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The orimtational effect of a light wave on the initial helical structure of the mesophase is treated theoretically 
within the framework of the continuum theory of a cholesteric liquid crystal (CLC). The effect with the 
shortest build-up time corresponds to a variation of the director profile over the period of the CLC with 
preservation of the pitch of the helix (a record of the space-time bulk lattice). The inverse effect of this 
perturbation of the orientation by light consists in a change of the effective permittivity tensor. For 
monochromatic fields, this manifests itself as lattice optical nonlinearity; for biharmonic fields, as stimulated 
scattering of light. The change of the pitch of the CLC helix under the action of light is calculated. It is shown 
that this change is caused by a torque that twists the'helix and that is transmitted by the spin angular 
momentum of the radiation reflected with change of sign of the circularity. Gigantic optical nonlinearity, 
which occurs on change of the liquid-crystal orientation with a nonuniformity scale of the order of the whole 
thickness of the cell, is discussed. For a cell of CLC with at least one orienting surface, the gigantic optical 
nonlinearity should not occur. 

PACS numbers: 61.30.Gd 

1. INTRODUCTION to zero. The second term describes the energy of in- 

One of the most important properties of a liquid-crys- 
tal (LC) mesophase consists in the anisotropy of-the lo- 
cal permittivity tensor at an optical frequency, ~ ( w )  

A 

# c,l. In consequence of this, the dipole moment of 
unit volume, P = (4n)-'(2 - i ) ~ , ,  induced in the medium 
by the light field 

is not collinear with the field E. As a result, unit 
volume of the LC is subject to a torque M =  [P x El that 
does not vanish on averaging over time and that is  pro- 
portional to the intensity of the light. Nonlinear optical 
effects caused by reorientation of the LC director under 
the action of this torque were recently predicted theo- 
retically'-' and detected experimentally. ' 9 '  At present 
there is a burgeoning grown in the number of papers, 
both theoretical and experimental, devoted to orienta- 
tional optical nonlinearity of LC. The present paper 
discusses and calculates in detail various effects of the 
action of light fields on the cholesteric liquid crystal 
(CLC) mesophase. 

2. EXPRESSION FOR THE FREE ENERGY AND THE 
EQUATIONS FOR THE DIRECTOR AND THE FIELD 

We shall describe the state of the CLC by the director 
unit vector n(r). For the unperturbed helical structure 
(the Grandjean texture), the n(r)  relation has the form 

n (r) =e. cos q,z+e, sin qaz. (2 

We shall take the free energy (or the Lagrangian func- 
tion taken with a minus sign) of unit volume in the form 

The first group of terms in (3) is  due to the distortion of 
the CLC structure. It i s  not difficult to show that in 
general this group of terms is nonnegative and that the 
structure n(r) of (2) gives i t s  absolute minimum, equal 

teraction of the CLC with the light field. The permit- 
tivity tensor a t  the frequency of the light i s  taken in the 
form 

where c,(w) = E , , ( w )  - E,(w) is optical anisotropy. 

To calculate build-up processes, we need also an ex- 
pression for the dissipative function R (ergcrn-= s"), 
which we shall take in the form 

where the relaxation constant y has the dimension poise. 
The director vector n(r,  t) obeys the variational equa- 
tions 

The operator II,, i s  projected on the plane perpendicular 
to the local direction of the director n(r, t); this guar- 
antees satisfaction of the equality In(r,t) I = 1. With al- 
lowance for the perturbation of the structure n(r), the 
field E(r)  may change its value as compared with the 
original wave. But in the variation of F in (3)  and (61, 
we must suppose that what is  given i s  the electric field 
of the light wave E(r) (and not, for example, the induc- 
tion D = ZE). 

Variation of (3) with respect to the components E,(r)  
a t  fixed n(r)  gives the vectorial variational equation 

rot rot E-W%-~~E=O,  (7) 

which agrees exactly with the consequence of Maxwell's 
equations for a monochromatic field E(r).  The specific 
form of writing of equations (5) and (7) depends on the 
problem being considered (see below). 

3. EFFECTS DUE TO DISTORTION OF THE PROFILE 
OF THE CLC HELIX 

For typical CLC , the pitch h = 21r/~, of the helix 
amounts to h -  cm, and the value of E ,  lies in the in- 
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terval from +O. 03 to +O. 3. Far from the Bragg reson- 
ance and far from the Mauguin limit,s.'O the change of the 
state of polarization of a light wave over the length of 
the pitch h is  small. Therefore we shall in this section 
calculate the distortion of the CLC structure under the 
action of light waves by considering, in a f i rs t  approx- 
mation, one o r  several plane light waves with a given 
direction of propagation and polarization unit vector. 
We shall consider the actual change of the state of po- 
larization, the overall phase, and the amplitude of the 
waves in the next stage, with a more accurate solution 
of Maxwell's equations. 

Furthermore, in this section we shall consider pro- 
cesses with the shortest build-up time, in which the 
orientation of the axis of the helix and the value of the 
pitch remain a s  before throughout the whole cell, and 
all that changes is the specific behavior of the director 
within the limits of a period. 

3a. Lattice optical nonlinearity (LON) and nonlinear 
birefringence 

We assume that a single plane monochromatic wave 
E(z) = E exp(ikz) i s  propagated along the CLC in the di- 
rection of the axis of the helix, and by virtue of the 
transversality condition (e, . E) = 0. Then the tensor 
EiE: that occurs in F ,  = -ca(n E)(n.  E*)/16r may be 
considered practically constant in space. We shall seek 
the perturbed distribution of the director in the form 

where a<<1 is a small distortion of the phase of the hel- 
ix. Then the variational Eqs. (6) give 

d a  aza . E. 
7-- K12 - = - {sin 2q,z (lE,IZ-IE,12)+ cos 2y0z(E~,'+E.'E,)).(9) at az2 16n 

It is  natural to write the solution of Eq. (9) a s  

In (11) we have introduced a constant r(s") that charac- 
terizes the ra te  of establishment of the lattice (10) of 
the perturbed director: 

In the stationary mode, 

As is  seen from this expression, for circular polariza- 
tion of the light a,= a,= 0. 

It is  evident from formulas (10)-(12) that the resultant 
nonlinearity is  due to those perturbations of the director 
that form a "lattice" a ( z )  of the form (10) with a small 
spatial period 2n/qO. We shall call nonlinearity of this 
type lattice optical nonlinearity (LON). A characteris- 
tic feature of LON consists in the fact that its constant 
is  proportional to (Kiiq;)-', where qo is  the wave vec- 
tor of the lattice. For nematics, LON was considered 
in Ref. 3. 

As a result of the reorientation, there appears in the 
dielectric permittivity tensor of the medium a pertur- 
bation of the form 6~ i,(z) = c,(n,,6n, + no,6ni), in which 
there a r e  rapidly varying terms -cos4q0z and sin4q,z 
and also terms 6E that a r e  constant in space. Retain- 
ing only these latter, we get 

and 6$'= 6,, - (e,),(e,), i s  the two-dimensional Kroneck- 
e r  6 symbol. Thus a strong linearly polarized wave 
E = e$ produces in the medium a birefringence 6<, 
= O . ~ E ~ I E ~ ~ , ~ ~ ~ = - O . ~ E ~ I E ~ ?  Thepresenceof  such 
birefringence can be recorded by means of a weak 
auxiliary wave, in general of an altogether different 
frequency and also, perhaps, of opposite direction. 
But if we a r e  interested in the effects of self-interac- 
tion of a strong wave, then 

(6D) ,=6e,,Ek='/,~,(E'),(EE). (14) 

Here we mention the following. Because of the rapid 
periodic nonuniformity of the CLC , it i s  the "lattice" 
perturbations (10) of the director that give nonvanishing 
contributions to the space-averaging tensor 6 t. We 
shall estimate the orders  of magnitude of E, and r. 
Let n, -no = 0.06; then E,= 2nAn - 0.2. Taking K2, 
= 5 dyn, the pitch h=104 cm, q = 2 r / h = 6 .  lo4 cm-', 
we get the estimate c2 - 0.4 . 10-Qm3/erg. For light 
wavelength A .  ,. =2uc/w the nonlinear advance of phase 
is 

0 
6rp = --E~IEI~L=APL, 

4cn 
(15) 

where P i s  the power density (W/cm2), L is  the thick- 
ness of the layer (cm), and the constant A has the di- 
mensions cm/W. This constant is proportional to 
A;',,; and for h , = O .  5 pm,  we have A = 5  cm/W. 
The build-up time is T -  I?-' -5  . 104 s for y - 1 P. The 
nonlinearity (13)-(14) has very remarkable polarization 
properties: it is  greatest for linearly polarized light 
and vanishes for both circular polarizations, right and 
left. Furthermore, the nonlinearity (14) leads to an ef- 
fect well known in nonlinear optics," self-rotation of the 
polarization ellipse. In fact, if 

E=E [cos (e. cos $+e, sin $) + i  sin P(e, cos $-ex sin $ ) I ,  

then the angle J ,  varies according to the law 

d$/dz=AP sin 2P. (16) 

Experimental study of nonlinearity of the form (14) can 
be carried out either on the basis of the effect of self- 
focusing of light [the advance of phase (15)] o r  on the 
basis of the self-rotation of the polarization ellipse 
(16). Furthermore, distortions of the CLC spiral of 
the form (81, (10) should lead to the appearance of 
resonance Bragg reflection of the second order for nor- 
mal incidence of the exploratory light wave. 

Still another interesting feature consists in the fact 
that in the approximation considered, a l l  effects of the 
nonlinearity (13)-(14) a r e  identical for right and left 
CLC. 

3b. Stimulated forward scattering 

We suppose that two waves a r e  propagated in the pos- 
itive direction of the z axis: a strong one E, exp(-iw,t) 
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and a weak one E, exp(-iw,t). F i rs t  of all, the strong 
wave El produces for itself a nonlinear response of the 
form (14). Furthermore, the weak wave E, i s  propagat- 
ed in the medium with the birefringence (13) produced 
by the strong wave El. But when Aw = w1 - w, f 0, there 
is still another specific effect, corresponding to a pro- 
cess of stimulated scattering (SS). The point i s  that the 
interference term aEfiE,, in F, leads to the appearance 
of perturbations 6n of the director and 6c= 6n of the 
permittivity tensor, of the form 6 c a  EfE,. Scattering 
of the strong field by these perturbations gives an ad- 
dition to the induction a t  frequency w,, 60, 
=const IE, I2E, exp(-iw,t). As a result, we can speak 
of still another, interference mechanism of correction 
to E(W,) because of the field El. It i s  easy to understand 
that these additional, interference terms in 6c ,, a r e  
obtained from the expression (13) by the substitutions 
E -E,, E* - El, c, - & ( I +  iAw/I')-'. As a result we 
have 

If Aw=wl -w,> 0, i . e . ,  if the weak wave E, is shifted 
in frequency into the Stokes range with respect to the 
strong one El, then the effective permittivity a t  fre- 
quency w, acquires a negative imaginary part. In other 
words, scattering of the wave El by the interference 
perturbation leads to an exponential enhancement of the 
wave E,. The maximum of this enhancement is  attained 
when A o  = I?. As regards the polarization features, 
the maximum of the enhancement will be for circular 
polarizations of opposite signs of rotation; for example, 
e, = (e, + i e y ) / a ,  e, = (e, - i e y ) / a .  This absolute maxi- 
mum corresponds to gain g (cm-', with respect to the 
intensity) 

The gain for two linear polarizations is  twice a s  small; 
and, interestingly, it does not depend on the mutual 
orientation of the polarizations of the pump E, and of the 
signal E,. 

We note that in the present treatment we have not 
taken into account the effect of terms ccEIE,*, corre- 
sponding to so-called four -wave parametric interac - 
tion. l2 

3c. Stimulated backward scattering 

Let a wave El exp(ikz - iw,t) be propagated in the pos- 
itive direction of the z axis, and a wave E, exp(-ikz 
-iw2t) in the negative. As before, the strong wave El 
produces birefringence of the form (13), which affects 
both its own propagation and the propagation of the wave 
E,, and this effect is  no different from the case of prop- 
agation in the same direction. But the interference 
process that causes backward SS has peculiarities a s  
compared with the case of forward SS. 

To calculate backward SS, we must write the pertur- 
bation a (z ,  t )  in the form 

a ( z ,  t )  -.a- ( t )  e-="k-""+a+ ( t )  e-z"'+"". 

It is  found that 

Scattering of the strong wave El exp(ikz - iwlt) by the 
perturbations 6 c a  a +, a_ gives terms in the induction 
with spatial variation aexp(-ikz - 4iq0z), exp(-ikz 
+ 4iq0z) and finally of the form exp(-ikz). Retaining on- 
ly terms of the last type (because only they satisfy the 
wave equation), after calculations that a r e  straightfor- 
ward in principle but extremely cumbersome, we get 
for the interference contribution to bD, 

We shall discuss the structure of these expressions, 
When q>> k,  even the interference picture of the fields, 
EfE, exp(2ikz), may be considered constant within the 
limits of a single period of the helix. In this case the 
properties of forward and backward SS a r e  the same, 
as is easily verified by direct comparison of formulas 
(13), (17), and (20a), (20b) when go>> k, since c r '  
2. &;-I = &,. 

In the other limiting case k>> go (but such a s  not to 
enter the Mauguin regime), the process of backward SS 
again has the same polarization structure a s  for for- 
ward SS, and only the nonlinearity constant and the 
buildup time a r e  different; they a r e  obtained from the 
formula for forward SS by the simple change K,,(2q)Z - K,,(2k)2. As in Sections 3a and 3b, both these cases 
(go>> k and qo<<k) give results  independent of the sign 
the CLC helix. 

In the intermediate case go-k,  there a r e  two con- 
stants T,=K2,(2k * 2q0)2/y, and the polarization proper- 
ties a r e  determined by the expression (20), which i s  
conveniently written in circular unit vectors 

Since the waves El and E, a r e  propagated in opposite 
directions, we may say that in backward SS the clock- 
wise-polarized pumping wave (R) enhances only the 
clockwise-polarized Stokes wave (L) (and correspond- 
ingly for counterclockwise polarizations), each with its 
own enhancement coefficient. For forward SS, a given 
circular polarization of the pump (R) enhances the op- 
posite (L) Stokes polarization of, and in this case the 
two enhancement coefficients coincide. Such coin- 
cidence occurs also for backward SS in the cases q, 
>> k and qo<<k. 

Finally, in the vicinity of resonance, go =k, it is the 
term proportional to cg' that has the largest buildup 
time, and with it the largest enhancement coefficient. 

Here, however, it is  assumed that we a r e  not so close 
to resonance that i t  is necessary to take into account the 
actual change of field because of Bragg reflection. The 
effects of a field change because of virtual reflection 

. a r e  considered in the next section. 
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We may say that when go =k ,  the interference term of 
the two fields, EIE$ exp(2ikz), enters into spatial 
resonance with the helical structure of the cholesteric. 
The asymmetry between E:' and &-' is  determined by 
the sign of go, i.e. by the sign of the CLC helix. 
Furthermore, for Aw - 0 and near Bragg resonance, 
go-k,  the interference term bD2 of (201 should lead to 
an additional rotation of the plane of polarization of the 
wave E,, proportional to the intensity of the opposite 
wave El (nonlinear gyrotropy13). 

Numerical estimates for backward SS when k>>q give 
A blck= (q/k)2Aforw, Gark = (k/q)zrruru : we leave to the 
reader the substitution of numerical values. Further- 
more, when k << q we have A,,,,=A ,,,,, r ,,,, = I?,,,. . 

4. CHANGE OF THE PITCH OF THE SPIRAL 
UNDER THE ACTION OF A LIGHT FIELD 

For consideration of the effects of Sections 3a to 3c, 
it was sufficient to determine the oscillatory (in its 
dependence on z)  component of the torque Kz2(dB/dz -9,) 
(dyn Scm") transmitted across unit a rea  normal to the 
z axis. For the problem of the change of pitch of the 
helix, it i s  necessary to know the value averaged over 
space of the specific torque. For its determination, it 
i s  convenient to use a well-known Noether theorem.14 
Namely, for a problem in which both the director n(r )  
and the field E(r)  depend only on z, there i s  symmetry 
of the Lagrangian (3) with respect to rotation through an 
arbitrary angle about the z axis. As a result, this sta- 
tionary system of variational equations has the integral 

where 

is  the torque transmitted across 1 cm2 (dyn . cm-I). 
Here e i ,  =ei,,(e,), is  the unit two-dimensional antisym- 
metric tensor, and E = exEx(z) + eyEy(z). It is easy to 
demonstrate the validity of the relation J (z )  = const by 
direct differentiation of (22) and substitution in the r e -  
sult of the stationary d26/dz from (6) and dZE/dz2 from 
(7). Outside the liquid crystal, i.e. in any other 
transparent dielectric o r  in vacuum, the term aKz, of 
course is absent. The expression (22) corresponds to 
transmission of a spin moment +ti o r  -R by each quan- 
tum with energyR w with clockwise o r  counterclockwise 
circular polarization, respectively. In the dielectric 
outside the CLC let there be a light flux P("= P!' +P(,.) 
(erg/cmz .s),  in the positive direction of the z axis, 
consisting of clockwise-polarized (+) and counterclock- 
wise-polarized (-1 waves, i.e., respectively (ex +ie,) 
x exp(ikz) and (e, - ie,) exp(ikz). Let the same sep- 

aration P'-#'= P';'' + PI'), into waves of the form 
(ex + ie,) exp(-ikz) and (ex - ie,) exp(-ikz), be made for 
light traveling in the direction (-2). Then direct cal- 
culation with (22) shows that 

the constancy of I(z) ensures the constancy of each of 
the quantities P?'. 

Very important is the question of the behavior of the 
integral J on passage across the CLC boundary from 
other media o r  from vacuum (air). If the surface holds 
the angle B of the director n rigidly in the ( x ,  y) plane, 
then the axial symmetry i s  lost, and nothing can be said 
about the behavior on passage across  the boundary. In 
other words, a rigid boundary can receive or give up an 
arbitrary torque. But if the angle 8 i s  not restrained 
by the boundary (for example, by a C LC -air boundary ) , 
then it i s  natural to suppose that the value of the trans- 
mitted specific torque J(z) does not change on passage 
across the boundary. Thus it follows from (22) that 

where the value of Jo can be calculated from (23) out- 
side the CLC on the side of the cell where boundary 
is  free. 

Thus we arr ive  at the important conclusion that the 
change of the pitch of the CLC helix in a light field i s  
determined not only by the field E(z) locally present in 
the medium [the term aEE* in (2411, but also by the 
process of reflection of fields of different circularities 
from the CLC helix [the term Jo in (24), expressed in 
terms of (2311. With respect to calculation of the torque 
due to actually reflected waves, this approach differs 
both from the approach of Dmitriev15 and from the ap- 
proach that we followed in the original version of the 
present work. The key feature in obtaining this new de- 
rivation was the use of a single Lagrangian for the der- 
ivation both of Maxwell's equations and of the equations 
for the dielectric. 

The actual field distribution in a CLC , especially near 
Bragg resonance, has a quite complicated form.'" 
Here, therefore, we shall consider only the case when 
the effect I Aq/q I has its largest value. Specifically, 
let the wave incident on the CLC be circularly polarized, 
with such a sign of the rotation that total reflection of 
it occurs a t  a thickness Az much less  than the cell thick- 
ness L. We must further consider two possibilities. 

In the first  of these, this wave enters the CLC from 
a surface that rigidly maintains the angle 6. In this 
case the other (free) surface transmits no torque, radia- 
tion across  it does not occur, Jo = 0,  E = 0, and a s  a 
result it follows from (24) that in the greater part of the 
cell volume, the pitch of the spiral  remains unchanged. 

The second possibility corresponds to passage of r e -  
flected light through a f ree  surface. If p(+') = p ' ~ '  

=P,,,, i .e . ,  100% reflection occurs from a spiral  with 
go>  0, then Jo= -2w-'P,,, , and in the main volume of the 
cell, to which the field does not penetrate, 

d01dz=qo+2Pi,,loKz~. (25) 

This means that the torque transmitted by the reflected 
field additionally twists the helix, i. e. , decreases its 
pitch. 

Of course limitation of the beam with respect to a 
transverse coordinate may play a very important ro le  
in the experiment; because of it,  the part  of the CLC 
that is located outside the beam will tend to preserve 
the previous behavior of the helix. 
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For numerical estimates, we take w = 3 loi5 s-' (this 
corresponds to wavelength in vacuum h=0.6 pm), K2, - dyn. Then for a power density of the wave Pi,, 
= 1 kW/cm2, we get from (25) 4 = 0.6 . lo2 cm-' and 
A0 = +L = O .  6 rad for a cell thickness L = lo-' cm. 

The change considered above in the pitch of the CLC 
helix should manifest itself in a whole ser ies  of optical 
effects. As is  well known, the rotation of the plane of 
polarization in a CLC at  normal incidence depends 
substantially on the relation between the pitch h = 2w/q 
of the helix and the wavelength of the light. 

Exact solutions of Maxwell's equations for normal in- 
cidence of a wave on a CLC have been obtained.17 For 
consideration of the effects of rotation of the plane of 
polarization and of the change of phase velocity in a 
strictly sinusoidal CLC helix of the form (2), it is  suf- 
ficient to iterate Maxwell's equations twice with respect 
to powers of c,. Then for slowly varying amplitudes 
R(z) and L(z) we have 

Here BE is the correction to the mean of the wave vec- 
tor over the two polarizations, and d+/dz is the specific 
rotation of the plane of polarization. We denote by cp, 
and 4, the mean phase and angle of rotation of the po- 
larization, respectively, of an exploratory beam with 
frequency w,. Then because of the change of pitch 4 
of the spiral over the layer thickness L ,  we get 

The quantity A+ of (34) corresponds to nonlinear rota- 
tion of the plane of polarization of the light. In the case 
when the powerful beam is itself also the exploratory 
beam, the quantities A$= I E 1' and Acpu I E l 2  near Bragg 
resonance a r e  proportional to (q - k)-'. For experimen- 
tal observation of the nonlinear rotation A$, it is  most 
convenient to use linearly polarized incident light, for 
which the effect of the self-rotation (16) on the induced 
birefringence (13) is  absent. On the contrary, the self- 
focusing effect (Acp) of the change of pitch is  more con- 
veniently investigated with circularly polarized incident 
light, when the birefringence (13) i s  altogether absent. 
Furthermore, the change of pitch of the helix can be 
recorded on the basis of the shift of the wavelength of 
resonance reflect ion. 

5. ABSENCE OF GIGANTIC OPTICAL NONLINEARITY 
IN CLC 

In all the cases considered, the spatial scale of the 
perturbations of the director corresponded to the pitch 
of the helix, I -qil ,  o r  to an even smaller quantity [for 
example, 1 - (2k)"I. For this reason, the dimension- 
less amount of the perturbation was determined by the 
parameter s, l E 12/K221-2, where 1 s q,l. But for liquid 
crystals perturbations a r e  in principle possible whose 
inhomogeneity scale corresponds to the whole thickness 

L of the cell. Since L can take quite large values, 1 
.-lo-' cm,  the corresponding nonlinearity has a value 
larger by 8 to 10 orders of magnitude than the optical 
nonlinearity of carbon disulfide (CS,). Such nonlinearity 
was predicted and observed2v6 for nematics and re -  
ceived the name "gigantic optical nonlinearity" (GON). 

The same GON should exist also for smectics C.4 
As regards smectics A and cholesterics, however, for 
a cell with a rigidly prescribed orientation on a t  least 
one of the surfaces the GON should be absent. We shall 
illustrate this statement for CLC as an example. 

We introduce a unit vector 1 along the axis of the chol- 
esteric spiral. The three-dimensional permittivity 
tensor has the form E ~ ,  = ~ ~ 6 ~ , ,  + cani%. If we average 
this expression over the harmonic oscillations of n(r )  
(i. e . ,  over the period of the spiral) ,  then we get for - 
zip 

~,=T6,~-0.5e.l,l~. (28) 

As a result, the averaged energy of interaction of the 
light field with the CLC can be written in the form 6F, 
= (32~)-'ca(E .1)(E4 - 1); here we have omitted terms 
independent of 1. 

In order to characterize the averaged Frank energy 
of smooth deformation of the CLC , besides the vector 
l(r) another vector V,(r) is  introduced (for the definition, 
see  Ref. 18); in terms of them, the f ree  energy takes 
the form1" 

F = 5 (El)  ( E l )  +L11s(K2,+3Kss) (V1)'+112K;z(lV,) 
32n (29) 

+'/,(K,i+Kad X Vsl' 

and the condition 
1 

( ro t l )  i= - (rot V,) i  - 
qo 

is  imposed. From (30a) we have, to terms of order 
-qil, 

rot I = o ( I / ~ , )  =o. (30b) 

We assume that on at least one of the cell walls (for 
example, z = 0) the orientation 1 of the director is  
rigidly prescribed along the normal. Hence follows 

z,(x, y ,  z=o) ,  z , (x ,  y ,  Z = O )  =o. (31) 

The solution of Eq. (30b) has the form 

The second of Eqs. (32), under the boundary condition 
cp(x,y, z = 0) =const (pinned azimuth) has the unique 
solution l ( r )  =e,. This means absence of GON for a 
CLC with the director pinned on a t  least one of the uur- 
faces. For a CLC with two free surfaces, CON ap- 
parently can occur; in the present paper we do not con- 
cern ourselves with this question. 

6. CONCLUSION 

Thus in the present paper a whole ser ies  of effects 
of action of a light beam on a CLC mesophase have been 
predicted and calculated. We note that for the exis- 
tence of many of these effects, monochromaticity of 
the light (so characteristic of lasers)  i s  not required. 
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Thus the induced birefringence (Section 3a) and the 
change of pitch of the helix, together with the resultant 
change of the nonlinear optical activity (Section 4), a r e  
determined by the combined action of the intensities of 
each of the spectral components. 

From our point of view, it would be extremely import- 
ant to detect experimentally the effects predicted and 
calculated in the present paper. In particular, it would 
be interesting to verify the conclusion about the ab- 
sence of GON in a wall-oriented layer of CLC and about 
the change of pitch of the spiral  in a light field. 

Friendly criticism by E. I. Kats and I. E. Dzyaloshin- 
ski; stimulated the authors to revise completely the 
contents of Section 4. The authors thank E. I. Kats 
and Yu. S. Chilingaryan for valuable discussions. 
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ness L- 50 pm, the rotation is  small ,  $ - (0.05-0.5) rad. 
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