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We use the Hopf mapping to construct a magnetic configuration consisting of closed field lines, each of which 
is linked with all the other ones. We obtain in this way a solution of the equations of magnetohydrodynamics 
of an ideal incompressible fluid with infinite conductivity, which describes a localized topological soliton. 

PACS numbers: 47.65. + a 

1. INTRODUCTION 

Solutions of physical equations which have non-trivial 
topological properties have been studied for already 
more than five years. As examples we may give the 
"monopole""2 and the ' ' in~tanton'~ in gauge field theor- 
ies and the "pseudoparticle" in a two-dimensional iso- 
tropic f e r r ~ m a g n e t . ~  All these solutions a re  charac- 
terized by some topological index: the magnetic charge 
of the monopole and the number of pseudoparticles in 
the ferromagnet a re  equal to the degree of mapping of a 
two-dimensional sphere onto a two-dimensional sphere, 
the number of instantons i s  equal to the Pontryagin in- 
dex of the mapping of the SU(2) group onto the three- 
dimensional sphere. In each case one can write this 
index a s  a volume integral of some "topological charge 
density". In this connection attention i s  drawn to the 
integral of motion 

(A is the vector potential) which has been known for a 
long time in the magnetohydrodynamics of a perfectly 
conducting fluid and which i s  called the helicity of the 
magnetic field. Its topological nature is already indi- 
cated by the fact that no characteristics of the medium 
in which the magnetic field i s  present enter into (1). It 
has also been shown (see Refs. 6, 7) that if two field 
line tubes a re  linked the integral (1) is proportional to 
their linkage coefficient, i.e., the number of times 
which one tube is twisted around the other one. 

It is thus clear that the helicity is a topological char- 
acteristic of the magnetic field. This topological nature 
of i t  is completely revealed if we note that (1) is the 
same a s  the Whitehead integral for the Hopf invariant 
which characterizes topologically different mappings 
of the three-dimensional sphere SS onto the two-dimen- 
sional S2.8-10 The topological meaning of the Hopf in- 
variant is simple: it i s  equal to the linkage coefficient 
of the curves in S3 which a re  the originals of different 
points of SZ. Hence follows also a more constructive 
conclusion: knowing the mapping S3--S2 with a non-zero 
Hopf invariant, and the simplest such mapping was con- 
structed by Hopf himself, we can find the vector field A 
corresponding to it and, then, the magnetic field H 
=curl  A with non-zero helicity. The magnetic field 
lines of this field will be closed and each of them is 
linked with any other one. In the present paper we con- 
struct one such magnetic field configuration and we 
study its  properties in magnetohydrodynamics. 

2. STEREOGRAPHIC PROJECTION AND HOPF 
MAPPING 

We establish f i rs t  of all the connection between the 
physical space R3 and the sphere SS. Equation (1) im- 
plies that the field H decreases sufficiently fast at in- 
finity so that the helicity I is a gauge-invariant quantity: 
adding to A the gradient of any function does not change 
I a s  the additional term after integration by parts gives 
a surface term which does not contribute because H de- 
creases rapidly, and a volume term which vanishes be- 
cause div H=O. If the other physical conditions at in- 
finity a re  also unique (say, we consider a homogeneous 
isotropic medium) we may assume that the Euclidean 
three-dimensional space R3 is supplemented by a point 
at infinity. Such a "compacted" space becomes topo- 
logically equivalent to the three-dimensional sphere 
Ss. If we embed SS in the four-dimensional Euclidean 
space with coordinates (up; F= 1,2,3,4) so  that S3 
={up : up2 = 1) we can establish the connection between 
RS and S3 by the stereographic projection 

xi=u,/(~+u,), i = l ,  2, 3. (2) 

It is clear that the point at infinity corresponds to the 
"south pole" of the sphere with coordinates (0, 0,0, - 1). 
The inverse transformation is realized by the formulae 

where 2=4 is the square of the radius vector. 

Let there now be in R3 a vector field A= (A,, A,, A,). 
We find the formulae which express the conn_ection be- 
tween A and the corresponding vector f i e  AA, on S3, 
corresponds to it, where we impose on Ap the condition 
that it be tangent to the sphere: 

u,K,=O. (4) 

This condition means that both A and 4 also lie in the 
tangent spaces ("stratifications") to the appropriate 
configuration spaces R3 and S3. We not use the condi- 
tion for the invariance of the differential form1' 

Since the variables up are  connected through the equa- 
tion u;= l for the sphere in the two expressions on the 
right-hand side of Eq. (5), the number of independent 
differentials is equal to three. Taking a s  the indepen- 
dent variables on S3 the f i rs t  three Cartesian coordi- 
nates ui we find from (5) 

au, 
A,%-a,+&-, i-1,2,3. 

aa au, 
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Substituting here (2) and using the equation u t =  1, we 
find three equations 

which together with (4) a re  sufficient to express A ,  in 
terms of A and vice versa. As a result we get 

where we must also make the coordinate substitutions 
(2) and (3) respect i~ely .~ '  

We now describe how, using the known mapping f:  
S3-SP, one must construct thevectorfieldA whichcorre- 
sponds to it and whichoccurs in Eq. (1) for the Hopf invari- 
ant of this mapping. One must, a s  was shown by Whitehead 
(see Ref. 9 andalso Ref. 13), start  from the 2-form of the 
volume on the unit sphere S2. If that sphere is em- 
bedded in the three-dimensional Euclidean space with 
coordinates t,, 5,, t3 the 2-form of the volume has the 
form 

( is the vector product sign); the coefficient is here 
chosen in such a way that the integral of (9) over the 
whole of the sphere S2 equals unity. The mapping f in- 
duces a mapping f * in the opposite direction from the 
space of forms on onto the space of forms on S3 SO 

that one can find the 2-form f *w2 on S3. One can show 
that any 2-form on S3 can be written in the form of an 
external differential of some 1-form w, where w, i s  
determined uniquely up to a differential of an arbitrary 
function. We thus can find a form w, such that f *w2 
= dw,. By using a stereographic projection, we can 
associate with a vector field on S3, determined by the 
form w,, a vector field A in R3 which we can use to 
evaluate the Hopf invariant through Eq. (1). 

We now consider the Hopf mapping f: S3 - S2 which 
has a Hopf invariant equal to unity (see Refs. 8, 13): 

Substituting this formula into (9) we find the form 

which is, clearly, the external differential of the fol- 
lowing form [using the rule for the evaluation of an ex- 
ternal differential d(u,duj)=dui A J:c,=duj Adu, ] :  

The vector field corresponding to this form w,= w, 
[see (5)l 

K=(2n) - i ( -u2 ,  u,,  ur, -us) (13) 

satisfies condition (4) so that we can use Eqs. (8) to find 
A. Substituting A, thus found, into (I), indeed, gives 
I =  1. However, it is important for us  that A, thus found, 
can be identified with the vector potential of a magnetic 
field with nonzero helicity. 

3. MAGNETIC FIELD CONFIGURATION 

We thus find, starting from the vector field (13) and 
using (8) and (3) a vector potential in the three-dimen- 

sional physical space. We note that Eqs. (3) a re  clearly 
written in dimensionless form, i.e., all coordinates xi 
refer to some characteristic dimension R. To change to 
dimensional units we must make the substitution xi 
-x,/R, but in order to keep the formulae simple we 
stay in this section with dimensionless length units. 
The dimensional coefficient of proportionality which 
fixes the absolute value of the magnetic field strength 
has also so  far  been dropped. As a result of substitut- 
ing (13) and (3) into (8) we get, apart from a proportion- 
ality factor 

Calculating the magnetic field corresponding to  this po- 
tential we find 

The square of the magnetic field strength equals 

so that the absolute magnitude of the magnetic field of 
the configuration which we have found is spherically 
symmetric. 

We now find the field lines of the magnetic field (15). 
The equations of the lines of force have the form dx/dl 
=H/H, where dl is a line element, or  

dx, 2(zrzs-x,)  , dx, 2 (x,x,+x,) dx, 2 ~ , ~ + 1 - P  
-= 
dl ' 1+zz ' -= 

-= 
dl 1 + 2  " dl l+xz . (18) 

One can easily solve this set of equations if we map it 
to begin with on the sphere S3. The vector field I?, cor- 
responding to H is found by using Eqs. (7) and (2): 

so that the equations for the lines of force on the sphere 
S3 have the form 

~ U I  - =- o h  , ~ U S  dur 
U,, -= ui, -= u,, -=- 

dcp dcp dcp & 
where d q  is the corresponding line element on S3. The 
solution of the set (20) i s  clearly: 

u,=a cos(cp+cpi), u,=a sin(cp+ql), 

u,=b sin(cp+cp,), ur=b cos (cp+cp,), 

where the integration constants a and b a r e  connected 
through the relation a 2 +  b2= 1. 

Again using (2) to change to the physical space we find 
that the solution of the set (18) has the form 

a cos (cp+cpi) x2 = a sin(q+cp,) xs  = b sin (cpfcp,) 
xi = l+b cos(~+&cp,) ' 

l+b cos(<+cp,) ' l+b  cos (cp%cp.) ' 
(22) 

where the 1-dependence of cp is found from the differ- 
ential equation 

which expresses the well known connection between the 
line elements in the two metrics: the Euclidean and the 
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stereographic (see Refs. 10, 11). It is clear already f rom 
Eqs. (22) that the lines of force a re  closed: when we 
change cp from 0 to 2 r  we completely traverse it and we 
return to the initial point. Substituting (22) into (23) we 
get 

so that the length of a line of force is equal to  

The maximum and minimum values of the radius vec- 
tor of the points belonging to a line of force a re  found 
from the formulae 

The solution of Eq. (24) corresponding to the condition 
l(O)= 0 has the form 

whence we find 

Expressing the trigonometric functions in (22) in 
terms of tanbcp+ (Pl)/2] and substituting (28) we find the 
way the equations of the line of force depend on 2 .  We 
shall not write down the general formulae in view of 
their complexity, but restrict ourselves to  the case ql 
= cp, a s  the curves differing only in the difference cp, - cp, 
can be superposed onto one another by a rotation over 
that angle around the x3-axis: 

(cos qo+b)cos al-a sin cpo sin a1 b 
Xi = -- 

a(l+bcosrp3 a 
(cos cpo+b)sin al+a sin % cos a1 b (29) 

xz = , x3=-x2. 
l+b cos q, a 

Hence it is d e a r  that the lines of force a re  plane curves. 
Evaluation of their curvature gives 

so that the lines of force turn out to be circles of ra- 
dius l/bl This agrees with Eq. (25) for their length. 

Although it follows from the way we have constructed 
the circles that they a re  linked, it is of interest to veri- 
fy this also directly. We therefore consider two circles: 
C, and C, corresponding to values of the parameters a 
= b = f i ,  cp,=O and different values cp,=O and (p,=n/2 
(one circle i s  rotated with respect to the other over n/2 
around the x3-axis). Their parametric equations have 
the form 

The circle C ,  lies in the plane x,=x3, and the circle C, 
in the plane x,= - x,. These planes intersect along the 
line XI=- X,= - x3. It is clear that if the circles C, and 
C, a re  linked, their points of intersection with this line 
must alternate with one another. One easily finds that 
C, intersects this line at the points A,=(- 1, 1,l)  and Bl 

1 1  1 =(a, - 3, - 3) ,  and C, in the points A,= ( -  *,*, i) and B, 

= ( I ,  - 1, - 1). The point A, l ies between the points A, 
and B, and the point 4 outside the section (A,, B,) so 
that these pairs of points alternate on the line xl=-x, 
=- x, and the circles Cl and C, a re  linked. 

When the parameter cpo changes from 0 to n/2 the 
circle is shifted in space from C, to C, covering a sur- 
face with boundaries C, and C, which can be obtained by 
joining two ends of a strip after twisting it over 360'. It 
is known (and one can easily verify this experimentally) 
that if one cuts such a s t r ip  along i ts  boundaries follow- 
ing a closed line it falls apart into two such strips which 
a re  linked. Continuing this cutting exercise we shall 
obtain ever narrower strips which a re  linked with one 
another. It thus becomes clear that all circles forming 
the original s t r ip  a re  linked with one another. 

When the parameter cp, changes from 0 to 2n the cir- 
cle describes a closed surface ( a  torus obtained from a 
cylinder which is twisted 360' before i t  ends a re  joined; 
the generating cylinder then changes into linked closed 
curves) which is bounding a "plait" of closed lines of 
force. The lines of force thus lie on toroidal surfaces 
which a re  imbedded one into another, and a re  circles, 
each of which is linked with all the others. 

We now consider a physical system in which the mag- 
netic field configuration which we have described can 
be realized. 

4. MAGNETOHYDRODYNAMIC SOLITON 

We change to dimensional units so that the magnetic 
field (15) takes the form 

H a '  H = - (2R[kXx]+2(kx)x+ (RZ-2') k } ,  
(Ra+x') ' 

where k is the unit vector along the x,-axis, R the size 
of the soliton, and Ho the magnetic field strength at the 
origin. The square of the magnetic field strength is 
equal to 

Using Eq. (1) to evaluate the helicity of the magnetic 
field we get 

We note that through the mapping x- - x  we get an 
"antisoliton," the magnetic field of which differs from 
(32) in the sign in front of the f i rs t  term in the braces, 
while the helicity (34) also changes sign. 

We shall consider a perfectly conducting liquid for 
which I is an integral of motion. We also restrict  our- 
selves to the case of an incompressible ideal fluid. The 
equations of magnetohydrodynamics for stationary flow 
have the form (see, e.g., Ref. 14) 

div H=O, div v=0, rot[vXH]=O, 

They a re  clearly satisfied (see Ref. 15) when the fluid 
moves along the magnetic field lines of force with a 
velocity 
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while the pressure satisfies the equation tive processes. When account is taken of the finite con- 

p+P/8n-p,=const. ductivity 0, magnitic field diffusion occurs. The con- 
(37) siderations given here a re  applicable if the hydmdynarn- 

Thus, Eqs. (32), (36), and (37) give an exact solution of ic velocities dominate the diffusion velocities, i.e., 
the equations of magnetohydrodynamics which describes when (v,,,R/v)lh <<R (vm=2/4no is the magnetic viscosity 
a localized topological soliton. v - H, /P~) ,  o r  

We evaluate the soliton energy vR va aR 
Re,=---->1 

v, c2 v (44) 
(38) the magnetic Reynolds number must be much larger 

For  a physical interpretation of topological solitons we 
must bear in mind that they a re  metastable states, the 
energy of which is higher than the energy of a state at 
complete equilibrium. It is thus necessary for the sta- 
bility of a soliton, at any rate, that there does not exist 
such a continuous deformation at which i ts  energy dimin- 
ishes while the topological invariant is conserved. Com- 
parison of (38) and (34) shows that 

E a ZIR, 

so that the soliton can diminish i t s  energy for constant 
I by increasing i ts  radius. However, in the case con- 
sidered there is  yet another integral of motion-the angu- 
lar  momentum [we take the + sign in Eq. (36)] 

which stabilizes the "spreading" of the soliton (cf. the 
remarks about "collapse" of solitions in Refs. 16, 17). 

The radius R and the field H, a re  completely deter- 
mined by the two conserved quantities I and M: 

For given I, the M-dependence of the energy has a 
unique decreasing spectrum, E ~ M - I ~ .  One must, 
however, bear in mind that I and M are  not completely 
independent quantities. As the pressure is always posi- 
tive, it follows from (37) and (33) that 

HpZ<8np_, (40) 

and thus, according to (39), I and IM must satisfy the 
thermodynamic inequality 

For a given external pressure P, the radius and energy 
of the soliton this satisfy the inequalities 

RZ (2n0pp,) -"*Mh, E< (n'p,6/2'9p')''*M". (42) 

Combining these inequalities [or substituting (40) into 
(38)] gives 

which is essentially the same a s  the well known inequal- 
ity E<3PVwhich follows from the fact that the trace of 
the energy-momentum tensor is positive (see Refs. 18, 
19). 

The magnetic field of the soliton (32) is produced by 
currents which circulate along closed lines with a den- 
sity 

j = C r o t ~ = C -  
4n 

(2RH+[HXx]). 
221 R2+x2 

These currents a re  conserved since we neglect dissipa- 

than unity. When this criterion is satisfied, the condi- 
tion UR/V>> 1 that the displacement current i s  negligible 
(see Ref. 14), which is assumed to be true in magneto- 
hydrodynamics, is satisfied automatically (the dis- 
placement current vanishes identically in a stationary 
case when there is no dissipation). We can estimate 
the lifetime of the soliton by dividing i ts  energy E by 

As a result we get 

When applying inequality (44) to this problem this means 
that the lifetime (45) is much longer than the character- 
istic time -R/v for the motion of a fluid particle along 
a line of force. 

5. CONCLUSION 

The equations of magnetohydrodynamics thus admit of 
an exact solution which describes a localized topologi- 
cal soliton. This kind of solution has already been met 
with in the physics of the condensed state (see, e.g., 
Refs. 16,17). We note here some difference between 
the magnetohydrodynamic soliton and, say, a soliton 
in a ferromagnet.17 In a ferromagnet the mapping S3 - S2 i s  realized by the order parameter-the magnetiza- 
tion vector m(x). Here the sphere S 2  has a direct physi- 
cal meaning, namely, it is the configuration space of the 
vector m. At the same time the map of a point from S2 
has no special physical meaning-it i s  the line on which 
m(x) takes a constant value of the Hopf invariant char- 
acterizes the linking of such lines. In magnetohydro- 
dynamics there is no ordering parameter and the 
sphere SZ has a completely arbitrary character: i t s  
points merely "number" the magnetic lines of force 
and the correspondence between the lines of force and 
the points on S2 is established by the Hopf mapping S3 
-S2. This mapping i s  not realized in such an intuitive 
manner a s  in the case of a soliton in a ferromagnet, but 
now the maps of the points of S2 have a direct physical 
meaning-they a re  the magnetic lines of force, and the 
Hopf invariant characterizes their linking. 

I express my gratitude to A. A. Vedenov, V. G. Nosov, 
A. L. Chernyakov, V. R. Chechetkin, and V. V. Yan'kov 
for discussions of the results of this paper. 

')We shall use in this section the convenient formalism of the 
theory of external forms (see,  e.g., Refs. 10, 11). 
These formulae can also be obtained from the condition that 
the covariant derivatives inR3  and s3 a r e  the same (Ref. 
12). 
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