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(1980)l for the calculation of higher orders of perturbation theory (PT) in quantum mechanics is generalized to 
include excited states whose wave functions have nodes. The calculation of the coefficients Ek of the PT series 
for a level energy is reduced to recurrence relations that are convenient for numerical calculation. By way of 
example, the Stark effect in the hydrogen atom is considered for levels with n = 1 and 2, as well as for states 
with n , = n ,  = 0. The asymptotic form of Ek as k-+m is obtained and is determined by the level width in 
weak fields. The use of the methods for summation of diverging PT series makes it possible to determine the 
Stark shift and level width in a strong electric field. The asymptotic value of the energy E(O)  in extremely 
strong fields is obtained for an exactly solvable model (Stark effect for a one-dimensional 6-potential). 
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Considerable progress was made in the last  few years 
in calculations of higher perturbation-theory (PT) or- 
ders  in quantum field theory (see, e.g., Refs. 1-3) and 
in quantum  mechanic^.^"^ In particular, a "logarith- 
mic PT" was for discrete-spectrum 
states. This theory uses a transition from the SchrG- 
dinger equation to the Riccati equation for the logarith- 
mic derivative of the wave function (this artifice was 
used in a somewhat different form earlier by Polika- 
nov14 to construct a PT). For perturbations of the type 

(in particular, for polynomial potentials), the calcula- 
tion of the coefficients of the KT series reduces in this 
case to recurrence relations,'-' which a re  convenient 

Here K = e =  m = l ,  E is the energy, P i s  the field inten- 
sity (in atomic units Pat =t1z2e5/Fi 4 =  5.142 lo9 V/cm), 
P") are  the separation constants, ill, n,, and nz are  the 
parabolic quantum numbers, and n =n, +n,+li?ll+l i s  the 
principal quantum number of the level. The KT series 
for the level energy is of the form 

We are  interested in the coefficients E ,  for high orders 
k and in the summation of the asymptotic series (1.2). 

fo r  computer calculations. Thus, the ground state was 
considered for an o s c i l l a t ~ r ~ ' ~  with anharmonicity grZN 

The calculation of the coefficients E ,  i s  considered in 

and for the Stark effect in the hydrogen atom.'-lo We Sec. 2 for the states (O,O, n - 1) and in Sec. 3 for all 

continue the study of these questions and generaIize the states with n=2. A system of recurrence relations was 

method of the earlier paperss-~ to include the case of obtained for the determination of E ,  [see Eq. (2.7) and 

excited states whose wave functions have nodes. Appendix A], and made it possible to reach k =I60 in 
the case of the ground state and k=100 for excited lev- 

The presence of a node in a wave function raises a 
definite difficulty in this method," since a node of $(x) 
corresponds to a pole of the function y ( x ) =  - $'/$ and 
generates a singularity in the Riccati equation. The 
main idea of the proposed approach will be described 
below with the Stark effect in a hydrogen atom as  the 
example. The application of this method to other prob- 
lems of quantum mechanics will be made clear subse- 
quently. 

1. It is known that the variables in the Schradinger 
equation with Hamiltonian 

separate if the parabolic coordinates 5=r+z  and q = r  
- z a re  used, 

and this leads to standard equations (see, e.g., Ref. 15, 
p. 322 of Russian original) 

., 
els. The calculation of such high KT orders makes it 
possible to study the approach of E ,  to the asymptotic 
value E,  a s  k - m, connected with the probability of 
ionizing an atomic level in electric field g (Sec. 4). 
We determine the power-law corrections to E,, i.e., 
the coefficients c j  in the expansion (4.4). It is shown 
in Sec. 5 how to use this information to calculate the 
widths and the Stark shifts of the levels in strong fields. 
The behavior of the energy E (P) in extremely strong 
fields P >> gat is considered in Sec. 6 with the one-di- 
mensional model a s  the example. 

The literature on the Stark effect in the hydrogen 
atom is immense. We have confined ourselves to a 
minimum number of  reference^,'^-^^ mainly to recent 
papers. A more complete bibliography can be found 
in Refs. 10 and 18. 

2. Logarithmic PT for states without nodes3'. The 
wave functions of the states with ~Z,=?Z ,=O and liizl=n- 1 
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have no nodes. In this case the Riccati-equation meth- 
od i s  simplest. At n,=n, the following symmetry rela- 
tions hold 

and it suffices therefore to consider only one of the 
equations in (1.1). The substitution 

transforms (1.1) into the Riccati equation 

Ekpanding E, P"), and x ( p , F )  in the formal PT series:  

We obtain in the lowest orders 

eo=l ,  $o.='/2, xo(p)=l, 

e,=O, $,= (n +I) / 4, x, (p) ='/,(p+ n+l) 

and at k a 2  

It follows therefore that x,(p) i s  a polynomial of degree 
k : 

Substituting (2.6) in (2.5), we arrive a t  the sought recur- 
rence relations (0 s j s k): 

The higher-order coefficients can be obtained in explic- 
it formlo: 

where C, are  the Catalan numbers known from combin- 
atorics. By the same token, a procedure i s  given for  a 
successive lowering of the index j, starting with j=k. 
If k i s  odd, by descending to j = O  we determine Pk=iai.  
In the case of even k we have ~:)=P,=o, and the last  
equation of (2.7) determines the correction to the Stark 
shift of the level: 

This completes the calculations in the k-th order of FT. 
We note the following. 

1) For states with n,=n, there is  no linear Stark effect. 
By virtue of (2.1), the PT series for the energy contains 
only even powers of the field . This agrees with the 
result c*+,=PZA=O obtained above from the recurrence 
relations. 

2) It can be shown that 
=21-2kA 1') 

I r 

where AY) are  positive integers for all j and k. This 
makes i t  possible to determine with a computer the co- 
efficients E, exactly, i.e., in the form of rational frac- 
tions. The hydrogen-atom hyperpolarizabilities obtain- 
ed in this manner for levels with n =1 and 2 for states 
of the type (0, 0, n - 1) a re  given in our preceding paper.' 

3) For  the ground state, we have previouslyS calculat- 
ed 160 PT orders: 

and, e.g., El,=-6.823 749.10'" and El,,=-2.n7 
978- loza9. The coefficients E, were calculated in exact 
form, and for k>  15, approximately (to 22 decimal 
places). The computer time 7 - k4  a-nd, e.g., amounted 
to 40 minutes for k =I00 (with the BESM-6 computer). 

4) Starting with (2.71, the f i rs t  few orders were cal- 
culated analytically (for arbitrary n): 

For comparison with results by others, we note that 
E, and E4  for the ground state of the hydrogen atom were 
known long ago, but the correct value of the next coeffi- 
cient E, was obtained (exactly, i.e., in the form of a 
rational fraction) only most recently The values of 
E, and E, given in Ref. 16 a re  in error .  Numerical val- 
ues of E, with kBlO were obtained earlier by Mendel- 
sohn,17 who used a rather cumbersome calculation 
method. For a state with arbitrary quantum numbers 
(n,, n,, m ) ,  a correct expression for E4  was first ob- 
tained by Alliluev and Malkin (see Ref. 18, where ear- 
l ier  references can be found), and seven FT orders a re  
given in a paper by Silverstone.'' It is very difficult to 
proceed to higher values of k, since the coefficients E 
 EL%"^^' become extremely cumbersome. 

It i s  clear from the foregoing that the method develop- 
ed here for the construction of the PT offers in certain 
cases  significant advantages over other methods. We 
proceed now to generalize it to the case of excited 
states. 

3. States with nodes. We consider the f i rs t  excited 
level (loo), for which the functionfl(5, $) has one 
node.4' We seek the solution of the perturbed problem 
in the form 

where account was taken of the possibility of a shift of 
the node with change in the field g. Substituting (3.1) 
in (1.1 ), we 'obtain a system of Riccati equations 
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Expanding all the quantities in powers of @?, we arrive 
at a system of recurrence relations similar to (2.7), 
albeit much more cumbersome (see Appendix A). The 
results of the calculations for the levels (010) and (100) 
were given The following relations hold 

and follow from the symmetry of the initial equations 
with respect to the substitutions 

We note that for all the Stark sublevels with n =2, the 
coefficients ~!"l"z") are  integers (at k 3 1). For the 
states (010) and (001) all the E, are negative, i.e., these 
level a re  shifted downward. At the same time, for the 
state (100) the PT series is of alternating sign: E,>O 
for  odd k and E,<O for even k. 

We can proceed in similar fashion when considering 
the Stark effect for an arbitrary level (n, , n,, m), as 
well as in other quantum-mechanical problems with 
polynomial Hamiltonians. It is necessary to separate 
explicitly the factors corresponding to the nodes of the 
wave function: 

We expand5) each of the nodes 5* in powers of the ex- 
ternal field g. Substitution of the corresponding expan- 
sions in (1.1) leads to a system of recurrence relations 
for the coefficients of the polynomials xk(5) and Pnl(5). 
Although the system becomes more complicated with in- 
creasing n,, this is not very important from the point 
of view of computer calculation. 

Another approach to the construction of a PT for 
states with nodes was proposed by Aharonov and Aul' 
and by Turbiner.12 The PT coefficients for the zeros of 
the wave function are  expressed in this case in the form 
of successive quadratures. Although this approach i s  
quite general, it entails more cumbersome numerical 
calculations. In those cases when the calculation of the 
higher PT orders can be reduced to recurrence rela- 
tions, our method makes it possible to proceed to much 
higher orders k. 

4. We consider now the asymptotic forms of the high- 
e r  order of the PT and its connection with the quasi- 
classical approach. 

As already noted, for states with n,=n, there are left 
in the expansion (1.2) only even powers of O, i.e., E 
= E(g2). In the absence of an external field we have for 
such states $1)=$2), and f1(5)=f,(5). It i s  convenient to 
start with the case of a pure imaginary field. g=ilPI. 
In this case Eqs. (1.1) are  satisfied if we put P ( ~ ) = P ( ~ ) * ,  
f,(t)=fi (5)* and E=E*; the natural variable i s  z=-  g2>0.  

The FC series in powers of z i s  of alternating sign and 
can be summed by the Bore1 method to an exact solu- 
tion.,O 

In the case of an arbitrarily weak external field (z < 0) 
the level becomes quasistationary and the energy E 
acquires an imaginary part. The asymptotics of the co- 
efficients Ek as  k-* are  determined by the behavior of 
the discontinuity of E on the cut z <0: 

where z = -02. AS %'-0 the potential has a broad bar- 
r ier  and the quasiclassical approximation can be used. 
We write down the width y for the level (a,, n,, m) in the 
form 

where yC'(g) corresponds to the quasiclassical ap- 
p roa~h ,~ '  and the function iP (O) yields the correction to 
it. In the case n,=n,= (n - Iml- 1)/2 we have 

From this we obtain the sought asymptotic forma): 

In the general case (n, # n,) the expansion (1.2) contains 
all the powers of the field 8. The dispersion relations 
a re  sought for the combinations ~ ( ~ " z ' " ) ( $ ) + ~ ( " l ~ ~ ' " ) ( g )  
and g-'[~("1"2'")($) - ~("2"l'"'(l)]; this yieldsz3 

A quasiclassical formula for Y(I) at arbitrary n,, n,, 
and m was obt: lned by S l a~yanov .~~  The widths of the 
levels (%,n,m) and (n,n,m) differ because the pre-expo- 
nential factor 

*("2"," / ~","*."-8~'"'-"" 

a s  $ '0. In the case n<n, the level width Y,,,,~ greatly 
exceeds Y ~ " , , ,  and it i s  seen from (4.6) that the ~ k 1 ~ z ~ )  
are negative. At n,=n, the coefficient E,,<O and E,,,, 
=O.  Finally, in the case n, >n, the term (- 1 )k y in 
(4.6) predominates and the PT series i s  of alternating 
sign. Substituting yC' in the dispersion integral (4.6) 
and calculating its value a s  k - a, we can obtain the 
asymptotic fip("1"2'") for an arbitrary level. The corre- 
sponding equations are  rather cumbersome and are giv- 
en in our earlier paper.10 In the case n,=n, they go over 
into (4.4). 

We consider now the manner in which the exact coeffi- 
cients of the PT series approach the asymptotic form 
(4.4). Figure 1 shows the ratio E , / Z ,  for all levels with 
n =1,2, as well a s  for the first five states of the type 
(0, _O, n - 1). It i s  seen that the power-law corrections 
to E, (i.e., the terms c,/k, c,/k2) a re  largeisand their 
role increases with increasing principal quantum num- 
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FIG. 1. Approach of the coefficients Ek of the P T  se r i e s  to 
the asymptotic value 2,. The numbers in the parentheses de- 
note the parabolic quantum numbers ( n l ,  n ~ ,  m ). The curve 
6 pertains to the case of the on-dimensional &potential (see  
Sec. 6). 

ber n. For states with nl=n2 the PT coefficients E, ap- 
proach monotonically the asymptotic value E,, whereas 
for  the levels (100) and (010) the curve has a sawtooth 
shape. This i s  due to the presence of a term with a fac- 
tor  (- 1)' in the dispersion integral (4.6). The amplitude 
of these oscillations i s  proportional to k-21n1 - "21, i.e., 
it decreases rapidly with increasing In, -%I and fades 
away a s  k - *. 

To calculate the coefficient cj  in the expansion (4.4) we 
used a numerical fit of the ratio E,/E, in the interval k 
=50-150. This enabled us to obtain the f i rs t  five coeffi- 
cients (see Table 3 of Ref. 9, and also Ref. 23). We 
note that ananlytic calculation of the power-law calcula- 
tions calls for the determination of the corrections to 
the quasiclassical approximation for the wave function 
and the level width Y ,  and this leads to very cumber- 
some calculations. It was possible to determine in this 
manner only two coefficients, c, and c,, for the anhar- 
monic g~! oscillator4 and for the Stark effect.25 

5. What i s  the physical information obtained by calcu- 
lating the higher PT orders  and the power-law correc- 
tions to E,? We shall show that this makes it possible 
to calculate with good accuracy the Stark shift of the 
level and i ts  width in the region of strong fields com- 
parable with % ,, . 

We note first that the power-law corrections (c,) a r e  
connected in simple fashion with the coefficients h, of 
the expansion (4.2): 

Here qn(x)  a r e  the polynomials of degree 2n introduced 
in Ref. 22: 

etc. Since the parameters a and p a r e  known, we can 
calculate h j  from the already known coefficient cj 
(Ref. 9). We note that the coefficients c, and h, increase 
rapidly together with j. Thus, for the ground level 

This indicates that the series (4.3) and (4.4) diverge 
in all  probability and a r e  only asymptotic. On going 

over to excited states, the coefficients c, and h, in- 
crease. 

To calculate the width y it is desirable to decrease the 
coefficients of the Taylor ser ies  (4.2); this i s  done with 
the aid of the transformation 

8 - w = A 8 ( 1 + B & ) - ' .  

It is natural to choose the parameters A and B such that 
the power-law ser ies  for @ ($) in t e rms  of the new vari- 
able w have the simplest form: 

(i.e., b,=l and b,=O). This yieldsA=?+, B=-b/h, ,  and 
next (k33) 

1 
A  

j, l 
( k - j )  ! ( j - I )  I 

Calculation by this formula shows that the coefficients 
b,, unlike h,, a re  indeed numerically small.' 

We summed the ser ies  (5.2) by using the Pad6 approxi- 
mants [N, O](w) (the notation is standard, see  Ref. 26). 
The results for  the levels with n =1 and 2 a r e  shown in 
Fig. 2. The curves a re  marked with the values of N; the 
points correspond to the results of Refs. 25 and 27 (nu- 
merical solution of the Schrodinger equation). The in- 
dicated summation procedure makes i t  possible to find 
the level width Y(@ for fields several times larger than 
the region of applicability of the ordinary PT. The ad- 
vantage of the change from the polynomials 

to the pad6 approximants [N, O](w) for the ser ise  (5.2) 
a r e  clearly seen from Fig. 3. The difference between 
~ ( g )  and the quasi-classical asymptotic form (4.3) is 
quite appreciable, i.e., the procedure for  summing the 
divergent ser ies  (4.2) does not reduce here to small 
corrections. 

Similar results a re  ~btained '"~ when summing the PT 
ser ies  for ReE(%), i.e., for the Stark shift of the level 
(a detailed exposition can be found in Ref. 10). 

FIG. 2. Width y(g)  of the ground level (000) (a) and of the 
(100) level (b). Points-result of numerical solution of the 
Schrijdinger the curves a r e  obtained with the aid 
of the Pade aproximants I N ,  01(w). The field O is  measured 
in atomic units. 
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FIG. 3. The function q[) from (4 .1)  in the case of the ground 
level of the hydrogen atom. In this case y '' = 4$-' exp 
( -2 /3g) ,  see Ref. 15. The points show the values of 
a= /y(g)/y "($), recalculated inaccord withthe results ofRef. 
25 and 2 7 .  The solid curves a re  the Pad6 approximants [A', 01 
( w )  for the series ( 5 . 2 ) ;  the dashed curves pN a r e  the sums of 
the N +  1 first terms of the expansion ( 4 . 2 ) .  

The general conclusion i s  that allowance for the 
asymptotic form of the coefficients of the PT as  k e * ,  
together with a sufficiently large number of exactly cal- 
culated coefficients E,, makes it possible to determine 
the level energy and the width far beyond the framework 
of applicability of ordinary PT. This conclusion i s  of 
interest for quantum field theoryS and is corroborated by 
other examples. We note that the situation with the 
Stark effect i s  quite unfavorable from the point of view 
of summing the PT series: this series i s  of constant 
sign for the ground state. In those cases when the PT 
series are of alternating sign, the use of the methods 
of summing diverging series is much more effective 
(see, e.g., Ref. 22). 

6. The one-dimensional model. A number of workers 
have recently considered the asymptotic form of E (g) in 
the limit as $-a. For the ground state of the hydrogen 
atom we have according to Ref. 28 

Ea (8) =2-'i~e-'"is (8 In 8) % 

where a,= 8/3. What remains unclear here, however, 
i s  the question whether this asymptotic form can be 
matched to the PT expansion in the weak-field region. 
We consider in this connection a model problem that 
admits of an exact solution, namely the Stark effect 
for a one-dimensional 15-~otential,~) 

H = p a /  2 -x8(z )  - 8 2 .  

In the dimensionless variables u=xx, E =  - n a ~ / 2 ,  and 
%'=nSF the problem takes the form 

s* d* d* -+ (2Fu-~)t)=O, - (0+)  - - (0 - )  =-2$(0). 
dua do du (6.2) 

Using the condition for matching at zero and a boundary 
condition of the "diverging wave" type as  x - * ,  we ar- 

FIG. 4. Trajectory of quasistationary level on the complex E 
plane a t  n = 1. The values of the field F are  marked on the 
curve. 

rive at the transcendental equation 

which determines the energy of the quasistationary lev- 
els as a function of the field F .  Here z = c h / 3 ~ .  

At F<<1 the level energy i s  expanded in a PT series: 

The coefficients E, can be obtained from (6,3), but it is 
more convenient to reduce the problem to recurrence 
relations (see Appendix D), the approach of c, to the 
asymptotic value 

i s  faster than in the three-dimensional problem (the 
ground level of the hydrogen atom), cf. the correspond- 
ing curves in Fig. 1. 

Let now I-*. As shown in Appendix B, the solution 
of E q .  (6.2) takes here the form (6.2), differing only in 
the value q=$. This indicates that the behavior of the 
energy F (I) in the limit $>> I, depends weakly on the 
concrete form of the bare potential V ,  that produces the 
bound state. 

Numerical solution of Eq. (6.3) yields the curve shown 
in Fig. 4. In weak fields the Stark shift i s  negative in 
accordance with the PT. At F - 1 the curve becomes 
gently sloping; ReE ( F )  begins next to increase, in qual- 
itative agreement with the asymptotic relation (6.1). 

APPENDIX A 

We present recurrence relations for the coefficients 
of the PT in the case of the excited level (100). 

Expanding all the quantities that enter in (3.2) in pow- 
e r s  of the field 
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and retaining in (3.2) terms of order Ik, we obtain 

dxh - E L  - 1 1 1 

dE 
3&Xk + -Ez C X 1 X h - , f  2bhE + - E2(Zde1-ek) - - Es6ri 

1-0 
8 8 

d 
7" 

1 
+ 2 d , .  [ z d t  ( f ~ ~ ) - % C x , X ~ - ~ + - % e ~ - 4 p ~ ]  -0, 

m-0 1-0 
4 (A. 2) 

From this we see (by induction with respect to k) that x, 
and y, are  polynomials of degree k: 

(A. 3 ) 

Substituting these expressions in (A.2), we obtain 2k+5 
eauations for up) ,  by', p,, d,, and Ek. In analogy with 
(2.9), the senior coefficients of the polynomials x, and 
y, are  expressed in terms of the Catalan numbers: 

This is followed by "successive lowering of the index j": 

1 ' - I  
bp- ( i+2)  a,::'- -z z b:') b J k - ' ) ,  1QjGk.  (A.6) 

1-1 p+q-i 

This enables us, after calculating the coefficients with 
j-1, to obtain the k-th order correction to the level en- 
ergy. 

8 - 3'"3 
A--- eh, 

. - - .  
Thus, E,  is expressed in terms of a?), a:), bik), and 
.the coefficients a y ) ,  ba'), dl, and cl of the preceding 
orders. After this we determine adk), bdb), and !he k-th 
order of PT for the node of the wave function (i.e., d,): 

In the foregoing equations we must assume that k a2. 
For the first two orders, the recurrence relations have 
a somewhat different form. The reason is that (3.2) 
contains terms -g, and this leads to terms of the type 
6,, in (A.2). Inasmuch as in the calculation of k-th PT 
order one used all the coefficients a:') with I k, we 
present their explicit forms for k = O  and 1: 

The algorithm for the calculation of any order of per- 
turbation theory i s  thus fully described. There i s  no 
need for additional calculations for the level (OlO), in 
view of (3.3). 

APPENDIX 6 

We present several formulas for the one-dimensional 
model considered in Sec. 6. Changing over from the 
wave function J, to the logarithmic derivative y= - d ln $/ 
du, we replace (6.2) by the Riccati equation 

Putting next 

we arrive at the recurrence relations 

which a r e  similar to (2.7) at n = 0; here AP) = C,. At 
even k, the descent from j = k  to j = O  with the aid of (B.3) 
yields A?) 

If on the other hand k i s  odd, t h e n ~ p )  =A?) and Ek =0. 
The PT coefficient up to k =I00 were calculated in this 
 manner.^) 

We shall show now how to obtain from the exact equa- 
tion (6.3) the limiting cases of weak and strong fields. 
The left-hand side of (6.3) has singularities only up to 
points z =0 and 03. With the aid of power-law expansions 
of the Bessel functions we can verify that no self-con- 
sistent solution i s  obtained as  2-0. The only remain- 
ing possibility i s  therefore 121-@. Using the asymptotic 
forms of K,(z) and I,@), we transform (6.3) into 

z-" (i+ie-") +O (2-"2) = (3F)'",  -n/Z<arg z<3n/2. (B.5) 

In the right-hand half-plane (Iargzl< n/2)e-2c is expon- 
entially small compared with unity. Iterating (B.5) we 
obtain 

i.e., as F'O the curve z = z w )  goes off to infinity, hug- 
ging the real axis. For &=(3~z )*  we obtain from this 
E o = l ,  and %; in principle, this  method can be used 
to obtain also the succeeding &,, but it is simpler to use 
Eq. (B.3) for this purpose. 

In the left-hand half-plane, on the contrary, 1 e-*l >>I. 
From (B.5) we obtain the solution 

which corresponds to the case of a strong field. From 
this follows Eq. (6.1) with q=$. 

The authors are  sincerely grateful to R. Ya. Damburg, 
V. V. Kolosov, and particularly L. P. Pitaevskii for 
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helpful discussions in the course of the work, as well 
as to E. N. ~ikolaevskii for help with the numerical 
calculations. 

Note: (12 October 1981). A recent articlez9 contains 
an expression for the fifth-order correction ~ ( ~ 1 ~ ~ ~ )  

[see Eq. (28) in Ref. 29, which was obtained by the 
method of hypervirial relations]. This equation, how- 
ever, i s  incorrect, since it does not lead to the cor- 
rect answerg E :loo) = 14214816 for the state (100). The 
correct expression i s  

where (I = n, - n, is the electric quantum number. We 
recall that the four preceding PT orders at arbitrary 
n,, n,, and m were given earlier.18 It i s  easy to verify 
that the foregoing expression agrees both with our cal- 
culation' for concrete levels, and with Silverstone's 
result .I9 

') Moscow Physicotechnical Institute. 
')We have in mind a moving node whose position depends on 

the parameters of the problem, namely the coupling con- 
stant g in the case  of an  anharmonic oscillator, the electric 
field g in the Stark effect, etc. The "kinematic" nodes #, lo- 
cated at fixed points, (e.g., a t  r= 0 because of the centri- 
fugal barrier)  ra ise  no difficult ie~' '~ (see, e.g., the separa- 
tion of the factor ZW/' in Eq. (2.2)l. 

')A brief exposition of the results of this section was publish- 
ed  earlier. '  

'1 Thus, in the absence of an  electric field we have f.' = (4 -2) 
e-'l4, fp ee-"/'. m e  number of nodes i s  an  adiabatic i n v a ~  
iant and does not change when the field $ i s  turned on (a t  
least  in the region of weak field and a t  distances ?-<<I/%'). 
At $ = 0 the polynomial Pnf (f  ) reduces to a Laguerre poly- 
nomial (Ref. 15, @ 37), whose coefficients a r e  simple in 
form. At the same time the zeros  of t j  = -$ ( 8 )  can be de- 
termined only numerically even a t  $= 0. It i s  therefore 
more convenient to expand in powers of %' not the nodes t j  
themselves, but the coefficients a, of the polynomial Pni (6). 

"To obtain this formula i t  suffices ot  substitute (4.3) in (4.6) 
and calculate the dispersion integral a s  k- *, o r  to use the 
equations already obtained in Ref. 22. 

'1 We note that a onedimensional 6-potential i s  similar in 
certain respects to the three-dimensional Coulomb problem. 
For  example, in both cases the potential energy is a homo- 
geneous function of the degree -1  and the virial theorem E 
= -i'= v/2 i s  satisfied. 

*) See Table I1 of Ref. 10. Just a s  for the ground state of the 
hydrogen atom, the coefficients of the P T  se r i e s  increase 
factorially. Thus, E z =  5/8; E d =  55/8, Es = -10625/32, and 
E ~ ~ ~ =  -1.194 136 .1oiB. Here E, = -E,  /2. 
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