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Cooper pairing of electrons in a crystal with regularly distributed localized spins is considered. The case is 
studied in which exchange interaction between the electrons and localized spins leads to helical magnetic 
ordering of the localized spins in the superconducting state, whereas in the absence of superconductivity 
ferromagnetic order would occur. It is shown that scattering of conducting electrons by nonmagnetic 
impurities narrows the region of existence of the superconducting phase with spin ordering (HS phase). The 
narrowing, however, is not very pronounced even in dirty crystals. Thus the requirement of the purity of the 
crystals in which the HS phase may be observed is not very rigid. 
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1. INTRODUCTION 

In connection with experimental work on the compound 
ErRh,B,, Kulic, Rusinov and one of the present authors1 
considered a system of regularly distributed localized 
spins and conduction electrons with an exchange inter- 
action of the spins and electrons, and a Cooper pairing 
of the conducting electrons. It was assumed that in the 
absence of superconductive pairing the indirect ex- 
change interaction of the localized spins via the conduc- 
tion electrons (RKKY interaction) would lead to ferro- 
magnetic ordering below a Curie temperature 8 << T,,, 
where T,, is the critical temperature for superconduc- 
tive pairing of the electrons in the absence of interac- 
tion between spins and electrons. To describe the sys- 
tem Kulic e t  al.' used the BCS model and the self-con- 
sistent field approximation for the magnetic impurities. 
It was also assumed that the electron energy spectrum 
was isotropic, and that there was no magnetic aniso- 
tropy or  electron scattering by impurities. 

Anderson and Suh12 showed that in the system consid- 
ered ordering of the spins in the superconducting phase 
appears at a temperature TM - 8 in the form of inhomo- 
geneous magnetic ordering with a characteristic wave 
vector Q , ~  -(k2,5,1)1'3, where 5, is the superconducting 
correlation length. In previous work1 the region of ex- 
istence of a superconducting phase I th a helicoidal 
type of ordering of the localized spins was found. There 
it was shown that for 

the HS [Helicoidal-spin] phase persists down to  zero 
temperature, while for systems with 8 >  O,, lowering of 
the temperature leads to a first-order transition from 
the HS phase to a nonsuperconducting phase with ferro- 
magnetic ordering of the spins (F phase). Since Ref. 1 
used the simple self-consistent field approximation, 
which neglects the scattering of the electrons by spin 
excitations, the results obtained there a re  valid only 
for a system with 8 << T, and at temperatures T which 
a re  not close to the critical magnetic point T ,  Thus, 
Ref. 1 found the region of existence of the HS-phase in 
an isotropic system without impurities in the region of 
the variables (T, 8) where T<< 8 << T, and (&,)lh >> T,,. 

Both impurity scattering and the effects of magnetic 
anisotropy have a substantial effect on the HS-phase and 
lead to a narrowing of i ts  region of existence. In the 
present paper we investigate helicoidal ordering of the 
spins in a superconductor in the presence of nonmag- 
netic impurities and find the region of existence of the 
HS phase and the character of the quasiparticle spec- 
trum in this phase a s  a function of the electron mean 
f ree  path. 

2. BASIC EQUATIONS FOR A SUPERCONDUCTOR 
WITH A HELICOIDAL EXCHANGE FIELD IN THE 
PRESENCE OF IMPURITIES 

The Hamiltonian of a system of electrons in the pres- 
ence of an exchange interaction with localized spins, 
Cooper pairing, and scattering by impurities has the 
form 

%=%Bcs+ jd3r$=+(r) [E r(r-rl)aaB] * ( I )  
d 

, + r) V(r-ra)qIu(r), +C J as*. ( 

h'VE aBC.= d3r[1D.* (I) (- x) $=(I) +A (r) Q+(r) ( ia . )~qI~+(r )  

+A'(r)$=(r) (b )=t .$~ (r )  1, 

where j(r - r i )  is the exchange interaction integral of 
the conduction electrons with spins St localized on lat- 
tice si tes with coordinates ri, oi are  the Pauli matrices 
and V(r - r i )  is the potential of an impurity situated at 
the point r,. 

The localized spins a re  assumed to be ordered in a 
helicoidal structure: 

(S.,)=So cos Qr, <S,,)=Sosin Qrl, (Szr>=O, (2) 

where the parameter a(0 Qa G I )  characterizes the heli- 
coid amplitude and the xy plane is the easy plane of the 
magnetic anisotropy. Of all the Fourier components in 
(2), a s  was shown previously,' we need to keep only the 
field with wave vector Q: 

h (I) = (h cos Qr, h sin Qr, 0) , h=Z(O) Sna, 

where I(0) is the Fourier component of the function q r )  
with zero wave vector and n is the concentration of 
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localized spins. The superconducting order parameter 
in this field i s  independent of coordinate. 

In the Gor'kov-~ambu representation +=(+I, +I, #+, q + )  
the Hamiltonian takes the form 

where a, and r0 are unit matrices I, and T+=(T,* i7,)/2. 

Below we shall be interested in the Green's function 
averaged over the impurity configuration: 

gat (r, r') =-(T.$=+ (r) $B (r') ) . (4) 

Carrying out the average over the impurity configura- 
tion in the usual way: we get for the Fourier transform 
of the function g(r,  r') the equation 

d3p ~ - I ( P ,  PI)  =go-' (P, P,) -v J 
X I ~ ( P - P , )  I ' ~ z o o g ( ~ ' + ~ ' - ~ ,  P,) rzao, (5) 

go-' (p, p') = [iorooo-~r,oo-'/zir+oYA+1/2ir~oYAh] 
x 6 (p-p') -'lzh [ (T~U.+~~OU, , )  6 (p-p'f Q) 
+ (r,o.-itoo,) 6 (p-p'-Q)] , E=p2/2m-p. 

We first consider the simplest case, when the impur- 
ity potential i s  of contact type and so V(p) does not de- 
pend on p. Then we shall look for the function g-'(p, p') 
in a form analogous to that of gtl(p, p'): 

g-'(p, p') = [i~r,o,-gr,o,-'l,ir+o,A+'/,ir-o,A'] 
X 6 (p-p') - [ ' I ,  (r,+ro) o+E,+'/, (T,-r,) o-E, 

+'/,i(r.o,+i~,o,) xA] 6 (p-p'+Q) - ['I, (r,+~,)o-E, 
+I/ ,  (~,-t~)o+E~+'/,i(r~~-it~o~) xd'] 6 (p-pr-Q). (6) 

Inverting Eq. (6), we find the electron Green's func- 
tion: 

g,,(p-K, p+K)=-[(la-5-) ( B , ~ + E + ~ + E ~ - ~ ~ ~  A I ? )  
-2e?iz-26x216 I2+2ix Id IzE] /D, 

g2'(p+K, p+K) = ( h [ 2 i B & - ~ ~ + e ~ - 6 ~ +  1 d 12(1-xZ)-E2] 
+2ix( A12(io+e)}/D, 

gal (p+K, p+K) =-A'(ZE(io-6) 
+ix [AZ-~'-~2+6Z+2i06+ I A12(1+~r)]}/D,  (7) 

Here in calculating Eq. (7) we assume %,= q= h; the 
justification for this is given below. 

Going over to an integration over & and 6 instead of 
an integration over p, we find to lowest order in the 
small parameter q=2h/vFQ for the case /LIZ <<p: 

In the opposite limit (27h)' << 1 we get 

Below we show that the parameter q i s  in fact small 
throughout the whole region of existence of the HS phase. 
Substituting (8) and (9) in (5), we find a system of alge- 
braic equations for the quantities 6, &, K, and h, which 
determines their dependence on A, cv, h, v,Q, and the 
inverse scattering time T- '=~~UN(O) IV(~ .  For 1Kl2 << h2 
we get 

It is clear from (10) that for u>> e-'' we may neglect 
the quantity n and the renormalization of the field h. 
Below we shall consider the case Ql>> 1 and wit! an ac- 
curacy up to terms of order (QQ-' put K= 0 and h,,,= h. 
We choose the quantity A to be real, so that will also 
be real. The condition 151' << h2 i s  equivalent to the 
condition (2rh)' << 1, and in this case we get from (10) 
an equation for the quantity u as a function of the vari- 
able @/A: 

This relation, together with Eq. (9), allows us to 
find the self-consistency condition which determines 
the dependence of the parameter A on A, and 7-', where 
A, is the superconducting gap in the absence of local- 
ized spins: that is, for h= 0 we have 

where A i s  the dimensionless electron interaction con- 
stant. In the case (27h)' >> 1 relation (10) takes the form 

1 xhq 1AI2 1 
A=A+-2T(i+u2)~1. [ I + ~ ( ~ - ~ ) ]  ' 

and to within terms of higher order smallness in the 
Jdedsg,, (p-K) =- - "6.vFQ { i+q [K(x.) -E (x,) 1 

a, parameter (27h)' we obtain for u as  a function of W/A 

the equation - 
H ) I  

E = u [ i -  
where K(x) and hlx)  are elliptic functions. A 
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3. DETERMINATION OF THE FREE ENERGY 
FUNCTIONAL FOR THE HS PHASE 

Since we a re  interested in temperatures T < 8 << T,, 
in calculating the right-hand side of Eq. (12) we can re- 
place the sum over w by an integration. As a result we 
get for the case rh>> 1 

Here the upper limit of integration is set at infinity, 
provided the integral converges. The quantity uo is de- 
termined by the condition that the expression in curly 
brackets on the right-hand side of (11) tends to zero: 
uo satisfies the equation 

r l k , 0 K ( k , 0 ) / 2 ~ A = l .  k,0= (l+u2)-'I2.  (16) 

Going over in (15) to the new integration variable k, 
=(1 +u2)-lh, k i = ( l -  %)lh and using the integral repre- 
sentation for K and E, we get from (15) 

A 1 ag 
l n l =  arch + q arcsin k,O-- k , 0 [ l - ( k , " ) 2 ] ' A ,  

A ki ( Ae 2 r A  ~ T A  

Below we shall show that ky i s  very close to unity, so 
we neglect the first  and last terms on the right-hand 
side of (17) and replace arc  sin ky by a/2. In the case 
(2~h) '  << 1 similar but simpler calculations lead to the 
expression 

under the condition that n2@/v,QA << 1. This condition 
guarantees the positivity of the expression in square 
brackets on the right-hand side of (14), and we shall 
see below that it is satisfied in the region of existence 
of the HS phase. 

The self-consistency equations (17) and (18) allow u s  
to find the free energy functional F(u, Q, A) (see Ref. 1). 
This functional is determined by the condition that 
minimization of it with respect to A gives the self-con- 
sistency equation (12), while minimization with respect 
to u gives the self-consistency equation for the mag- 
netic order parameter. The equilibrium value of Q is 
also determined from the condition that the functional F 
should be a minimum, and the minimum value of 
F(u, Q, A) gives the free energy of the HS phase. 

According to previous work: for I>> 6 ,  helicoidal or- 
dering of the spins with wave vector Q,= (n2h0/4a2 v,)lh 
appears at the point TM= 8(1 - 3dqM) - 8. Here a is a 
quantity with the dimensions of length, of the order of 
magnitude 123'. In Ref. 1 it was shown that impurity 
scattering does not change the values of QM and TM it is 
necessary to take into account critical magnetic fluc- 
tuations, and the effects of these can change the results 
of the self-consistent field approximation, which was 
used to describe the magnetic system. In this paper we 
consider the behavior of the system far from T ,  where 
these fluctuations a re  small. For this purpose it is 

adequate to know the functional F in the region of pa- 
rameters where h >> A. The f ree  energy functional in 
the absence of impurity scattering was obtained in Ref. 
1; here we find it taking scattering into account. 

Integrating (17) and (18) with respect to A, we find 
F ( 0 ,  Q ,  A )  =Fe ( A )  + F n a ( ~ ,  Q, T )  +F,nr ( 0 ,  Q, A ) ,  

e A  2 ( S + I )  hQ2N (0) bz 
N ( O ) A ~ ~ ~ ~ ,  O =  Fa (A) 5- - 

2 Az 3nS ' 

If I>> kh>> Q-l and q / 2 r ~  61, then we have 
N ( 0 ) n h A z  8 h  C 

F,.1(,0, Q, A )  = UaQ [ln-+-I. 
Ae" r A  

whereas if 5," 1 >> Q-l, 1 << 5, and n@/v,&h GI, then we 
aet 

where b,(x) i s  the reciprocal Brillouin function and 5, 
= v,/h. The functional FM describes the magnetic part 
of the system, Fs i ts  purely superconducting part and 
F,,, the interaction between these subsystems. The pa- 
rameter b2= l + & ,  where the quantity p: is of order 
unity, takes account of the short-range part of the in- 
direct exchange interaction of the spins. Taking the 
direct exchange interaction of the spins into account 
renormalizes the parameter 2 and gives a correction 
13, to the parameter b2. The short-range part of the 
magnetic interaction of the spins also renormalizes 
the parameter 2 and gives a correction fl, to the pa- 
rameter bZ. (The signs of fl, and & can in principle 
be either positive o r  negative, depending on the lattice 
type and the structure of the energy bands). 

The long-range part of the magnetic interaction 
selects the direction of Q, with the energy minimum 
attained for a transverse helicoid, i.e., for Q,= Q, = O  
and Q, = Q # 0. For this direction of Q, the long-range 
part of the magnetic interaction leads to the addition to 
b2 of the term 

where M is the magnetic moment per unit volume. In 
previous it has been shown that the contribution 
of the magnetic dipole interaction in F,,, is negligibly 
small in real systems. Thus, in type-I1 superconduc- 
to r s  with an indirect RKKY exchange interaction com- 
parable in magnitude to the dipole interaction, the term 
PI,: i s  primarily determined by the exchange interac- 
tion. However, in principle, for type-I superconductors 
we cannot exclude the situation where the main contri- 
bution comes from the magnetic dipole interaction con- 
sidered in Refs. 6-9, o r  where the two interactions 
make an approximately equal contribution to the forma- 
tion of the HS phase." As regards real compounds of 
the type ErRh4B4, the expressions (19) allow us to find 
all the characteristics of the HS-phase, provided we 
can neglect the magnetic anisotropy within the easy 
plane. In the functional (19) we also neglected the mag- 
netic exchange scattering of electrons; this is in fact 
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small provided 8, << Tco, where 6, = EN(O)/n i s  the char- 
acteristic energy parameter of the RKKY interaction. 

The'functional (19) was found for the case of scatter- 
ing of the electrons by point impurities. In the Appen- 
dix it is shown that all the expressions in (19) a re  pre- 
served also the case of symmetric scattering of the 
electrons by the impurities, if we take T to be given by 

Knowledge of the free energy functional allows us to 
determine the equilibrium values of h, A and Q a s  func- 
tions of temperature and to find the phase boundary be- 
tween the HS phase and the normal ferromagnetic (F) 
phase. 

4. TRANSITION FROM THE HELICOIDAL 
SUPERCONDUCTING PHASE TO THE NORMAL 
FERROMAGNETIC F PHASE 

Along the first-order phase transition line from the 
HS superconducting phase to the F phase the equilibrium 
values of the f ree  energy in the two phases a re  equal, 
while up to terms of order A$/@ the equilibrium value 
of a in the HS phase is given by the same expression a s  
in the ferromagnetic phase. Thus, at the first-order 
phase transition only the direction of the spins is 
changed. From Eq. (19) we find an equation for the 
equilibrium parameters of the HS-phase on the phase 
boundary. For ( 2 ~ h ) ~  >> 1 we have 

nhOo., 8hOo,, 2C 
Q~~ = - ( l n  - +-), 

ul A&" %A,, 

In the case I<< 5, these equations give A,,= A,e-lk. 

For ( 2 ~ h ) ~  << 1 the parameters A,,, a,, and Q,, a re  
determined on the phase boundary by the equations 

nzhOIocZ2 2nzho3a02Jab 
Acz=AOe-", Q,, = - = 1, 

UPA,, ' upACz 

Using Eqs. (20) and (21), we find the first-order 
phase transition line in explicit form 

(In $)-', l>Eo, p=Y'zur/nabA,=~P/Ao, (22) 

2-";(Aoaez/nvp)'"= ( A o / ~ p ) ' b ,  &,BIBQ-l, 

where the parameter a! i s  of order unity. The curve 
Tc,(9) intersects the axis T=O at the point Oc2 defined 
by the relation 8,2/TCO= a! Y; the parameter QC2 de- 
creases with decreasing 1, but not very strongly, in 
fact when 1 decreases from values such that 1 >> 5, to 
values such that I,>> 1 >> Q-' the parameter OC2 de- 
creases by no more than a factor of 2 or  3 [from 
Tco/ln(&,/~,) to Tco(A,,/&,) 'I2]. 

For 6< OC2 the HS phase survives right down to zero 
temperature, whereas for 8> OC2 there i s  a first-order 
phase transition to the F phase. From (22) it is clear 
that decreasing 1 leads to a shrinking of the interval of 

existence of the HS phase. In the region where it i s  
small compared to 8 we have 

On the HS-F phase boundary the superconducting or-  
der parameter, which is A,/e for 1>> 5, and for 
1 << to, vanishes discontinuously. With decreasing 1 the 
magnitude of the wave vector Q,, changes slightly from 
the value 

Q.==Q= (16/nZp)'"(ln $)"'<QM 

for I>> 6, to Qc,= ~ ~ e - ' ~  for Q;' << 1 << 6,. Thus, in the 
HS phase the parameters A and Q change more weakly 
with decreasing temperature the greater the impurity 
concentration. 

The limit of supercooling of the HS phase is obtained 
from Eq. (22) by multiplying the quantity a! by (27/8e)lh 
-1.1 for I>> to, by 33h/e ~ 1 . 7  for 5,<< 1<< 6, and by 3e-2h 
=1.4 for Q;' << 1<< 5, (see Ref. 1). The limit of super- 
heating of the F phase in the absence of domain-wall 
effects (i.e., for L>> 6, where L i s  the domain width) 
and without taking account of the exchange scattering of 
electrons by critical magnetic fluctuations is deter- 
mined by the condition 

where M, i s  the magnitude of the magnetic moment per 
unit volume at T=O and H*,(O) is the critical orbital 
magnetic field at T= 0, which increases a s  1 -' for 1 << 6,. 
Thus in general the limit of superheating Tz' will de- 
pend on 1: however, this dependence vanishes if the 
condition 

i s  met. In real superconductors of the ErRh4B, type the 
condition 4rM0 s Hz2(0) is satisfied. Then for & >> A, 

the limit of superheating of the F phase is determined 
by the exchange interaction and does not depend on I. 

Knowing the equilibrium parameters of the HS phase, 
we can check that the conditions assumed in obtaining 
the functional (19) a re  indeed fulfilled. In the case 
(2~h) '  << 1 we assumed that np/v,Q 61; on the T,, line 
we get from Eq. (2 1) the result ?rh2/v,QA= l/?r, and in 
the res t  of the HS phase the value of this parameter is 
less than on the Tc2 line. In the region ( 2 ~ h ) ~  >> 1 we 
took q/27A C 1  and 1 - k ,  << 1. On the T,, line we obtain 

It then follows from (16) that 1 - ky < 8e-4fl, which justi- 
fies the simplification made in the expression (17). It 
also follows from Eqs. (20) and (21) that the condition 
q << 1 is satisfied. In the derivation of the functional 
(19) we neglected the exchange scattering of the elec- 
trons, taking 8 << Tco. This condition is the better ful- 
filled in the HS phase the smaller l. 

5. THE ONE-ELECTRON EXCITATION SPECTRUM 
IN THE HS PHASE 

In the absence of impurities, i.e., for 1>> 5,, the en- 
ergy gap in the quasiparticle spectrum vanishes on a 
belt on the Fermi surface perpendicular to the vector 
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Q, in an angular interval of order q (see Ref. 1). This point is practically independent of mean f ree  path pro- 
effect is connected with the fact that electrons traveling vided QM1>> 1. 
perpendicular to the vector Q feel a strong exchange 
field h > A which is constant in space. Impurity scatter- 
ing changes the quasiparticle spectrum in the HS phase 
substantially, since such scattering changes the direc- 
tion of motion of the electrons. In the case (27h)'>> 1 
we get from Eq. (8) 

where u(E) is defined a s  the analytic continuation of the 
function u(w) defined by expression (11) to the imagin- 
ary half-axis w=- iE. 

For E -0 we get from (11) and (25) 

where u, is defined by Eq. (16). Thus the density of 
states for E = 0, though very small (note that u, < 4 e - ' 3 ,  
i s  nonzero. 

For 1 >> E/A >> u, and )7/2 TA << 1 we get 

i.e., the density of quasiparticles for small @<<A) i s  
considerably increased in comparison with the pure HS 
phase, if 6, >> 1 >> 6,. This effect is explained by the 
fact that impurity scattering leads to all electrons on 
the Fermi surface spending a part of their time T>> l /h 
moving perpendicular to the vector Q and feeling the 
effect of the strong exchange field h. 

The situation i s  quite different in the case (27h), << 1, 
[when the duration of motion perpendicular to Q is al- 
ready too small for the electrons to experience this 
field effectively. For ( 2 ~ h ) ~  <<I] we get from (9) and 
(14) formula (25), where we must put q=0. The density 
of states per unit energy i s  the same a s  in a supercon- 
ductor with magnetic impurities and a reciprocal life- 
time for magnetic scattering of T-'= rqh. 

Thus, in the case (2~h) '  << 1 impurity scattering leads 
to an energy gap in the quasiparticle spectrum of the 
HS phase, although this gap is less  than the supercon- 
ducting order parameter. In general the density of 
states for E << A in the HS phase first  increases with 
decreasing 1 so long a s  1>> 5 ,  then decreases and fin- 
ally vanishes in the limit I<< 6,. So from the point of 
view of the investigation of gapless superconductivity 
most interest would attach to specimens with a mean 
free path which satisfies the inequalities 5, >> 1 >> 5,. 

6. CONCLUSlONS AND QUALITATIVE 
INTERPRETATION OF THE EXPERIMENTAL DATA 
ON Er Rh4 B4 

We now summarize our fundamental results on phase 
transitions in a superconductor with Tcl>> e,, Dm= 1 and 
weak anisotropy in the easy plane. 

1. As the temperature is decreased, at [the point TM 
= 6 in the superconducting phase there appears] helicoi- 
dal ordering of the spins in a second-order transition. 
The magnitude of the wave vector QN at the transition 

2. On cooling of the superconducting phase with heli- 
coidal spin ordering, this HS phase persists to zero 
temperature, if 8 < O,,, or  goes over by a first-order 
transition into a normal ferromagnetic phase at a tem- 
perature T,,, if 8>  QC2. The parameters Bcz and Tc2 de- 
pend on 1, but not very strongly, and in practice T, 
- T,, and O,, change by at most a factor of 2 or  3 when 
1 changes from 1 >> 5, to Q;' << 1 << 6,. The supercooling 
temperature T,':' differs from T,, by 10 to 70 per cent, 
depending on 1. 

3. For O> 8, the ferromagnetic phase is stable below 
T,, but for 8 < 8,' it i s  metastable, and the HS phase 
may be converted into this phase by the application and 
subsequent removal of a magnetic field. When super- 
heated the F phase stays metastable right up to a tem- 
perature T&' = T, and in principle could be converted by 
superheating directly into the nonmagnetic S phase, 
avoiding the HS phase. 

4. In the HS phase the wave vector Q is practically 
independent of temperature, the variation being small- 
e r  the smaller the quantity 1. The amplitude of heli- 
coidal ordering in the HS phase varies exactly a s  it 
would vary in a ferromagnetic phase in the absence of 
superconductivity. The discontinuity of the amplitude 
at the point Tc2 is very small; even at this point only 
the direction of the spins changes and the latent heat 
evolved i s  of the order of the superconducting energy. 

At present there a re  no data on the magnitude of the 
magnetic anisotropy in the easy plane for crystals of 
ErRhB,. For sufficiently strong anisotropy a domain 
type of structure will be realized in ErRh4B4. The 
presence of such a structure changes the value of F,,! 
only weakly from that obtained from the exactly soluble 
model with helicoidal spin ordering, but the functional 
FN of the magnetic subsystem is modified considerably 
more strongly. In this case our qualitative conclusions 
remain in force but the quantitative results a re  changed. 
Within the framework of this picture we may under- 
stand all the peculiarities of the behavior of ErR&B4 
observed experimentally in Refs. 11 and 12. 

APPENDIX 

For  a spherically symmetric impurity scattering po- 
tential we have V =  V( Ip -p'(). We rewrite Eq. (5) by in- 
serting on the right-hand side terms which cancel one 
another: 

g-' (P, P') -go-* (P, pf) - J del d& I V(p-p,) la~,o0 {g(pl+pr-p, pl) 
v,Q 

x z,oo{g(pl+p'-~, pr) I~o-goO(~i+p'-p, pi) Ih-o)~ao  

-*lde1 ddl I V(p-pI) I' ~ . o ~ g / ( p ~ + p ~ - p , p ~ )  L-. r.0, (A. 1) 
VFQ 

We shall seek the function g-'(p,P') in the form (6) with - - 
w ~ 4 6 )  and A =  &6); &(P, P1)=g(P, P') when 4 6 )  is re-  
placed by G(0) and A(&) by b(0). The functional depen- 
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dence of o ( 6 )  and i ( 6 )  on 6 is determined by the second 
and third terms on the right-hand side of (A . l ) ,  which 
a re  proportional to the small parameter q=%h/v,Q. 

We linearize (A .  1) in ~ ~ ( 6 )  = w(6) - &(o) -pw(0) and 
i l ( 6 ) =  h(6)  - i ( 0 )  - q i ( 0 ) .  For (27h)' >> 1 we have 

The equations for w1(6) and Al(6) have the form 

We seek the solution of (A.3)  in the form 

Here v(b)  satisfies the equation 
vN(O) I I 

U(6)- uFQA(0) (l+n2)" J 1 V(p-pl) IZdq, d6, ~ ( 6 , ) -  -- - 
2 ~ ( 6 )  2r(O) ' 

( A .  5) 
Integrating (A.5)  with respect to 6 ,  we see that the 

following integral relation is valid: 

I 1 1 1  
-r"(8)d8 VFQ -4 ( I -  hA(0) ( 1 - t ~ ~ ) ' ~  )-%--. (A. 6 )  

Here we used the definition of 7-' from (A.3) .  

The self-consistency equation (12) ,  linearized in wl(6)  
and Al(6) ,  has the form 

From (A.2)  we find 
0 

- = u ( I -  tlhK 
(A.8)  

A Zr(O)bA(O) [l+u2+h'/A2(0) ]''I ) ' 
The quantity u, i s  determined by the condition that the 
right-hand side of (A.8)  should be zero: 

Substituting (A.6)  and (A.7)  in (A.8)  and integrating with 
respect to u, we again obtain Eq. (16) ,  with T" defined 
by (A.3) .  Here A depends on ~ ( 0 )  only through the quan- 
tity k: defined in (A.9) .  In the case (27h)' << 1 similar 
calculations lead to expression (18)  with the parameter 
T-' defined in (A.3) .  
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