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Equations describing capillary deformation of solids are used to consider the quasistatic problem of 
emergence of an edge dislocation parallel to the surface from the bulk onto the surface of a crystal. It is shown 
that the surface tension forces allow us to describe the resultant step as a dipole force center with a moment. 
The elastic interaction of point defects and dislocations with a planar lattice defect (such as a stacking fault) is 
also considered. It is shown that, because of the surface tension forces, the interaction of point defects and 
dislocations with a stacking fault in the plane of this fault does not generally have a fixed sign. The energy of 
the interaction with a point defect decreases in inverse proportion to the fourth power of the distance to the 
stacking fault plane, whereas the energy of the interaction with a dislocation parallel to this plane is inversely 
proportional to the first power of the distance. 

PACS numbers: 61.70.Yq, 61.70.Ph, 61.70.Ga 

A complete sys tem of dynamic equations describing The thermodynamic relationship (1) and the expan- 
deformation of solids subject to allowance for  surface sion (2) allow us to find o! a s  a function of its indepen- 
(capillary) phenomena is derived in Ref. 1, and severa l  dent variables up, and A,: 
examples of application of such a sys tem a r e  given. 

' 1 
In the present paper we shall determine more  accurate- ~(u , , , ,A~)=-~ ,? '  

2 
ly the nature of changes in the boundary conditions of 1 1 
bulk dimensional equations of equilibrium on the su r -  + -(h,la+ 3 c ~ ~ - ' u ~ , ~ u ~ ~ ~ )  uwu16 4- - 2 ~ ~ h - ' ~ ~ ~ ~ - 2 c ~ , ' a ~ , u , , ~ , ,  (3) 

face of a solid resulting from capillary effects, and 
also the explicit dependence of the surface f r ee  energy 
on the strain.  Further examples will b e  given of the 
application of the resultant equations to problems of 
formation of a s t ep  on the sur face  of a crystal  a s  a 
resul t  of quasistatic emergence of an  edge dislocation 
f rom the bulk and of the elast ic  interaction of point de- 

- - 

where c;,'is a tensor which is the reciprocal of the ten- 
s o r  c,,. Equation (3) represents  in fact an  expansion of 
the  surface energy of a two-dimensional defect in t e rms  
of independent invariants (scalars)  composed of quadra- 
tic combinations of variables describing the state of the 
surface:  u,, and A, .  

fects  and dislocations with the surface of a stacking The f i r s t  te rm in the expansion (3) appears because 
fault. on the surface of a crystal  (or a t  an  interface between 

two crystals)  in equilibrium there a r e  definite residual 
DISCUSSION OF THE SURFACE ENERGY AND tangential s t r e s s e s  gp2 =g( ,O?(~ )  independent of bulk 
BOUNDARY CONDITIONS strains2 (T is the absolute temperature). In the expan- 

It is shown in Ref. 1 that the density of the surface 
f r ee  energy cu of a n  arb i t ra ry  two-dimensional defect 
(including a f r ee  surface of a crystal)  separating media 
1 and 2 obeys, a t  a given temperature,  the following 
thermodynamic identity: 

Here, u,, is  the s t ra in  tensor; o,, is the bulk s t r e s s  
tensor; o,, =aiknk; Hi =n, is the unit vector along the 
normal to the interface directed from medium 1 to 
medium 2. The indices p and v label the coordinate 
axes in a plane tangential to the defect surface. In Eq. 
(1) the quantity g,, is the symmetric tensor of surface 
elastic s t r e s se s  and A, =u,(Z)- ui(') is  an  abrupt change 
in the displacement vector u, on the surface of a defect. 

We shall describe g,, and A, by the following linear 
expans ions1: 

where gE, a ,,,, c,,, h p u  yd a r e  independent param- 
e ters  representing the elast ic  properties of the su r -  
face of a two-dimensional defect. 

sion of the surface energy the surface s t ra in  tensor 
gE? obtained in the linear theory of elasticity corres-  
ponds to the invariant 

( 0 )  1 au,& au. aul au1 ) g U , V = - ~  - + - -  
2 ( a ~ "  ax. ax, ax" 

In t e rms  quadratic in respect  of the s t ra in  it is  usual to 
a s s  ukne that  

The boundary conditions a t  an  interface can be found 
by varying with respect  to the displacement vector u, 
the total bulk and surface f r ee  energy F. Application of 
the identity (I), of the definition of the vector A , ,  and of 
the generally valid (in accordance with the above dis- 
cussion) relationship for  a surface 

yields the following boundary conditions : 

Here,  v is  the density of the excess surface mass  and 
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In the adopted approximation, we have 

gu.=g,,ti,,+g:? au,/ar .  (5) 

We shall now consider the boundary conditions on a 
plane free surface (ignoring the capillary phenomena so 
that u,, =O). If a crystal surface is perpendicular to a 
sixfold symmetry axis (isotropic model), then the 
following relationships apply: 

(0)- g,. -g8,.; ca=c,6,,,8,6rp+c21rcnr; 

&pv=ani8,; h,y,r=hiS~S~+ha (6~8~s+8,a87.). 
(6) 

If the z axis is directed along the outer normal to the 
undeformed surface z =0,  then the static boundary con- 
ditions (4) subject to Eqs. (2), (5), and (16) assume the 
following form for a free surface: 

The components of the tensor gt,, a r e  subject to un- 
certainty typical of surface quantities: this uncertainty 
is due to the doubts about the correct selection of the 
position of the interface between two media. We shall 
assume that the initial free surface is displaced in the 
direction of the normal n by a small (of the order of the 
interatomic) distance 6. We can show1 that gf: is  trans- 
formed in the following way to (gt,) for the new surface: 

In the adopted principal (in respect of the surface 
parameters) approximation we can calculate ui, in Eq. 
(8) on the assumption that a,, =O. 

Since the tensor gf'2 is  the zeroth term of the expan- 
sion of the tensor gt, in terms of strains, it cannot 
change a s  a result of the assumed displacement of the 
interface and, therefore, i t  is independent of the selec- 
tion of the interface. In other words, the temsor $2 
is a unique characteristic of the surface tension forces. 
For a planar problem (u, = a / a y  = 0), we obtain 

Using Hooke's law subject to u,, =u,, =0,  we find that 

where u is the Poisson ratio and E is the Young modu- 
lus. We can see that a suitable selection of the posi- 
tion of the interface (i.e., of 6) can ensure that the 
coefficient in front of u, in the expansion for g,*, can 
vanish. We a r e  then left with 

au. 
(g=*)-g;  <gzx.)=g-.  ax 

Consequently, it is clear from Eqs. (7) and (9) that in a 
static planar problem in the theory of elasticity we can 
define a homogeneous boundary surface in such a way 
that i t  is free of tangential forces of capillary origin. 

EMERGENCE OF AN EDGE DISLOCATION TO 
THE SURFACE 

One of the main extended surface defects is  a growth 
step frequently discussed in connection with the problem 
of crystallization. Recrystallization waves predicted in 
Ref. 3 and detected in Ref. 4 on the surface of a quantum 

FIG. 1. 

crystal have drawn special attention to growth steps 
a s  objects whose motion may be responsible for the mo- 
tion of a crystallization-melting front. The special 
feature of the motion of discrete steps influences the 
dynamic properties of a vibrating surface and it makes 
a contribution to the dispersion law of recrystallization 
~ a v e s . ~  

However, a step on a crystal face may form not only 
in the process of crystallization but also because of 
emergence of an edge dislocation parallel to the surface 
(positions 1 and 2 in Fig. 1 illustrate the cases when a 
dislocation is in the bulk and on the surface). On the 
other hand, an edge dislocation can, in principle, be crea- 
ted in the bulk of a crystal by applying a load that sup- 
presses a surface step. Therefore, there should be 
a definite correspondence between the properties of an 
edge dislocation and a surface step, both being sources 
of elastic s t resses  in a crystal. I t  is shown in Refs. 1 
and 2 that, because of the surface tension forces, steps 
should create elastic s t resses  in the bulk. We shall 
demonstrate below that these s t resses  a r e  governed by 
the properties of an edge dislocation that could create 
such a step by emerging on the surface.= 

We shall seek the solution of the bulk equilibrium 
equations in the form 

where u: and o:, represent the solutions obtained without 
allowance for the capillary phenomena, i.e., the solu- 
tions obtained subject to the boundary condition 07, =O. 
The fields u: and a:, can be found by the method of suc- 
cessive approximations without exceeding the adopted 
degree of accuracy. In the case of a planar problem 
corresponding to u, = a / a y  = O  the boundary conditions 
(7) for o:, subject to Eq. (9) assume the following form 
on a free surface (z  =0): 

a2u,o 
ozzi=g - , ami=0. 

a 2  (10) 

We shall rewrite the right-hand side of the first  
condition (10) in terms of a:,. We note that in accor- 
dance with Hooke's law 

and therefore 
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because for a planar problem we have 

We shall now use the equilibrium equation 

do,, do., 
-+-=O ax az 

and the fact that on a f r ee  surface we have a: = 0 s o  that 

Consequently, on a f ree  surface z = 0, we have 

We shall consider an edge dislocation parallel to a 
f r ee  surface z = 0 located on the line x = 0, z = -1 (Fig. 1) 
and characterized by a Burgers  vector b(O,O, b) perpen- 
dicular to the surface. If a n  explicit expression for  
a; is substituted in Eq. (11) (see,  fo r  example, Sec. 
3-5 in Ref. 6), the f i r s t  condition in Eq. (10) becomes 

We shall be interested in fields a t  distances r from a 
dislocation much grea ter  than 1 ( r  >> 1). This is equiva- 
lent to going to the limit I- 0 in Eq. (12). In this limit 
the boundary condition (12) becomes 

where 6(x) is the Dirac 6 function. The field uy, disap- 
pears in the limit I = 0  and, therefore, the bulk elast ic  
fields created by a newly formed s tep  a r e  subject to the 
following boundary conditions : 

The density of the force normal to the surface P,=u,, 
under the conditions described by Eq. (13) is equal ex- 
actly to the density obtained earlier1-' for  a s tep  of 
height b. This force characterizes a s tep  a s  a center  
of a dipole force with a moment. The problem of com- 
pensation of the moment of this force is  eliminated by 
assuming that the emergence of a dislocation on the x 
= z  = 0  line is accompanied by the simultaneous emer -  
gence of a dislocation of the opposite sign on a su r -  
face a t  infinity x = m, z = 0. Such a dislocation creating 
on that surface a.center  of a dipole force with a moment 
of opposite sign is  associated with a second edge of an  
extraatomic layer car r ied  to a given crystal  face by an  
edge dislocation. 

We shall study geometric changes in the surface in 
the limit 1-0. When a dislocation emerges f rom a crys-  
tal, it gives r i s e  to plastic deformation concentrated 
on its surface7: 

whe're O(x) i s  the Heaviside unit function. 

The part  of the crystal  surface above the glide plane 
of the dislocation (x> 0) experiences a residual plastic 
displacement by an amount equal to the Burgers vector: 

2=0, x<o. 

The residual displacement a l te rs  the shape of h e  sur -  
face creating a characterist ic  s tep  of height b. 

We shall  now consider the emergence of a dislocation 
whose Burgers  vector is parallel to the surface. We 
shall assume that this dislocation i s  located a s  before 
and that its Burgers  vector is  b(b,O, 0). The elast ic  
s t r e s s  field a:, in the half-space z <  0 can be described 
by a superposition of three fields: the field of a dislo- 
cation located on the line x = ,  z =-I in an  infinite crys-  
tal,  the field of an image dislocation on the x=O, z = 1 
line, and an  additional field b,, ensuring that the 
boundary conditions up,, = 0 a r e  satisfied on the 2 = O  
surface. 

The s t r e s s  function $(x, z) describing the planar field 
e,, can be described by the following expression: 

where p is the shear  modulus. A. logarithmic divergence 
of $ a t  high values of z does not give r i s e  to any physi- 
cal  inconsistencies, because rea l  fields Cy a r e  governed 
by the second derivatives with respect  to $, particularly 

If we now substitute in Eq. ( l l ) ,  we find that  the 
f i r s t  condition of Eq. (10) becomes 

We shall  consider the properties of the function P(x, 1) 
in the limit 1- 0, i.e., we shall  find P(x, 0). We note 
that 

P=O for 1=0, x Z O ,  

( ~ ( x ,  i)dx=~ for 1'0. 
-- 

Therefore, we should assume that P(x, 0) =O. There- 
fore ,  both fields up, and u:, vanish in the limit 1 =O. 
Hence, i t  follows that a f te r  emergence of a given dis- 
location on the surface there  a r e  no residual elastic 
s t r e s se s  in a crystal. 

This result  is  quite self-evident from the physical 
point of view. We shall  consider plastic deformation 
which appears in a crystal  a s  a result  of emergence 
of such a dislocation on the surface. This plastic de- 
formation can be assumed to be concentrated in the x = 0 
plane perpendicular to the f r ee  plane: 

a~,*' 
-= b6 (x) [ 1-9 (z+l) 1. 

ax 

After the emergence of a dislocation on the surface 
(1 = 0) half a crystal  experiences a homogeneous residual 
displacement along the x axis  by the vector b. There is 
no change in the physical s ta te  of the crystal  and there 
a r e  no residual elastic s t resses .  

In view of the linearity of the theory, these results  
can be generalized to the case when a s t ep  is formed by 
emergence of an  edge dislocation with a Burgers vector 
b making an  arb i t ra ry  angle with the normal n to the su r -  
face. The elast ic  fields in the bulk of a crystal  a r e  sub- 
ject to the following boundary conditions: 

d 
o,,=gbn- ax 6 (x), u..=o. 
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Here  the x axis is drawn on the surface a t  right-angles 
to the dislocation line in such a way that  b. n> 0 and 
b,> 0 a r e  satisfied simultaneously. Consequently, the 
resultant s t ep  with b. n> 0 can be called positive, where- 
as that with b. n< 0 may be called negative. 

I t  is worth noting that an  edge dislocation regarded a s  
a lattice defect in the bulk does not ca r ry  to the s u r -  
face a zero-moment dipole force, introduced phenomen- 
ologically in Refs. 1 and 2. This may be associated with 
a change in the dislocation core  a s  a resul t  of its trans-  
formation from a lattice into a surface defect,' and a 
calculation of such a force requires an  appropriate 
microscopic analysis. 

ELASTIC INTERACTION OF POINT DEFECTS AND 
DISLOCATIONS WITH THE SURFACE OF A STACKING 
FAULT 

I t  is known that two-dimensional lattice defects exist  
in the bulk of rea l  single crystals  : these may be, fo r  
example, stacking faults with split partial dislocations 
a s  b~unda r i e s .~ . '  They include intrinsic stacking faults, 
extr insic stacking faults, and associated thin twin 
layers. These defects can be generated by shear  (this 
is true,  for  example, of close-packed (111) planes in 
f cc  crystals)  o r  by the conditions during growth of a 
rea l  crystal. A general distinguishing feature of al l  
the stacking faults is that a modification of the regular 
crystal  s t ruc ture  is concentrated in a volume extending 
to several  atomic layers near the plane of the defect 
and outside this region the atomic planes retain the i r  
regular sequence which is the s ame  on both sides of 
the fault. 

An excess surface energy is associated with the plane 
of a stacking fault. Moreover, since these faults r e -  
tain a dense packing, it follows that they a r e  generally 
characterized by a low surface energy compared with 
f r ee  surfaces o r  interfaces where the bonds with the 
nearest  neighbors a r e  deformed o r  broken (for ex- 
ample, in the case  of grain boundaries of f r ee  su r -  
faces). Planes with a low energy of a stacking fault 
usually coincide with glide planes of a crystal. 

The special feature of the elast ic  interaction of point 
defects and dislocations with a stacking fault is that the 
density and elast ic  moduli on both sides of the fault 
plane a r e  exactly the same. Therefore, this interac- 
tion vanishes in the absence of surface phenomena (when 
the edge defects can be neglected). A s imi lar  situa- 
tion occurs also when sound is reflected f rom a stack- 
ing fault.' The energy of a stacking fault in an  external 
elast ic  field can be found by expanding i ts  surface 
energy (3) in te rms of the components of the s t ra in  
tensor of this field calculated in the absence of a 
stacking fault. The energy of the elast ic  interaction of 
a stacking fault with sources  of an  external field (point 
defects and dislocations) determines the direction of 
slow diffusion of the lat ter  in the process of establish- 
ment of their equilibrium distribution near  the stacking 
fault plane. 

Since the surface energy contributes only a smal l  cor-  
rection to the bulk part  of the total deformation energy 

of a crystal ,  the sign of Eq. (3) corresponding to a rb i -  
t r a ry  values of A, and up ,  is generally indeterminate 
[we can only say that  fo r  a l l  values of uin there should be 
positive definite quadratic forms ci,uinukn and (c,, 
+ h p v y l ~ i l ~ k m a ; ~ v  lo This means that the re- 
quired total (bulk and surface) energy of a stacking fault 
in an  external elast ic  field (see Ref. 1) 

can have ei ther  sign. The integral in Eq. (14) is taken 
over the undeformed surface of a stacking fault. The 
l inear te rm 

represents  only a smal l  contribution of the edges of the 
fault to this integral, because i t  represents  the surface 
divergence. Hence, we may conclude that  the elast ic  
interaction of point defects and dislocations with a stack- 
ing fault generally does not have a definite sign: depend- 
ing on the orientation of the fault plane relative to the 
crystallographic axis ,  we can expect attraction o r  r e -  
pulsion f rom the object under investigation. 

We can use Eq. (14) only if we know the surface 
energy density a s  a function of the coordinates on the 
surface of a stacking fault. Therefore,  we shall t rans-  
form Eq. (3) using the second relationship in Eq. (2). 
This gives 

where o,, =X,,,,,p,,, h ,,,, a r e  the elast ic  moduli. 

In the isotropic case,  Eq. (15) becomes 

Substituting Eq. (15) o r  (16) into Eq. (14), we find 
the required energy of the elast ic  interaction of a 
stacking fault with a source  of the field u,. 

Since our  aim is to demonstrate a certain phenomenon, 
we shall confine ourselves to an  isotropic solid. In the 
isotropic model a point defect (interstice o r  vacancy) is  
a dilatation center which crea tes  an  elast ic  displace- 
ment field of the following type1' (it is assumed that the 
defect is located a t  the coordinate origin): 

Here,  $2, is the increase in the volume of a crystal  
caused by the presence of a point defect. 

Let  us assume that the stacking fault plane is  z = 1. 
Using Eqs. (16) and (17), we can show that the energy of 
U = U(1) representing the interaction of a stacking fault 
with a dilatation center is 

I - -  
U (1) = I a ( x ,  y, 1) dzdg=A/L4, -- -- (18) 

331 Po l + o  2a2 
A  = - (--)' [ h.+4pa - - + h Z + 2 g + 4 p z ( c i + c ~ ) ]  . 

16 12n 1-0 cz 
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I t  is clear  from Eq. (18) that the interaction parameter  
A i s  independent of the sign no (it is the s a m e  for an 
interstice o r  a vacancy), because the interaction itself 
is essentially of polaron origin. I t  i s  c lear  that  the 
interaction law U(1) 1/14 of Eq. (18) applies also to an  
arbitrary point defect in an anisotropic medium des-  
cribed by a bulk density of forceslO: 

where K i s  the bulk modulus and i s  a symmetric 
tensor representing the strength of a point defect (for 
a dilatation center we have SZ,, =9,6,,). In this case 
the required interaction energy should be calculated by 
utilizing in Eq. (15) not Eq. (17) but the following ex- 
pressionlo: 

where G,, (r )  is  the s ta t ic  Green tensor of an ideal 
(defect-free) unbounded anisotropic crystal. 

Let us assume that a distribution of point defects 
forms a dilute solution in a crystal. Then, the 
equilibrium concentration c of point defects near the 
plane of a stacking fault is related to the concentra- 
tion c, f a r  from the fault: 

Near the planes of those stacking faults for which A< U 
(attraction case), we find f rom Eq. (19) that there i s  a 
region where the distribution of point defects is denser 
and the width of this region i s  d =2 ( (  A I  /T)''~. However, 
if A>O (repulsion) then near the plane of such a stack- 
ing fault there is  a region where the density of point 
defects is less (its width is of the o rde r  of d). In t e rms  
of the Gibbs adsorption isotherm this means that if 
A< 0 then (aa/ap2),< 0 (p, is the chemical potential of 
an impurity atom) and impurities a r e  adsorbed on a 
stacking fault, whereas for  Ar 0 we have (8 cy/a p2),>0 
and desorption occurs. 

This effect simulates the Suzuki effect" of the interac- 
tion between split dislocations with impurities and 
atoms in a solid solution by their  adsorption on a stack- 
ing fault. The parameter  d is the effective width of a 
spl i t  dislocation in the process of adsorption of impur- 
ity atoms when the lat ter  form a dilute solution. 

We shall now consider an  edge dislocation parallel 
to the defect plane z = I .  We shall  assume that the dis- 
location is located on the x = z  = O  line and has the Bur- 
gers  vector b(O,O, b )  perpendicular to the stacking fault 
plane. Using the familiar expressions for  the elastic 
field of an edge dislocation, we can show that the r e -  
quired interaction energy per unit length of the disloca- 
tion is  

Clearly, the interaction law U(1) 11'1 given by Eq. (20) 
is retained for  an arb i t ra ry  rect i l inear dislocation (both 
edge and screw)  parallel to the stacking fault plane. The 
parameter  B fo r  a n  anisotropic medium depends on the 
orientation of the dislocation line in the stacking fault 
plane. 

The results  obtained can be applied to the motion of 
a dislocation near the stacking fault plane provided we 
bear  in mind that the interaction of point defects with a 
dislocation decreases  with distance much more slowly 
than the interaction with the stacking fault plane (the 
corresponding laws a r e  l/r and l/14). Therefore, for- 
mation of an atmosphere of Cottrell and Snoek point 
defects near a dislocation line and of a Suzuki atmo- 
sphere near the stacking fault plane a r e  two independent 
processes. We can thus investigate independently the 
influence of these atmospheres on the drag  experienced 
by a dislocation near the stacking fault plane. 

The author is grateful to A. F. Andreev, A. M. Kose- 
vich, and I. M. Lifshitz for  valuable discussions. 
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