x')ln 
S' -- (x-x')'+ (z+d/2): ' 

The purpose of the present article i s  to construct a (S' is the surface of the crystal); here and hereafter, 
theory of the oscillations of the domain structure of a x and z a r e  dimensionless coordinates in units of a ,  
strongly anisotropic uniaxial ferromagnet. We shall and d = D/a is the dimensionless thickness of the plate. 
show that there are  two longitudinal branches of the 
oscillations of the domain structure, propagated per - The energy of the self -field i s  - - 
pendicularly to the walls, and that one of them can be W,,=--S aZL, MHd~dz=a~L~ dx j dx'M(x)M(x')ln (2-x')~ 

excited by an alternating magnetic field. lo 2 -= -- (x-~')~+dr' 

We consider a crystal in the form of a plate, whose 
thickness D (the z axis) significantly exceeds the width 
a of the domains (although there is still no branched 
surface structure"), while the latter, in turn, i s  much 
larger than the characteristic dimension of a wall. 
In estimates we shall se t  DzO. 1 to 1 cm. The dimen- 
sions L ,  and L, of the plate in i t s  plane are  many times 
larger than i ts  thickness, so that the influence of the 
edges can be neglected; therefore integration over x 
and y will be carried out between the limits -w and m. 

The boundaries of the interdomain regions a re  in the 
y z  plane, so that the normal to them is directed along 
the x axis. In such a specimen there is a possibility of 
development of a so-called maze structure of stripe 
domains, i.e ., departure of the walls from a plane 
shape. But i t  has been shown12 that the plane shape of 
the walls is made stable even by an insignificant de- 
parture of the anistropy axis in the plane from the 
normal to the plate surface (of the order of a few de- 
grees). Because of the smallness of the necessary de- 
parture we shall, assuming i ts  presence, neglect i t  in 
the following calculations. 

Representing the double integral a s  a sum of integrals 
over domains, we have 

Here we have used the fact that ,Vl,= -Mo in the interval 
(2n, 2n+1)  and M,=Moin the interval (2n+1,2n+2) .  

By expanding (1) a s  a ser ies  of powers of the wall 
displacements u, through quadratic terms,  one can 
easily show that the linear term vanishes and therefore 

(W, is the energy when u, = 0). 

In calculation of the nondiagonal terms y,,, i t  is 
necessary to take first  derivatives of integrals contain- 
ing u, and u,,, in the limits; this gives 

(n-n')'+d2 
y.,,.=y,-,.=SM,ZaZL,(-I)"-"' In 

(n-n')' . 

132 Sov. Phys. JETP 55(1), Jan. 1982 0038-5646/82/010132-03$04.00 0 1982 American Institute of Physics 132 



The logarithmic term signifies a long-range action, 
decreasing slowly while In - n t  1 <d and much faster 
when In -nlI >d .  

In calculation of the diagonal terms, besides the 
products of f irst  derivatives of integrals containing u, 
in the limits, i t  is necessary to calculate second de- ' 

rivatives of each of them; this gives 

The ser ies  in the last expression can be calculated by 
representing them by means of infinite products13: 

nd nd 
=16M,'aaL, In- cth -. 

2 2 

The dimensionless thickness of the plate d >> 1; there- 
fore, neglecting the quantity e-rd, we have 

y=16MoZa2L, ln(nd/2). 

By use of the expression5 for the effective mass of 
the wall, one can write the Lagrangian of the oscilla- 
tions of the domain structure: 

We are  treating the oscillations in the classical ap- 
proximation, which, as  we shall see below, i s  com- 
pletely adequate. The equations of motion correspond- 
ing to (2) have the form 

We introduce in the domain structure directions 
from positive domains to negative; we take some wall 
for which the direction introduced coincides with the 
direction of the x axis a s  the initial one, correspond- 
ing to the value n =  0. We denote displacements of 
walls for which the direction coincides with the x axis 
by u:, and displacements of walls for which the direc- 
tion i s  -x by u;. Further, we se t  

u,,'=q, exp [i(kn-ot)  1, u,-=q2 exp [i(kn-at)  1. 

Here k i s  the dimensionless wave vector, i.e., the 
product of the dimensional wave vector by the domain 
width a.  Substituting this in (3), we get the dispersion 
relation 

(g i s  the gyromagnetic ratio; A is a material constant 
of the crystal, approximately equal to the wall dimen- 
sion), 

It is seen from (4) that for each value of k there are 
two branches of the oscillations of domain structure; 
the f i rs t  branch (pl(k) - p,(k)) corresponds to oscilla- 
tions of the type of acoustic oscillations (their f re-  
quency tends to zero for k- 0, i.e., a t  the center of a 
Brillouin zone; we shall call them quasi-acoustic), the 
second to quasi-optic oscillations (their frequency 
tends to a finite limit for k - 0). At sufficiently large 
wavelengths, when k << 1, the summation in (4) can be 
replaced by integration, since for n <d the terms of 
the ser ies  change very slowly, whereas for n >d  they 
decrease a s  n", while cos kn changes quite smoothly. 
This gives 

where v, i s  the phase velocity of the quasi-acoustic 
oscillations a t  k = 0, and 

Analysis of (4) shows that, a s  for oscillations in ionic 
crystals, the frequency of the quasi-acoustic branch 
increases, while that of the quasi-optic decreases, 
with decrease of the wavelength. When the wave vector 
approaches the boundary of the Brillouin zone, k - ~ / 2 ,  
the frequencies of both branches approach the same 
limit; thus there is no gap in the spectrum between the 
quasi -acoustic and quasi -optic branches. For k = n/2, 
we have cos 2nk = (-I)", and the summation in (4) gives 

The theory of oscillations se t  forth here is applicable 
to oscillations with a wavelength significantly exceeding 
the domain width a; therefore, in contrast to spin ' 
waves, for which much smaller wavelengths a re  pos- 
sible, these oscillations a r e  Umacroscopic." 

It is evident from (4) that the maximum frequency is 

~f g=107 (0e.s)-', Mo=103 Oe, A ~ 1 0 ' ~  cm, and D 
50.1  cm, then w,,-6.108 s-'; therefore a t  any tem- 
perature significantly exceeding 1 K ,  these (one-di- 
mensional) oscillations a r e  in the Rayleigh-Jeans r e -  
gion of the spectrum, and our classical treatment i s  
correct. A simple estimate shows that the mean en- 
ergy of these macroscopic oscillations i s  

(where n i s  the number of domains), whence 

a t  T ~ 7 0  K; this is much smaller than the dimension of 
a domain and even the dimension of a wall. 

The change of the magnetic moment of the crystal is 
larger in quasi-optic oscillations than in quasi-acous- 
tic; therefore the quasi-optic oscillations can be ex- 
cited by an alternating magnetic field.' But for treat-  
ment of the resonance phenomena, i t  i s  necessary to 
allow for dissipation, which in this paper we have sup- 
posed small (it can be shown that such smallness ac-  
tually occurs for a number of materials). For this 
reason, forced oscillations, a s  well a s  certain other 
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phenomena in  which the  osci l la t ions  investigated h e r e  
may  manifes t  themse lves ,  r e q u i r e  s e p a r a t e  t r ea tment .  
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