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The magnitude of the residual polarization of p -  mesons stopping in hydrogen (protium or deuterium) is 
computed. The rate of Auger collisions between the excited mesic atoms and the target atoms is computed in 
the eikonal approximation; it turns out be significantly lower than the rate computed earlier in the Born 
approximation. The dependence of the Auger-collision rate on the target density leads to the result that the 
residual polarization of muons varies somewhat as the gas pressure is varied. The available experimental data 
on the depolarization of muons in hydrogen are discussed. 

8 1. INTRODUCTION 

The study of the depolarization of negative muons 
slowing down in hydrogen is of great interest. From 
the magnitude of the residual polarization of p- muons 
we can judge the relative contributions of the proces- 
s e s  determining the mechanism underlying cascade de- 
polarization, which in the case of hydrogen have im- 
portant characteristics in view of the significant role of 
the collisions of the mesic atoms with the atoms of the 
medium. The exchange collisions of mesic atoms in the 
ground state induce a transition within the hyperfine 
doublet of the K shell,' so  that the measurement of the 
magnitude of the muon polarization a s  a function of the 
time allows the determination of the rate of these ex- 
change transitions. This information is important for 
the interpretation of experiments on the study of the 
probability for y capture in hydrogen. The investiga- 
tion of p  capture by protons (nuclei) i s  of importance 
in connection with the verification of the structure of the 
weak hadron current; also important, besides the study 
of the probabilities for p  capture, i s  the measurement 
of the correlation characteristics of p  capture, among 
which the correlations with the muon spin, which de- 
pend on the magnitude of the residual polarization of the 
muon, a r e  important. 2*3 

The data on the rate of transition between the sub- 
levels of the K shell a r e  important in the study of the 
catalysis of nuclear reaction by p   meson^,^ which has 
lately aroused special interest in connection with the 
theoretically predicted5 and experimentally observed6v7 
resonance mechanism of formation of the molecules d d p  
and d t p .  In studying the kinetics of the processes of 
muonic catalysis, we should take into consideration the 
hyperfine structure of the levels of the mesic molecules 
produced,* the population of the states of the hyperfine 
structure of mesic molecules being essentially depen- 
dent on the rate of transitions within the hyperfine 
doublet of the K shell of the mesic atoms. 

The present paper is devoted to the consideration of 
the process of depolarization of muons in hydrogen 
(protium and deuterium). A similar problem was 
solved earlier9-l5 for arbitrary mesic atoms, but me- 
sic hydrogen atoms possess definite characteristics 
connected with their electrical neutrality. This is the 
cause of the different-from normal-relation between 

the various mechanisms underlying the de-excitation of 
mesic atoms, which in the present case can penetrate 
without hindrance into other atoms. At some stage of 
the transitions of mesic atoms, the most important role 
in the de-excitation is played by the external Auger ef- 
fect, i. e. , the knocking out of electrons from the target 
atoms. The rate of this process was computed earl-  
ier,'"18 but, a s  we shall see, to find the residual po- 
larization in gaseous hydrogen, we need to refine the 
existing calculations. Therefore, in 63 we compute the 
rate of Auger de-excitation of mesic atoms with the aid 
of the eikonal method, which possesses a broader re-  
gion of applicability than the usual Born approximation. 
In the final section (84) we discuss the results obtained 
and compare them withthe available experimental data. 

$2. DEPOLARIZATION OF NEGATIVE MUONS 

It is essential to the depolarization of negative muons 
that there occur in the de-excitation of the mesic atom 
a stage a t  which the important role is played by the 
spin-orbit interaction. A characteristic of the elec- 
trically neutral mesic hydrogen atom is the fact that it 
does not possess an electron shell, since, upon being 
captured into a high-lying level of the mesic atom with 
a principal quantum number n =  14, the muon replaces 
the only electron of the hydrogen atom. Therefore, 
only the processes that occur during the collisions of 
the mesic atom with the target atoms (molecules) can 
compete with the radiative cascade transitions occur- 
ing in the mesic atom during i ts  de-excitation. 

The decisive role in the de-excitation of the mesic 
atom immediately after the F-meson capture is played 
by the chemical reaction involving the dissociation of 
the target  molecule^'^: 

where by P and H we mean either of the hydrogen iso- 
topes. But for n 10, the most probable mechanism 
for the de-excitation of the mesic atoms is the target- 
molecule-ionization mechanism, i. e.  , the external 
Auger effect: 

At lower levels of the mesic atom, starting from 
some n=n, the dominant process (besides the above- 
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mentioned transitions within the hyperfine doublet of with F,=I i$ ( I  i s  the nuclear spin of the mesic atom) 
the K shell) i s  radiative de-excitation. leads to the following values for  the residual polariza- 

tion a t  these levels (in the absence of transitions be- 
In the case of the cascade transitions in the mesic tween the levels)": 

atoms, the p-meson depolarization occurs a t  those 
levels whose width l? is small  compared to the magni- X (21+3) ( I f  I) XI(21-1) a+ = 
tude of the fine level splitting A. For  any level of the 3(21+1)' ' 3(21+1)' ' 

(5) 

mesic atom the radiative width I?, = cyA (a is the fine- 
structure constant), i. e . ,  is always significantly 
smaller  than the magnitude of the fine level ~ p l i t t i n g . ~ . ' ~  
This means that, during the radiative transitions be- 
tween the levels, the muon spin manages over a period 
of time equal to the lifetime a t  the fine-structure level 
to turn many t imes around the direction of the total 
angular momentum j of the mesic atom a s  a result  of 
the spin-orbit interaction, i. e. , depolarization should 
occur. But the radiative width is not the decisive fac- 
tor determining the lifetime of the muon a t  high-lying 
levels of the mesic atom. For  light mesic atoms the 
internal Auger effect is the most effective mechanism 
for the de-excitation of mesic atoms right down to 
small  values of n, the conversion coefficient y = l?,/l?, 
(r, is the probability for the internal Auger effect) for 
n>3-4 being large ( > l / a ) .  Thus, the transitions r e -  
sulting from the internal Auger effect occur fairly 
rapidly in comparison with the precession of the muon 
spin, and the depolarization of the p mesons does not 
occur. 

For  mesic hydrogen atoms the external-Auger-ef- 
fect-related mechanism of de-excitation is not s o  well- 
defined: i ts  effectiveness depends on the target density. 
As  has been shown in a number of papers,l"18 the Auger 
collision mechanism i s  decisive down to no- 4-5 for 
liquid and gaseous targets under normal pressure.  
Nevertheless, in the case of gaseous targets a t  pres-  
sures  of up to several  tens of atmospheres the Auger- 
collision rate I?, turns out to be insufficiently high in 
comparison with the muon-spin precession rate start-  
ing from some n =  n,. Thus, muon depolarization oc- 
cu r s  also in Auger collisions of excited mesic atoms. 

The magnitude of the residual polarization of muons 
in the K shell was found earlier14 a s  a function of the 
value of the initial orbital angular momentum I of the 
depolarizing cascade (in the absence of hyperfine level 
splitting): 

Averaging this quantity over the possible values of I un- 
der  the assumption that the levels a r e  statistically pop- 
~ l a t e d , ~ ~ , ' ~  we obtain 

(this formula is inapplicable for n =  1, since i t  neglects 
the contribution of the states with 1=0; this contribu- 
tion is proportional to n-', and is therefore insignifi- 
cant when n 2 3). It can be seen that for  n 3 the quan- 
tity perceptibly depends on the choice of the value of 
n = n  1 ' 

Allowance for the hyperfine interaction in the K shell 
under conditions of statistical population of the levels 

We should also take into account the hyperfine splitting, 
which may affect the polarization, of the excited levels 
of the mesic atom.13-l6 The rat io of the hyperfine split- 
ting is a quantity -mu/Zmp (mu is the p-meson mass;  
m,, the nucleon mass; and Z, the nuclear charge), s o  
that for  hydrogen the hyperfine splitting i s  roughly an 
order of magnitude greater  than the radiative width of 
a level of the mesic atom. Since the rat io of the width 
of the Auger transitions to the fine ( o r  hyperfine) split- 
ting very critically depends on n (see Fig. I), but the 
extent of the depolarization changes insignificantly 
when n i s  changed by one, i t  can be assumed that, for 
n cn, ,  both the fine and hyperfine splittings a r e  great- 
e r  than the total level width, whereas the inverse r e -  
lation obtains for n >nl. This means that depolariza- 
tion does not occur when n>nl,  and that the fine and 
hyperfine interactions a r e  switched on simultaneously 
starting from n=nl .  

In Table I we present the residual muon polarization 
values X, obtained for the depolarizing cascade start-  
ing from n=n l  with the use of the data of Ref. 14 under 
the assumption that the levels with different 1 a r e  stat is-  
tically populated. 

Of the effects neglected by us,  that possibly play a 
definite role in the depolarization of the muon, we 
should mention the Stark effect occurring in the colli- 
sion of a mesic atom with an atom, i.  e .  , the effect 
of the electric field of the atom on the mesic atom that 
has penetrated into it. '' The estimate for the time of 
flight of a mesic atom through an atom, T -a,/v - 
sec  [a, i s  the Bohr radius of the atom and v - lo6 cm/sec 
is the speed that the mesic atom acquires a s  a result 

FIG. 1. Dependence on n of the magnitude of the fine splitting 
(curves 1 and 2), the radiative transition rate (curve 3),  and 
the Auger-transition rate (curve 4) for the mesic atom dp at 
a pressure of 10 atm. The curve 1 pertains to the p states, 
the curves 2 and 3 pertain to the circular ( I  = n - 1) orbits, and 
curve 4 is  the result of the averaging over the states with dif- 
ferent 1 .  
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TABLE I. Values of the residual polarization of the muons in 
mesic protium (A- = 0) and deuterium atoms as a function of 
the principal quantum number n, starting from which the de- 
polarizing cascade is  switched on. 

of the chemical dissociation of the molecules ( I ) ]  shows 
that this time is significantly shorter than the charac- 
teristic time of the precession of the muon spin in the 
excited states of the mesic atom (A" 2 sec). 
Therefore, i t  i s  unlikely that the Stark depolarization 
will be substantial, although, perhaps, the present 
estimate is  too crude for the final conclusion to be 
drawn. 

"1 
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$3. COMPUTATION OF THE RATE OF AUGER 
DE-EXCITATION OF MESIC ATOMS 

The rate of Auger de-excitation of mesic atoms in 
liquid hydrogen has been computed by Leon and Bethel6 
in the Born approximation. The use of this approxi- 
mation i s  justified in those cases in which the rate of 
the process i s  relatively low (the cross  section does 
not exceed the geometrical cross  section). But the 
condition of application of the Born approximation can 
be strongly violated a t  high degrees of excitation of the 
mesic atoms, when the transition energies a re  small. 
Leon and Bethe noted this themselves, but they were 
primarily interested in the slowest of the cascade tran- 
sitions (for the purpose of determining the lifetime of 
the r meson in a mesic atom), and a s  for the fast tran- 
sitions, they were content with a rough estimate. 
Meanwhile, for our purposes, knowledge of the proba- 
bilities for the highly excited transitions is what is 
most important, since i t  is  precisely these transitions 
that determine that value of n=n l  from which the muon 
depolarization starts .  Therefore, we shall determine 
these probabilities with the aid of the eikonal method,22 
which is often used in inelastic-collision calculations in 
atomic p h y s i ~ s , ~ ~ , ~ ~  or,  more exactly, i ts  simplest 
variant: the quasistatic approximation. " 

A+ 

In the quasistatic approximation the atoms a r e  as- 
sumed to be moving classical straight-line trajectories 
and the rate w(R) of the process under investigation a s  
a function of the relative interatomic distance R is de- 
termined with the aid of perturbation theory a s  if the 
atoms a t  a given moment were fixed. The cross  section 
for the process has the form 

Protlum 

0.159G 
0.1534 
0.1392 
0.1272 
0.2177 
0.1 103 
0,1044 
0.0996 
0.0956 

where v is the relative velocity of the atoms. The in- 
tegrand in (6) has the meaning of the total transition 

probability fo r  a given value of the impact parameter 
p. In the Born approximation, to which corresponds 
the expansion of the exponential function up to the first 
term, the analogous role i s  played by the quantity I(p); 
therefore, the condition for i ts  applicability is I(p) << 1. 
In our case the order-of -magnitude estimates yield Deuterium 

where e is the electron charge and a, is the radius of 
the excited mesic atom (we assume E= 1). For  the 
highly excited states of the mesic atom a, -a,; at  the 
same time, for v=106 cm/sec the value of e2/v=200. 
This means that in order of magnitude I(p)>> 1. There- 
fore, the Born approximation should give overesti- 
mated values, although specific calculations do not 
lead to a discrepancy a s  great a s  might be expected on 
the basis of the above-presented rough estimate. 

0.133i 
0.1251 
0 1116 
0.1006 
0.0920 
0.0854 
0.0802 
0 0758 
0.0723 

In order to judge the degree of accuracy of the quasi- 
static approximation used by us, we shall determine 
somewhat more accurately the connection between the 
formula (6) and the eikonal method. The expression 
(6) corresponds entirely with the eikonal approximation 
in the case in which the initial states of the atoms a r e  
not degenerate. As a rule, however, there exist an 
entire se t  of initial stages with the same energy; in our 
case these a r e  the states of the mesic atom with a given 
n and different I and m. The inelastic cross section in 
the eikonal approximation then has a somewhat different 
form (the subscript i numbers the degenerate initial 
states): 

0.0100 
00064 
0.0023 
0.0001 

-O.M)20 
-0.0037 
-0.0050 
-0.0060 
-0.0068 

The difference between (6) and (7) is that now the "eiko- 
nal phase" Sij(p) is a matrix; i t s  determination from the 
formula (9), where P exp denotes a I-ordered exponen- 
tial function, is equivalent to the solution of the system 
of differential equations 

with the initial condition Sjj(z = - 03) = bi ,  and the subse- 
quent passage to the limit a s  z - + -. The matrix 
U,,. , which plays the role of a non-Hermitian Hamil- 
tonian in Eq. (lo), i s  determined by the perturbation 
potential V according to the relation 

where the subscript f numbers the final states (which 
contains an electron in the continuous spectrum). The 
diagram elements of the matrix I?, a s  can be seen from 
( l l ) ,  coincide with the rates w for the transitions from 
the corresponding states in first-order perturbation 
theory. Therefore, if the matrix U is diagonal for 
al l  z, s o  that can drop the ordering symbol P in the 
formula (9), then the expressions (8) and (9) with al- 
lowance for the Hermitian character of the operator 
V go over into (6) and (7). Below we shall discuss the 
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question: In what sense can we consider U to be dia- 
gonal? (Strictly speaking, this matrix is never dia- 
gonal. ) 

Generally speaking, the application of the eikonal ap- 
proximation requires the fulfillment of two conditions: 
f i rs t ,  the wavelength of the colliding particles should 
be smal l  compared to the interaction range, and, 
secondly, the interaction potential V should be sma l l  
compared to the kinetic energy E,. The f i r s t  condition 
i s  characterized by the parameter  L= l/m,va,, which, 
for  the velocity v =  lo6 cm/sec, has a value of the or -  
d e r  of 1/10. As to the second condition, it is in our 
case  formally not fulfilled, but i t  can be significantly 
weakened. The point is that, a s  follows from (6), i t  
is not necessary to require a high degree of accuracy 
in the region where I(p) >> 1,  since here the integrand 
becomes equal to one, and the e r r o r  in the determina- 
tion of the small  exponential function does not play any 
role. Therefore, the condition V <<E, should be ful- 
filled only for I(p) 2 l. 

The perturbation operator V in our case i s  the mesic- 
atom-atom interaction potential: (12) 

ez e2 ez y=----- ea + eZ (r R) eZr,(R+r.) = -.'+ 
R I - , , I  IR+r.I lR+re-r,l R3 IR+r.13 ' 

where r, and re a r e  the coordinates of the muon and the 
electron a s  measured from "theirw nuclei and R is the 
distance between the nuclei. In the las t  expression we 
have used the approximation r, <<R, re,  which is jus- 
tified even fo r  fairly highly excited states of the mesic 
atom.16 According to ( l l ) ,  the transition ra te  i s  given 
by the expression 

km, -- - dQ,l T7,,(R) 1'. 
(25r)' 

where k i s  the momentum of the conversion electron, 
me i s  the electron mass ,  AE i s  the energy yield, equal 
to the difference between the mesoatomic-transition 
energy (En-En.) and the ionization potential 6, of the 
hydrogen atom (molecule). 

The matrix element Vfi(R) can be written in the form 

R+r 
M= Sd3r,$!'rpllr,, N (R) = j d3r,rqf' --A 

I R + ~ , I " ~ '  

where $i ,, and cp,, a r e  the wave functions of the muon 
and the electron in the initial (i) and final ( f )  s tates 
[the f i r s t  term on the right-hand side of (12) drops out 
upon being integrated over the electron coordinates]. 
The wave function cpf of the continuous spectrum is as-  
sumed to be normalized to  one particle in a unit volume. 
As  the wave function cpi of the electron in the initial 
state, we choose the wave function of the ground state 
of the hydrogen atom: 

A s  in (16), allowance for  the molecular s tate will 
amount to our taking for  6, the magnitude of the ioniza- 
tion potential of the hydrogen molecule (15.2 e ~ ) ,  and 

not that of the atom (13.6 eV). 

In accordance with the foregoing, large distances for 
which I (p )2  1 will be of greatest  interest  to us. There- 
fore, let u s  consider the l imit  R - m in the formulas 
(13)-(15): 

kme' IMlzR2-31MRI2 
wi (R) = - N" 

x 3R8 

Assuming that a, -ao, k -a,' a t  high degrees of exci- 
tations, we find that in order  of magnitude 

F o r  I(p) - 1, i. e .  , for  R - p  - ao(e2/v)1'5, we shall have 

It therefore follows that for  the eikonal approximation 
to be applicable, i t  is sufficient that the condition 
5(e2/v)2/5 << 1 be fulfilled besides the condition 6 << 1, 
whereas the requirement that V<<E, for  any R would 
imply that 6e2/v << 1,  which in our case  is clearly in- 
correct .  To be sure,  for  $ = 0 . 1  and e2/v=200 the 
parameter  6(e2/v)215= 1,  but since we a r e  not striving 
for  a high computational accuracy, we can assume that 
this will be sufficient for  our purposes. 

The mesoatomic matrix element M in (15) has the 
well-known formx6 

where the subscript a numbers the cyclic vector com- 
ponents ( a  =0, i 1);  R::: i s  the radial integral, the ex- 
plicit form of which i s  given in Ref. 29 (the numbers n, 
1, and m pertain to the initial s tate of the mesic atom; 
the numbers n,, I,, and m,, to the final state). Analy- 
sis of the expression (21) allows us  to follow the transi-  
tion from the eikonal approximation (8), (9) to the quasi- 
s tat ic  one (61, (7). 

Using the expressions (21) and (17), we can find with 
the aid of (14) and (11) the matrix rii, (by i is meant the 
se t  of quantum numbers n, I, m), and verify that i t  con- 
tains, besides the diagonal elements, elements cor re-  
sponding to transitions in which 1 changes by 2. The 
lat ter  elements a r i s e  a s  a result  of the fact that there 
remains in the product N,N,* after integration over k 
the tensorial te rm R,R,, which leads to the dependence 
of r on the direction of the vector R;  this dependence 
should disappear only after  the c ros s  section (8) has 
been averaged over the initial s tates.  We shall,  how- 
ever,  not introduce a la rge  e r r o r  if we ca r ry  out the 
averaging over the directions of R directly in the ex- 
pression for  I' by replacing R, R, by R2b,,/3. The ma- 
t r ix  r, on account of the orthogonality relations for  the 
Clebsh-Gordon coefficients, then becomes diagonal; 
exact  calculations carried out in Ref. 27 for  a particu- 
l a r  case  indeed confirm the smallness of i t s  off-diago- 
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nal  elements. Furthermore,  let us note that for  large 
R we can discard the Hermitian part  of V in the expres-  
sion (11) for  U, since V,,. i s  proportional to the integral 

which falls off exponentially with increasing R.  After 
this, the matrix U =  - i r / 2  also becomes diagonal, and 
the formulas (8) and (9) go over into (6) and (7). 

The Coulomb wave function cpf of the electron in the 
final state has the formz8 

The substitution of this expression into (15) gives 
r i s e  to an integral, the exact computation of which i s  
complicated and inexpedient, bearing in mind the de- 
gree of accuracy of our approximation. At the same 
time, it would not have been sufficient fo r  us  to have 
limited ourselves to the consideration of the limit 
R - m if we wanted our calculations to remain valid in 
the region of applicability of the Born approximation, 
since for large k smal l  distances a r e  important. 
Therefore, we shall consider separately the two cases  
ka, -1 and ka, >> 1,  each of which can be simplified. 

Fo r  ka, -1, a s  we shall see ,  large distances 
(R -aO(ez/v)' >> a,) a r e  important, s o  that we can use 
the formulas (17) and (18). 

After carrying out a partial-wave expansionz8 of the 
wave function (22), we can notice that only the term 
with L = 1 makes a contribution to the integral (18); 
therefore, (22) can be replaced by the following ex- 
pression 

i ' e x  ( )  ( 2  -&) ikr. exp ( i k r . )  F 2  + - ,4,2ikr. ( kao 

The integral (18) can then be computed explicitlyz8: 

Averaging the expression (17) for  w over the R direc-  
tions in accordance with the foregoing, we obtain 

2"ne2 m exp [ (-4/ka,) arc t g  ka,) ] 

' = ~ ( k )  ' ( f + k z a 2 )  ( I - e x p ( - k / k a o ) )  
O R '  . (26) 

If ka, >> 1,  then the distances R 5 a, a r e  important. 
In this case  we can approximately compute N after  re -  
placing the function cpf given by (22) by a plane wave, 
and assuming cp, to be a slowly varying function a t  dis-  
tances -l/k: 

Using ( l6) ,  (14), (13), and (71, we obtain 

2R 
w ( R )  =yl exp - - 2 % ~  K, 2p , ( a  P ( a & )  

Here K , ( x )  is a MacDonald function. 

It is not difficult to combine the expressions (25) and 
(28) in order  to obtain a function w(R) that allows us  to 
find the c ros s  section with a high accuracy from the 
formula (6) for  any k. We need only to f i r s t  modify 
these expressions slightly, smoothing out the meaning- 
l e s s  singularities [ R - ~  in (25) and k-' in (29)l. One of 
the simplest ways of doing i t  is the following: 

The true behavior of w(R) for  R - 0 and k - 0 i s  not 
important here. Indeed, after  the substitution into (7) 
and (6) only those p for  which one of the t e rms  in (30) 
is smal l  compared to the other will turn out to be im- 
portant. For  ka, - 1, the f i r s t  te rm is the'dominant 
te rm,  and only i t s  asymptotic form in the region 
R >>a, i s  important; if, on the other hand, ka, >> 1, 
then the second te rm,  which decreases  with increasing 
k much more  slowly than the f i r s t ,  is the dominant 
te rm.  By varying the parameter  b -a, in the formula 
(30), we can graphically verify that the magnitude of the 
c r o s s  section changes little in the process. In the 
computations we se t  b = 1. 5a0 fo r  the reason that for 
such a choice the expansion of the exponential function 
in (6) up to the f i r s t  te rm yields roughly the s ame  r e -  
sul t  a s  the exact computation in the Born approxima- 
tion. l6 This agreement of course becomes strongly 
violated a s  the parameter  b is varied, but the eikonal 
expression (6) is insensitive to this  variation. 

Let  us  say a few words about the dependence of the 
c r o s s  section computed by u s  on the velocity v of the 
mesic  atom. In the Born approximation the de-excita- 
tion c ros s  section is inversely proportional to v, and 
the transition frequency re does not depend on v. In 
our case,  a s  the formulas (6) and (25) show, for  v-0  
(if we remain within the framework of the eikonal ap- 
proximation), the c ros s  section increases more  slowly 
than l /v ,  specifically, in proportion to v-215, while re 
decreases  with decreasing v like v3I5. Therefore, the 
lowering of the velocity of the mesic atom in compar- 
ison with the value lo6 cm/sec adopted by us will de- 
c r ease  the probability for  external Auger de-excitation 
and increase the deviation of our results  from those 
obtained in the Born approximation. 

$4. DISCUSSION OF THE RESULTS 

The external Auger de-excitation ra tes  for  mesic 
atoms,  computed in the eikonal approximation, and 
refer red  to the density No = 4.2 5 X lozz cmm3 of liquid hy - 
drogen, 

a r e  compared in Table 11 with the values obtained in 
Refs. 16 and 17 in the Born approximation (the results  
given a r e  for  mesic deuterium atoms; in the case  of 
mes ic  protium atoms the re values a r e  roughly 10-15% 
higher). As  can be seen, the values for  the principal 
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TABLE 11. Values, referred to the liquid-hydrogen density, 
of the rate r, (10l0 sec-') of Auger collisions of mesic deuter- 
ium atoms during n -n' transitions when the mesic-atom 
velocity v = lo6  cm/sec. The row a) corresponds to transi- 
tions from the states with the largest possible 1 (circular 
orbits); the row b), to the result of the averaging over the 
states with different I .  

quantum number values n =  6, i. e . ,  in the region that is 
important  fo r  the choice of the value of n,, differ  (by a 
fac tor  of m o r e  than two). The values given in the rows 
b) were obtained by averaging the corresponding quan- 
tities f o r  different I (0 s I s n - 1)  with weights equal t o  
the s tat is t ical  weights. ' I  In Fig. 1 these values, as 
recalculated f o r  gaseous deuter ium a t  a p r e s s u r e  of 10 
a tm (the curve  4), are compared with the magnitudes 
of the fine splittings of the levels  of the m e s i c  atom 
(the curves  1 and 2), as well as with the radiat ive 
widths, which become dominant at s m a l l  n. In com- 
paring the level width and the fine level  splitting, we 
can assume that the splitting is approximately given by 
the curve 2, which corresponds to  l a rge  I, s ince the 
contribution of the s m a l l  1 values is stat is t ical ly  sup- 
pressed.  The curve  1 is presented f o r  the purpose of 
illustration; it shows that the value of n, f o r  the cas -  
cades  with s m a l l  I values is higher than the value f o r  
typical cascades with l a rge  I values. 

n 

nn 1 :  

A s  the gas  p r e s s u r e  is varied,  the curve 4 moves 
vertically since, according to (31), re is proportional 
to  the density, whereas  the curves  1, 2, and 3 d o  not 
depend on p r e s s u r e  at all. Therefore,  the value of n,, 
which is roughly determined by the point of in te r sec-  
tion of the curves  2 and 4, d e c r e a s e s  with increasing 
pressure ,  while the magnitude of the residual  polariza- 
tion, as can be seen  f rom Table I, inc reases  in the pro-  
cess .  Figure 2 shows the resul t ing p r e s s u r e  depen- 
dence of the residual  polarization (no part icular  impor-  
tance should be attached to the l ineari ty  of the graphs: 
the calculations are not so exact  as to w a r r a n t  a discus-  
sion of the detailed form of the dependence). The data  
pertain to  polarization in the state with F=Z+$;  f o r  
deuterium in the s t a t e  with F =$ the polarization tu rns  

FIG. 2. Dependence of the residual polarization of p mesons 
on the gas pressure in the case of total initial polarization and 
in the absence of transitions between the sublevels of the K 
shell. The curve 1 is for the protium; the curve 2, for deuter- 
ium. 

a) 
Ref. 16 b) I % / 2: I :$ I P / :D 111 GO 

Present a) 
p a p  b) 1 :% 1 i::: 1 'g 1 EE 1 'E! 1 :E I G9 

: 

out to  be too s m a l l  fo r  it to be  reliably est imated.  

The resu l t s  of measurements  of the residual  polariza- 
tion of negative muons in gaseous hydrogen a t  a p r e s -  
s u r e  of 40 a t m  are reported in Ref. 30. The  s m a l l  
magnitude of the experimentally detected res idua l  muon 
polarization leads the authors  of that paper  to the con- 
clusion that the rate of transition within the hyperfine 
doublet of the K shel l  of the mes ic  atom is high, o r  that 
there  are additional mechanisms f o r  muon depolariza- 
tion at the excited levels .  

O u r  analysis  of the cascade mechanism f o r  muon de-  
polarization does not predict  f o r  the muons that reach  
the K shel l  of the m e s i c  atom a polarization significant- 
ly  s m a l l e r  than the est imated values, used in Ref. 30 
(the difference is -20%). Experiments  on the measure-  
ment  of negative-muon polarization in gaseous hydrogen 
at low p r e s s u r e s  should, however, be  performed in 
o r d e r  to obtain rel iable  information about the various 
mechanisms underlying the depolarization of muons. 

The authors  find it the i r  pleasant  duty t o  express  
t h e i r  profund gratitude to  L. I. Ponomarev,  who drew 
the i r  attention to the considered problem, f o r  fruitful 
discussions. We are grateful to  L. N. Lipatov f o r  in- 
t e r e s t  in the work and f o r  a discussion on the questions 
touched upon here ,  as well as to V. E. Markushin for 
making h i s  paper17 available to  u s  before its publica- 
tion. 

----- : I I l - +  

')We shall not touch upon here the questions of kinematic muon 
depolarization, which are discussed in Refs. 19-21. 

2'~ollowing the results of Refs. 16 and 17, we take into account 
the reestablishment of the statistical population of the levels 
as a result of the Stark mixing of the states with different 1. 

 here are quite a large number of variants of the eikonal 
method, differing both in their degrees of accuracy and in 
their regions of applicability. Some variants applicable in 
atomic physics are  listed in Ref. 25. The quasistatic approx- 
imation is discussed in Refs. 24, 26, and 27 in connection 
with the investigation of the ionization de-excitation of ordin- 
ary atoms (i.e., of the Penning process). 
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