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The high-frequency nonlinear potential perturbations excited by a beam in an inhomogeneous plasma with 
initial particle power-law density and velocity distributions are investigated theoretically. Neglecting the 
thermal motion of the plasma particles, the exact solution of the nonlinear equations was obtained for 
spherically symmetrical electron-density, velocity, and electric-field perturbations having a frequency close to 
the local electron Langmuir frequency, and the amplitude of these perturbations is determined. The results 
are used to calculate, under the conditions of the corona of a laser plasma, the energy density of the Langmuir 
oscillations generated in the critical-density region. 

PACS numbers: 52.35.M~ 

One of the important problems connected with the 
realization of controlled thermonuclear fusion is the in- 
vestigation of the various physical processes that occur 
in the "corona" of a laser plasma. Most of these pro- 
cesses, e.g., generation of laser harmonics, excitation 
of quasistationary magnetic fields, the appearance of 
fast particles, and others are  due to intense fluctua- 
tions of the internal field in the inhomogeneous plasma 
of the corona. The plasma gasdynamics of a target 
heated by powerful laser radiation was investigated ex- 
perimentally and theoretically in a number of studies 
(see the review'). This has made it possible to present 
a sufficiently complete picture of the distributions of 
the density, velocity, and temperature in the laser- 
plasma corona. It is therefore necessary to investigate 
the structure of the intense high-frequency self-con- 
sistent field in an inhomogeneous plasma whose density 
and velocity profiles are  specified and a re  governed by 
its gasdynamic motions. This is the subject of the pres- 
ent paper, where we report the evolution of nonlinear 
potential perturbations excited in an inhomogeneous 
plasma by the passage of a beam of charged particles. 
This problem could be solved because the initial state 
of the plasma was defined as having particle power-law 
density and velocity profiles. Such an initial distribu- 
tion of the density and velocity of the particles is typi- 
cal of the laser-plasma corona. The stationary spheri- 
cally symmetrical flow of this plasma i s  characterized 
by a practically constant radial velocity of the particles 
and by a density no that varies in inverse proportion to 
&e square of the radius.' In addition, beams of accel- 
erated particles have been registered in such a plas- 

It is shown in the present paper that in a cold electron 
plasma the spherically symmetrical perturbations of the 
self-consistent electric field manifest themselves as  po- 
tential oscillations at a frequency close to the local 
electron Langmuir frequency. The essentially nonlinear 
Langmuir oscillations excited by a beam having a den- 
sity n, and propagating from the region of the high-den- 
sity plasma.constitute a series of peaks that move with 
definite velocity towards the lower plasma density. The 
maximum energy density of the electric field of these 
oscillations i s  smaller by a factor n,/n, than the energy 

density of the electron beam. 

In a laser plasma, the ratio of the energy density of 
the obtained Langmuir oscillations to the density of the 
thermal energy of the plasma particles, at typical val- 
ues of the parameters in the vicinity of the critical den- 
sity, amounts to -0.5x10-3. 

1. We consider a plasma consisting of electrons and 
of one species of ions. Neglecting the thermal motion 
of the particles, the one-dimensional spherically sym- 
metrical perturbations of the plasma are described by 
the system of equations 

a a a 
--v.(r, t)+v.(r, t ) -va(r ,  t)=-a=-- y ( r r  t ) ,  
at ar d r  

a a 
(1.1) 

r-'-- t - Y (r, t )  =-ar:  (r,  t )  --a,-'aLiZ(r, t )  . 
ar ar 

Here Q =  (ee/me)cp (Y, t), cp (V, t )  is the potential of the self- 
consistent electric field in the plasma; w, 
= (4nn,e,2/m,)1h is the local Langmuir frequency of the 
particles of species ol with mass a, and charge e,; 
n,(r, t) and v,(Y, t) are  the density and velocity of the 
electrons (a= e) and ions (ol=i) having a coordinate r 
at the instant of time t; a,=l at a = e  and aa=ei/me/eemi 
at a=i. 

The condition for neglecting the effects connected with 
the thermal motion of the plasma particles, i.e., the 
condition for the applicability of the system of equations 
(1.1), is smallness of the thermal velocity of the plas- 
ma particles V,, compared with the ratio of the char- 
acteristic spatial scale I of the inhomogeneity of the 
electric field of the plasma perturbations E (r, t)= acp/ar 
to the characteristic time 7 of the change of this field: 
1/r>> VTa, We confine our analysis to the zeroth order 
in the small ratio Vmr/l - 0. 

The dimensionalities of the quantities in the system 
(1 . I )  are determined only by the scales of the length L 
and time T: 

[oLaa] =T-'; [v.] =LT-'; [ Y ]  =L2T-'. 

Therefore the solution of the system of (1.1 ) will depend 
on one (self-similar) variable = r / y t d  (cf. Refs. 5 and 
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6) and it can be sought in the form 

The constants y and 6 contained in the variable A a re  
determined by the specific formulation of the problem. 
Assume that a density profile la,l-10L,2(r, O)=Car-' i s  
specified at  the initial instant of time t =O. The evolu- 
tion of this profile a t  t>O is determined by the three 
dimensional parameters r, t , and C with dimension- 
alities [r]= L, [t]=T and [C]= L*T-~. It i s  possible to 
combine these parameters into a single variable A 
=Y/C"%~'~; in this case y=cl'* and 6=2/P. If the initial 
conditions of the problem contain also a nonzero velo- 
city of the plasma particles v , (~,O)=Bfl-~,  then self- 
similar solutions of the system (1.1 ) are  possible only 
under the condition p=2(l+q).  In particular, a constant 
initial plasma-particle velocity v,(Y, 0)= va*(q=O) corre- 
sponds to p=2 (6=1). 

Substituting (1.2) in (1 .I ) we obtain a system of ordin- 
ary differential equations 

Q. (h)'h=R, ( 1 )  (2 -36 ) ,  (1.3) 
V . Z ( ~ )  (1-6)-V,(h)l'(V,(h)-6h)=a,E(h), (1.4) 

(h%(h) ) h'=R,-R,. (1.5) 

where we have introduced the new functions: the ''flux" 
Qa(A)=R,(V, - 6A), the "density" Ra(A)=A2N,(A) and the 
"velocity" V,(A) = AWa(A) of the particles of species a, a s  
well a s  the"electricfie1d" E(A) = [A2~(h)]L. Using (1.3) and 
(1.5) in relations (2.4), we write down two equations for the 
fluxes Q,(A) and Qi (A): 

Eliminatingwith the aid of (1.6) the electron flux Q, from 
(1.71, we can obtain one differential equation of fourth 
order for  the ion flux Qi. The constant A, is defined 
below. 

2. We consider now spherically symmetrical pertur- 
bations in the plasma at 6=1. This investigation is  of 
interest for the analysis of the evolution of the plasma 
perturbations in the corona of a laser  plasma, since 
the system of self-similar equations (1.3)- (1.5) in the 
absence of a potential @ = O  corresponds to a spherically 
symmetrical distribution of the density and velocity of 
the plasma particles: l ~ , l - ~ w , ~ ~ = C ~ r - ~  and ua=u,*. 

To describe the perturbations in the plasma a t  6=1, 
we use Eqs. (1.6) and (1.7). In addition, we take into 
account the presence in the plasma of an external beam 
of charged particles with velocity u,. This beam corre- 
sponds in Maxwell's equation 

aE (r ,  t )  - + 4njS4njo=0 
at 

to an extraneous current with density jo=m,a l~b /4~eer2  

(the influence of the electric field of the perturbations 
in the plasma on the density and velocity of the beam is  
neglected). Using the self-similar variables we obtain 
(here and elsewhere A=r/t): 

ha (I%) rt=RtVi-R.V*-,tub. (2.1 

It follows from Eq. (2.1) that the potential electric field 
in the plasma is due not only to the difference between 
the particle fluxes, but also to the presence of a beam 
with a density proportional to a,: 

hZE=Q,-Qc-alh+ a&. (2.2) 

The integration constant is  determined by comparing 
the integral of Eq. (2.1) with the integral of the Poisson 
equation (1.5), in the right-hand side of which is  taken 
into account an extraneous charge with density 

determined by the beam of the charged particles. 

We confine ourselves below to an investigation of the 
perturbations of only the electronic component of the 
plasma, assuming that the influence of the electric field 
on the ion motion i s  so weak that it can be neglected. 
This condition corresponds to taking the limit a s  lai(- 0 
in Eq. (1.7), which takes in this case the form Qip=O. 
From this we obtain the ion flux Qi (A) connected with 
the initial value of the density and velocity of the ions 
by the relation Qi =ci(vf/-A). 

Eliminating from (2.2) the quantity A2E with the aid of 
Eq (1.4) and using the obtained value of the ion flux Qi, 
we obtain the following equation for the quantity A (Q,) 
= A  (Q): 

QZhPhP'" +Q+C(h-vi.) +a=O, (2.3) 

The solution of Eq. (2.3) describes completely the per- 
turbation of the electronic component of the plasma with 
the aid of the functions Re@), Ve(A), and E(A): 

R.=R(h) =-Aq', V.=V(h)  =L-Q5<, E(L)--Qah$", (2.4) 

which a r e  connected with the real values of the density, 
velocity, and electric field by the following relations: 

The solution of Eq. (2.3) is  determined by the two con- ' 

stants, C, and u,*: 

One of these constants can be determined from the con- 
dition that there is  no electric field in the plasma, 
A&(A,)= 0 at A= A,: 

The constant A, is determined by the initial conditions. 
The choice of the value A,=- corresponds to specifying 
at  the instant of time t = O  the initial densities and velo- 
cities of the plasma and beam particles (a, $0 )  in all of 
space 0 < r  <*. Another choice of the value A,=ub i s  
also possible. In this case the self-similar perturba- 
tions in the plasma occur at tat*(?') [the time t*(Y) 
=rub-' determines the instant when a beam injected into 
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the plasma at a point r = O  and at  t=O arrives at  the point 
with coordinate r);  at shorter times t < t* we have the 
unperturbed state of the plasma (Re=Ri= Ce=Ci=C, 
va=ve*=vi*=v*, q=O).  

We investigate now the solutions of Eq. (2.3) as  func- 
tions of the relations between the parameters a!, C, and 
v*,. Equation (2.6) is  simplest in form at cr=Cu,*: 

(z-i)azt*" +z-0, 

Z=i+C?JQ, e-@/Q. (2.7) 

Equation (2.7) has a first  integral 

the value of which for the initial conditions Z(- clh/h.,) 
= O  and ZEt(- c~/&,) =vg*/clh is  '8= ue *'/2C. At finite 
values of '8, Z is  bounded, 2, GZGZ,; the turning points 
Z, and 2, are  determined by the equation I=U(Z,,,). 
This restricted variation of Z([) corresponds to a non- 
linear periodic wave defined, with account taken of 
(2.8), by the following relation: 

The period of the linear oscillations is then given by 

For small values k(t)I<< 1, when the potential U(Z) aZ2, 
the solution of (2.7) can be written in explicit form 

Returning to the variables A and Q ,  we obtain the fol- 
lowing equations: 

Q[ u '  ( C i  
A = - -  I-'sin -+- , V=v.'cos 

C C'" 
0 c 'h  c% - (2.9) 

R - ~ [ I - ' ~ ( s i ~ ( ~ + ~ ) - ~ ~ " $ + f  ) ) I  , 

Plots of A, R , V, and E against the parameter n = - 5 
at )Io=- and v , * / ~ ~ ~ ~ = 0 . 0 3 ,  based on Eqs. (2.9), a re  
shown in Fig. 1. 

We investigate the solution of Eq. (2.3) at a!* Cvi*. 
Using the substitution 

we reduce (2.3) to the following system of first-order 
equations: 

du dd . -- d ,  -=u  - 
C' u-l -. 

drl dq (Cu,'-a)' u' 

The qualitative behavior of the solution of Eqs. (2.11) i s  
analyzed on the phase plane (u, L) (Fig. 2-4). The sys- 

, tem (2.11) has a singular point u = l ,  G = O .  Depending on 
the ratio of the parameters C3 and (Cvi* - @)a, this point 
can be a focus, a node, o r  a degenerate node. In the 
vicinity of the singular point') the solution of Eqs. (2.11 ) 
can be obtained analytically. Thus, if the singular point 
is  a focus r4C3 > (Cu,* - a)q, then 

FIG. 1. Dependences of A ,  R ,  V, and E on the parameter 
n = -C'/~/Q a t  ci*/Cih= 0.03 and A o =  -, plotted in accord 
with Eqs. (2 .9 ) .  

A solution of the system (2.11) in the case of a degener- 
ate node [4c3= (Cui* - a!)'] i s  of the form (CV,*> a!) 

112 u: + ( 1 -  - q 0 p [  '1 , 1 i--I < I .  (2.13) 

If the singular point is  a node [4C3< (Cvi*- a)2], then 
1-8 

u ( q ) = l f  ,: 

Equations (2.12)- (2.14) yield the dependences of A, R ,  
V, and E on n at  an arbitrary ratio of the parameters 
a! f Cv,*. It i s  easy to show that the oscillatory depen- 
dence of A ,  R ,  V, and E on n at  4C3 > (Cv, * - (r), gives 
way to a monotonic dependence at  4C3 (Cu, * - a!)'. In 
the limit a s  a! - Cv,*-0 Eqs. (2.12) lead to the previous- 
ly obtained relations (2.9). 

Equations (2.9) and (2.12)- (2.14) become meaningless 
at large values of the parameter n ,  when the function 
A = A(Q) becomes ambiguous (see, e.g., Fig. 1 ). This 
ambiguity can be eliminated by taking into account the 
thermal motion of the plasma electrons, which was not 
considered in our paper. However, the limitation con- 
nected with the ambiguity of the function A(Q) is  not es- 
sential, since the ambiguity ar ises  at  A -ue*, whereas 

FIG. 2. Integral curves of the system of Eqs. (2.11) on the 
phase plane at  c3= ~ ( c v ; -  a )2 .  The singular point is a focus. 
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FIG. 3. Integral curves of the system of equations ( 2 . 11 )  on 
the phase p l a n e a t 4 ~ 3  = (cv:- 0)'. The singular point is  adegener- 
ate node. 

Eqs. (2.9) and (2.12)- (2.14) were obtained from the in- 
itial system (1.1 ), which i s  valid at l/r-IQAQl -IA - Vel 
>> V,,. For most real plasmas, the thermal velocity 
of the electrons greatly exceeds the directional velocit- 
ies of the plasma particles, v,<< V,,, so that the con- 
dition I - Ve\>> VTe is  the most stringent restriction on 
Eqs. (2.9) and (2.12)-(2.14). 

3. The solutions obtained in Sec. 2 of the present pa- 
per for the problem of the potential perturbations of an 
inhomogeneous plasma depend on the parameters Ci 
and vf. We obtain now estimates of these parameters 
a s  applied to a real physical object, the corona of a 
laser plasma. Using the results of Ref. 1, we write 
down equations for the determination of the parameters 
Ci and v? in the corona of a laser plasma in terms of 
the laser-radiation flux density qdW/cm2] on the target 
and the initial target radius Rt[cm] (A i s  the atomic 
weight and z is the ionization multiplicity): 

For values Rt=10-2 cm and q0=1014 W/cm2, we obtain 
from these equations the parameter values Ci = 2.7X loz8 
cm2/sec2 and ~ * ~ = 3 . 3 x  lo7 cm/sec. 

It follows from these estimates that under laser-plas- 
ma corona conditions the following inequalities hold 
when la,l<C,. 

FIG. 4. Integral curves of the system of equations ( 2 . 1 1 )  on 
the phase plane at  8c3= (cvT- a)'. The singular point is a 
node. 

c'!~>u:, 4c3>  ( C U : - ~ ) ~ .  (3.2) 

Taking into account the inequalities (3.2), we obtain 
from (2.12) explicit expressions for  the density, velo- 
city, and intensity of the electric field. In the limit 
t*(r)=r/A,<t <<Y min(1 u,* - cu/Cl-', V,,-'), these ex- 
pressions take the form 

C C(U, ' -u ; ) -a  Cui'-a t  b 
w L : ( r , t ) = - { i -  r  L c12 ( I - ? ( ~ + ~ ) )  

Cuia-a ) [ C: ( 
x [ ( l + l c -  

1 s ~ n  - t  I + - t  +b  
2Cr I 

u* (r ,  t )  = ( u; - ;) { I - 

2C " +- 
cu ; -a  (3.3) 

en r 

C(u;-u;) -a  Cu,'-a t b 
= p , ( I - ? ( ~ + ~ ) )  

C'" 
x s i n [ T t ( l + * t ) + b ]  2Cr < 1. 

Equations (3.3) describe the electron Langmuir osc illa- 
tions of the plasma: a t  each point r the electron density 
varies with a frequency close to the local Langmuir fre- 
quency wLe(r, 0). At any fixed instant of time To the 
profile of the electron density in the interval yo Y &To 
constitutes a se t  of N peaks, where 

Each of these peaks moves over an immobile ion pro- 
file towards decreasing density with constant velocity 

The distance between the neighboring peaks AT,,, +, in- 
creases  linearly with time: 

For small n << ~ l ~ / 2 a A ,  the distance between peaks is 
practically independent of the number n, namely Ar,,,,, 
= 27r~EtC-~/~. The quantity AY,,,,, can be interpreted a s  
the length I of the nonlinear Langmuir wave. 

Using these results, we estimate now the energy den- 
s ity of the plasma Langmuir oscillations excited in the 
laser-plasma corona by beams of fast electrons. These 
electrons a r e  constantly recorded in experiments (see, 
e.g., Ref. 2-4). Assuming equal electron and ion velo- 
cities in (3.3), ue*=vi*, and putting Xo=ub, we write 
down the maximum energy density of the Langmuir 
waves in the form [n,=ne(r, 0)] 

For  a laser  plasma with an electron temperature T, = 1 
keV the energy density of the plasma waves excited by 
a beam of electrons with energy & = I 0  keV and with den- 
sity nb/no= cr,/C=lO-' i s  of the order of E2/8m,n,Te 
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=0.5 X10-3 (u, i s  Boltzmann's constant). 

The wavelength I and the phase velocity up ,  of the 
Langmuir oscillations in the region of the critical den- 
sity a r e  determined by the relation 

and for the plasma of a target with R ,  = lo-' cm, heated 
by a flux q 0 = l e 4  w/cm2 of neodymium-laser radiation 
of frequency oo= 1.78X 10'' sec" they amount at the in- 
itial instant of time to 1=0.15 Fm and ~ ~ ~ = ~ ~ = 4 . 2 ' 1 0 ~  
cm/sec. Using (3.5), we estimate the time in whichthe 
phase velocity decreases to a value comparable with 
the thermal velocity of the plasma electrodes: AT 
= 2nnwi1, For the parameters given above, this esti- 
mate of V T e - v p h - h  sec  shows when Eqs. (3.3) cease to 
be valid a s  a result of the increased role of the kinetic 
effect and the need for taking into account in the region 
of small phase velocities v m S  VTe. 

 h he required proximity to the singular point (0, 1)  leads to 
inequalities that limit the values of the parameters a, C, 

and v t  a s  well a s  the range of variation of 7. In the case of 
the conditions imposed on the parameters C, v: and a, in the 
derivation of Eqs. (2.12)-(2.14) the range of variation of 7 
is restricted by the inequality 
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