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A contactless method was used to study the excitation and propagation of transverse and longitudinal sound
along the principal crystallographic directions in tin. A study was made of the monotonic dependences of the
velocity of sound on the applied magnetic field (Alpher-Rubin effect). Measurements were made of the
amplitudes of quantum oscillations of the velocity of sound associated with certain extremal sections of the
Fermi surface. The ratios of the amplitudes of the quantum oscillations of the velocities of transverse and
longitudinal sound along the principal crystallographic directions were used to determine the deformation
anisotropy of the Fermi surface in the third and sixth energy bands of tin.

PACS numbers: 72.55. + s, 71.25.Hc, 43.35.Rw

INTRODUCTION

The dispersion of the velocity of sound in metals is,
like the absorption of sound, due to the interaction of
the lattice with the conduction electrons. A magnetic
field H alters greatly the nature of this interaction.
Depending on the ratio of the parameters of the sound
wave (w is the frequency and x is the wavelength of
sound) and the main parameters of the electron sub-
system (v=7"! is the collision frequency, w, is the
cyclotron frequency, I is the mean free path, 6 is the
skin layer thickness, R is the Larmor radius, etc.)
in metals subjected to magnetic fields, one can have a
great variety of magnetoacoustic phenomena. They in-
clude the Alpher-Rubin effect, Bbmmel-Pippard mag-
netoacoustic oscillations, acoustic cyclotron resonance,
giant quantum oscillations of the absorption of sound,
etc. When the conditions 7w,> kT and w 7> 1 are sat-
isfied, the absorption of sound exhibits oscillations
which are a direct analog of the de Haas—van Alphen
effect (in contrast to the giant quantum oscillations,
which should be regarded rather as effects of the res-
onance absorption of phonons by the conduction elec-
trons at the Fermi level).

The magnetoacoustic effects which appear in the ab-
sorption of sound alter also the velocity of sound be-
cause of the Kramers—Kronig dispersion relations. An
investigation of the dispersion of the velocities of
transverse and longitudinal sound in a metal subjected
to a magnetic field can give information on the Fermi
surface geometry, cyclotron masses of carriers, and
asymptotic behavior of the magnetoresistance along
various crystallographic directions.

The propagation of a sound wave in a metal may be
regarded as a mechanical motion of charged particles
in a conducting medium. The application of a magnetic
field distorts the paths of these particles and this gives
rise to a transverse current analogous to the Hall cur-
rent. Interaction of this current with a magnetic field
gives rise to additional forces which combine with the
usual elastic forces in a metal. According to the mag-
netohydrodynamic theory of Alpher and Rubin,! changes
in the velocities of longitudinal S; and transverse S,
sound in a magnetic field are described by the expres-
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where 6 is the angle between the direction of propaga-
tion of sound and the magnetic field; p is the density of
the metal. In the first approximation, the magnitude
of this effect is governed by the ratio of the magnetic
field energy B%/8r to the elastic energy pS?’. Measure-
ments of Galkin and Korolyuk carried out on polycrys-
talline tin® and of Alers and Fleury on single crystals
of silver, gold, etc.® are in good agreement with cal-
culations based on the Alpher—-Rubin theory.

When the magnetic field is increased, quantum oscil-
lations appear against the background of the monotonic
Alpher-Rubin dependence. These oscillations of the
velocity of sound are related in a simple manner to
oscillations of the elastic moduli of a metal:

€05 =pS?—pS,2=2pS, A8, ASOYS,<1. (3)

The elastic moduli are the second derivatives of the
free energy F with respect to the strain g :

C=0F|de?. (4)

The components of the strain tensor in an acoustic wave
are

Eiyz(eiq;‘-"_eiqi) /2, (5)

where the components of the unit vectors 4= q/q and
é =e/e describe the directions of propagation and of
the polarization of sound.

Following the thermodynamic approach of Testardi
and Condon,* we find that the free energy of a metal
can be written in the form

F=F'+!1,6Coe+Q(B, ¢)+B*/8x, (6)

where F’ is independent of the strain and C is the ten-
sor of the elastic moduli which includes all the non-
oscillatory effects that are not described by the term
(B, ¢€). Litshitz and Kosevich® showed that the free
energy of an electron gas Q(B, €) is an oscillatory func-
tion of the type
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where ®(B, ¢) is a slowly varying function and A(¢) is an
extremal section of the Fermi surface dependent on the
strain.

The magnetization M is found from § using the re-
lationship M =-3Q/0B|e. The derivatives of the func-
tion (7) with respect to the strain and magnetic induc-
tion are related by the following expression applicable
to the static case:

a |
T ®

where the parameter
Dy=0d1n A (e)/de;

determines the corresponding component of the defor-
mation potential tensor of the metal:

=£=(i€) (ﬂ)= h*DyA

de, \dA ) \dey | ™ 2am™ (9)
We have allowed here for the fact that the effective
mass of an electron is m *= (% 2/21)(dA/dE).

Ay

In general, when an acoustic wave travels in a metal,
the variables B and ¢,; cannot be regarded as indepen-
dent. The total derivative with respect to the strain
can be written in the form

d 9B o

dGi; 06.'; B 06;,' ﬁ ,ij'

(10)

In the case of longitudinal sound traveling across the
magnetic field and of transverse sound traveling along
the magnetic field we find from Egs. (4) and (6)-(10)
that the amplitudes of the quantum oscillations of the

elastic moduli are given by

Cy c=—Bz(Di;'+6a)zﬁy q.-LB, (11)

osc 2 6M
C; =-B (Dli_ﬁii)zﬁf qlB. (12)

We can thus see that the amplitudes of the quantum
oscillations of the velocity of acoustic waves traveling
along a given crystallographic direction are governed
by the corresponding components of the deformation
potential tensor of the metal. The difference between
the deformation interactions of electrons with longitu-
dinal and transverse acoustic waves is due to the fact
that in the former case it is governed by the diagonal
components, whereas in the latter case it is governed
by the nondiagonal components of the tensor A,;;. The
signs of the corresponding components of the deforma-
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FIG. 1. Fermi surface of tin in the third hole (a) and sixth
electron (b) bands.
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tion potential tensor cannot be found by measuring the
amplitudes of the quantum oscillations of the velocity of
sound. The absolute values of A;; can be found by
simultaneous measurements of the differential mag-
netic susceptibility. If the values of dM /9B are not
available, the ratio of the amplitudes of the quantum
oscillations of the various elastic moduli of a metal
can be used to determine the relationships between the
various values of D, i.e., to find the deformation
anisotropy of the Fermi surface.

We investigated the influence of a magnetic field on
the velocities of transverse and longitudinal sound in
tin single crystals. The multiply connected Fermi sur-
face of tin has small regions very sensitive to the lat-
tice deformation and this gives rise to large amplitudes
of oscillations of the elastic moduli. We investigated
mainly the quantum oscillations due to extremal cross
sections in the third hole and sixth electron bands of
tin. These cross sections (based on the Craven model
of the Fermi surface of tin®) are shown in Fig. 1. The
deformation characteristics of the Fermi surface in
these bands have been investigated earlier using the
magnetostriction oscillations” and hydrostatic com-
pression.®? Thé change in the extremal sections of
the Fermi surface due to hydrostatic pressure is

dlnA=DqS¢jd0' (13)

where S,,=Cjj are the elastic (compliance) constants.
Under hydrostatic pressure the diagonal components of
the stress tensor are equal to the pressure o,;=-P and
the nondiagonal components vanish. Table I gives the
logarithmic derivatives with respect to pressure of the
extremal sections of the Fermi surface of tin in the
third and sixth bands.

It should be noted that the values of 9 InA /3P obtained
in the hydrostatic compression experiments are cal-
culated on the assumption that the compressibility of a
metal is isotropic. However, the compressibility of
tin is strongly anisotropic and, therefore, the defor-
mation parameters given below should be regarded as
approximate.

White tin has the tetragonal bcc crystal structure.
Propagation of pure longitudinal and transverse acous-
tic waves in a lattice of this type is possible only along
the principal crystallographic directions: [100], [110],
and [001]. Figure 2 shows the propagation and polari-
zation vectors of acoustic waves along these direc-
tions and the corresponding components of the tensor
of the elastic moduli. The values of the elastic moduli
at T=4.2°K are given, for example, in Ref. 10.

TABLE I. Logarithmic derivatives with respect to pressure
9(In A)/9P for some extremal sections of Fermi surface of tin.

d1ln A/0P
Extremal
H .
Lsection m 8] [0
[001] 8y’ -4.5 +4.8 -2.94
{ 8¢ -20 +0.6 -0.25
[100] ' S - 255
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FIG. 2. Principal crystallographic directions of the propaga-
tion of sound and the corresponding components of the tensor
of the elastic moduli.

MEASUREMENT METHOD

Single crystals of tin used in our investigation were
grown from the melt in a demountable quartz polished
mold by the method of Khaikin ef al.!' The quality of
the material used in the preparation of the samples was
characterized by the resistivity ratio p(300°K)/p(4.2°K)
=8-10%. The samples were disks 1.8 cm in diameter
and either 0.100 or 0.135 cm thick. Measurements
were carried out on samples for which the normal to
the surface coincided with one of the principal crys-
tallographic directions: [100], [110], and [001]. The
samples were placed in protective Plexiglas boxes with
annular paper spacers. Two measuring coils parallel
to one another were wound on a box. Measurements
were made at T=4.2°K in magnetic fields up to 85 kOe.

A contactless method was used for the excitation and
detection of transverse and longitudinal sound. This
method is based on the fact that an electromagnetic
wave incident on a metal-vacuum interface generally
excites acoustic vibrations of the same frequency in a
metal.!? In the presence of a static magnetic field the
main excitation mechanism is the Lorentz interaction
of a current induced in the skin layer with the magnetic
induction in the sample. Longitudinal acoustic waves
are excited in a field H parallel to the surface of the
metal and in this case we have q; LH. When a mag-
netic field is perpendicular to the surface of a metal,
transverse sound with q; ' H is excited. The polariza-
tion of the transverse sound is governed by the orien-
tation of the rf magnetic field relative to the crystallo-
graphic axes.

The amplitude of the sound excited by a contactless
method is proportional to the intensities of the static
and rf magnetic fields, and it is inversely proportional
to the density of the metal, velocity of sound, and its
frequency. The efficiency of conversion of an electro-
magnetic wave into sound is very low: for example,
in the case of longitudinal sound in tin of f=1 MHz
frequency it amounts to n=1.4-10""? H? at T=4.2°K.

The excitation of sound in a plane-parallel plate of
thickness d is more efficient than on the surface of a
semi-infinite metal. Thisis duetothe fact that at fre-
quencies f, satisfying the condition

@n S 1
f“=_2;.=7(n+—2—), n=0,1,... (14)

standing acoustic waves are established across the
plate thickness. The @ factor of the plate acting as an
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acoustic resonator should be sufficiently high for the
detection of standing acoustic waves. This imposes
an additional condition on the plate thickness:

yd<1, (15)
where y is the attenuation coefficient of sound.

These conditions are easily satisfied in the rf range
in metals at low temperatures. Standing acoustic
waves across the plate thickness are accompanied by
resonance singularities in the frequency dependences
of the surface impedance of the plate.

The dispersion of the velocity of sound was deter-
mined by us from changes in the frequencies of acous-
tic resonances in a plate caused by the application of a
magnetic field. Monotonic dependences of the velocity
of sound on the magnetic field were recorded using
apparatus which was a variant of the rf Bloch bridge.'3
The physical principle of the bridge method of mea-
suring the resonance singularities of the surface im-
pedance is the great change in the skin layer thickness
due to the excitation of standing acoustic waves in a
plate. The appearance of a resonance correction to
the self-induction signal between the coils is due to the
fact that the magnetic flux passing through a metal
sample at a frequency f, includes a term proportional
to the magnetic induction in the sample multiplied by
the acoustic wave amplitude.

When measurements were made by the bridge meth-
od, one of the coils surrounding a sample was sub-
jected to a signal from a commercial rf oscillator;

a record was obtained while the frequency of this res-
onator was varied continuously. In general, an acous-
tic resonance signal appearing in the detector coil

on passage through f, included the absorption and dis-
persion components. These signals were separated by
the method of hf phase detection and the apparatus
made it possible to record simultaneously signals due
to the real and imaginary parts of the surface impe-
dance of the plate.!* The acoustic wave velocity of

ImZ, rel. units
gl

0 1 1l ! |
920 960 1000

"l
f, kHz

FIG. 3. Record of Im Z for an acoustic resonance of trans-
verse sound in a sample with n|[100]. H= 70 kOe, T=4.2°K,
qll [100], ef[010].
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suitable polarization was deduced from the maximum
of the signal Re AZ or from the central frequency of
the dispersion signal Im AZ. Measurements were
made at the frequencies of the main acoustic reso-
nances (n=0) and for all the investigated samples
these resonance frequencies were in the range 0.5-2
MHz. An example of a record of an acoustic resonance
of the transverse sound in a sample whose normal co-
incided with the [100] crystallographic axis is shown

in Fig. 3.

Measurements of the amplitudes of quantum oscilla-
tions of the velocities of transverse and longitudinal
sound were made with the aid of an “acoustic” oscilla-
tor, which was a device performing contactless ex-
citation of sound in metals in a magnetic field. In this
device the excitation and detection of acoustic vibra-
tions in a plate were again achieved with the aid of
two parallel coils surrounding the sample. The pres-
ence of resonance singularities in the transfer charac-
teristic of such a system in a magnetic field made the
system a self-excited oscillator operating at the reso-
nance frequencies. It consisted of an amplifying stage
coupled by a positive acoustic feedback to the sample
and a variable attenuator controlled by a detector of a
system for automatic regulation of the gain. One of the
coils was used to excite acoustic waves in a plate and
it was connected to the amplifier output. The other
coil was connected to the input and it acted as a detec-
tor of an acoustic resonance. In the absence of a
magnetic field the coefficient of the coupling between
the coils was selected to be below the self-excitation
threshold of the system. When the magnetic field was
increased the coupling between the coils due to the
mutual conversion of electromagnetic and acoustic en-
ergies in a metal increased and this resulted in oscil-
lations at the frequency of standing acoustic waves
across the thickness of the plate. The oscillation fre-
quency was governed by the velocity of sound in the
metal and the amplitude carried information on the
attenuation of the acoustic waves. The system for

WWMWM'_ M‘w e 1 Mgy
W MWWW“W '

50 55 50 55 70 75 80
H kOe

FIG. 4. Examples of records of the quantum oscillations of
the velocity and attenuation of transverse sound in tin obtained
by #° - acoustic oscillator method,
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automatic regulation of the gain in the self-excited
oscillator was used to select correctly the signal pro-
portional to the attenuation of sound and to prevent dis-
tortions of the useful signal on increase in the magnetic
field. The operating principle of the device was de-
scribed in detail in Ref. 15. Figure 4 shows simultan-
eous records of the quantum oscillations of the velocity
and attenuation of the transverse sound in tin obtained
by the acoustic oscillator method.

EXPERIMENTAL RESULTS AND DISCUSSION
1. Monotonic dependences

We obtained information on the influence of magnetic
fields on the velocities of propagation of transverse
and longitudinal sound along all the principal crystallo-
graphic directions in tin. The dispersion of the velo-
city of longitudinal sound was studied in a magnetic
field perpendicular to the direction of propagation q,
1H; the dispersion of transverse sound was investi-
gated in a field parallel to the direction of propagation
q; 'H. The main measurements were carried out in
the field range 20-80 kOe. As shown in Fig. 3, when a
standing acoustic wave was established in a plate,
many additional resonance peaks were observed and
these were excited by an rf magnetic field. The main
reason for the fine structure of the acoustic resonances
was the finite size of the plate in its plane. The prob-
lem of excitation of acoustic resonances in circular
isotropic plates was solved in Ref. 16, but the problem
of excitation of vibration resonances across the thick-
ness of anisotropic disks was not solved. Consequently,
a quantitative analysis of the experimentally recorded
spectra of acoustic resonances was not carried out.
When the magnetic field was increased, the resonance
groups of each polarization of the excited sound were
shifted toward higher frequencies. Measurements were
made for one (strongest) resonance. The resonance
frequency was determined to within Af=5°107%,.

The experimentally determined dependences of the
velocities of transverse and longitudinal sound on the
square of the magnetic field are plotted in Fig. 5 for
the crystallographic directions [001] and [110] direc-
tions. The same figure includes (dashed lines) the de-
pendences calculated using the theory of Alpher and
Rubin in the limit 6/ < 1. The values of the disper-
sion coefficient of the velocities of sound in a magnetic
field ’

_ S(H)=S, _ AS

P ek e el
S.H* SoH?

were determined in each case from an analysis of the
experimental dependences made by the least-squares
method.

Table II gives the experimental values of the disper-
sion coefficients of the velocities of transverse and
longitudinal sound along the principal crystallographic
directions in tin, as well as the estimates obtained
from the magnetohydrodynamic Alpher~Rubin theory.

Along all the principal crystallographic directions the
dispersion coefficients of longitudinal sound were 15—
209 greater than the theoretical values. The experi-
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FIG. 5. a) Dispersion of the velocity of transverse q|[001],
e[1[100] (1) and longitudinal q 1[001], e[[001] (2) sound in a
magnetic field. b) Dispersion of the velocity of transverse
qll{110], ell[110] (1) and longitudinal q|[[110], e(I{110] (2) sound
in a magnetic field. Here, 1’ and 2’ are the theoretical de-
pendences,

mental dispersion coefficients of transverse sound
were usually less than the theoretical estimates. In
the case of propagation of transverse sound with q
[I{100], e lI[110] the dependence of the velocity on the
magnetic field was anomalously weak and in this case
the experimental and theoretical values of the disper-
sion coefficient differed by almost an order of magni-
tude. Rayne and Chandrasekhar!? observed an anoma-
lously strong temperature dependence of the velocity of
sound for the same direction and polarization of trans-
verse sound. These large discrepancies in the case of
the temperature and field dependences of the velocity of
sound cannot be explained by the magnetohydrodynamic
theory of Alpher and Rubin. A quantitative description
of these dependences requires a microscopic theory
allowing for the special features of the energy spec-
trum and elastic properties of the investigated mater-
ial. The influence of a magnetic field on the velocity of
transverse sound at right-angles to the field in crys-
tals of different symmetries was considered theoreti-
cally by Kontorovich.!?

However, the q, Il H case investigated by us was not
considered. Kontorovich showedalsothatintheabsence
of a magnetic field in that range of frequencies where
the skin layer thickness 6§ is comparable with the
acoustic wavelength x there is a characteristic reso-
nance which increases greatly the dispersion of the
velocity of sound. This increase is due to an enhance-
ment of the contribution of transverse electric fields
which appear in the course of propagation of transverse
sound in a metal.
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TABLE II. Experimental and theoretical values of dispersion
coefficients of velocity of transverse and longitudinal sound
in tin subjected to magnetic fields.

5
. . fﬁ’efl_"m;m/‘“ Kexps 107 Oe* | Ktheor, 107 Oe~?

[100] 3.360 5.87£0,62 486

[100] [001] * 1924 17.6+1.2 148
[040] 1.969 12.7£0.9 142
[110] 2684 482073 4.03

[110] [001] * 1.927 9.97x0,74 147
[110] 1.324 5.27+0.38 313

[00] [001] 3764 442067 386
[100] 1.922 10.3+0.6 148

* The dispersion coefficients were deduced from the slopes
of the experimental dependences in fields up to 40 kOe.

In our study of the propagation of transverse sound
along a magnetic field the conditions were such that the
skin layer thickness in the plate was of the same order
of magnitude as the acoustic wavelength. In this 6 ~x
case the amplitude of an acoustic resonance in the plate
reached its maximum and it decreased monotonically
on further increase of the magnetic field.!® This maxi-
mum of the field dependence of the acoustic resonance
amplitude showed that the currents flowing on the oppo-
site sides of the plate began to compensate each other
effectively. The skin layer thickness then became
comparable with the half-thickness of the plate. The
effect was observed for two polarizations of trans-
verse sound identified by an asterisk in Table II. The
experimentally determined dependences S(H) then de-
viated from the Alpher-Rubin dispersion law. Figure
6 shows the experimental dependences of the velocity
of transverse sound for q 1l [100] and e Il [001] and also
for q 11[110] and e 1 [001] on the square of the magnetic
field.

The magnetohydrodynamic theory gives for these two
cases identical values of the dispersion coefficient in
the limit x/x < 1; the theoretical dependence is shown
dashed in Fig. 6. Deviations from the quadratic depen-
dence in the course of propagation of transverse sound
along the field and saturation in strong field are of
nonresonance nature and can be explained qualitatively
by a strong increase in the thickness of the metal skin
layer and by a corresponding increase in the correc-
tion term in the denominator of Eq. (2).

2. Quantum oscillations of the velocities of
transverse and longitudinal sound

At the excitation frequencies of standing acoustic
waves in a plate there was a strong enhancement of the
amplitude of quantum oscillations of the surface im-
pedance. The main role in this enhancement was play-
ed by oscillations of the velocity of sound.'® Both mea-
surement methods used in the present study (rf bridge
and acoustic oscillator) made it possible to separate
the contributions of the velocity and attenuation oscilla-
tions to the enhancement and to measure separately
these quantities. A study of quantum oscillations of the
velocities of transverse and longitudinal sound was
made mainly using the acoustic oscillator method.

Oscillations of the velocity of acoustic waves were
observed for extremal sections of all the bands of tin,
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FIG. 6. Dispersion of the velocity of transverse sound in two
cases q[I[100], e||[001] (2) and qi [110], e[[001] (3) in a mag-
netic field. Here, line 1 represents a calculation based on the
Alpher—Rubin theory,

but the fullest quantitative data were obtained for the
extremal sections 6{ and 2 in the third hole band and
for 7; in the sixth electron band of tin. We plotted in
Fig. 7 on the same scale the experimental records of
the quantum oscillations of the velocity of longitudinal
and of two polarizations of transverse sound in a sam-
ple whose normal coincided with the [100] axis. The
difference between the amplitudes of the observed os-
cillations demonstrated different nature of the inter-
actions of transverse and longitudinal sound with the
conduction electrons. In the case of the shear strain
which did not produce a local change in the crystal lat-
tice volume the amplitude of the velocity oscillations of
transverse sound was an order of magnitude less than
the amplitude of the velocity oscillations of longitudinal
sound.

Oscillations of the velocity of longitudinal sound were
observed for all the investigated crystallographic
directions. Measurements were made in a magnetic
field parallel to the crystallographlc axes [100] and
[001]. In a field H I[110] our method failed to detect
oscillations of the velocity of sound. Moreover, oscil-
lations of the velocity of transverse sound of either
polarization were not observed for a sample whose nor-
mal to the plane coincided with the [110] axis. The

g1 [i0g] e [o1g]
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/104, MJA‘I

I Y l:'?/ﬂ/]

e
'Alfvh q I\ /790,
el /100]
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a2 Y s5 6870
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FIG. 7. Quantum oscillations of the velocity of longitudinal
and two polarizations of transverse sound in a sample with
n([100]. T=4.2°K.
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TABLE III. Quantum oscillations of velocities of transverse
and longitudinal sound in tin (T= 4.2°K, H=70 kOe).

ij - Extremal (a§0s¢ S, a8°%¢,
q, e &ij Gij section ey /84) gn]P/.*c}
H 11[100]
1010 o Cu ! 480 054
g ggl‘ €as Cys ! 493 0.70
. 600? LI Cu ! 124 0.045
&foto Bes Cs X 13 0005
H 11{001]
q[100 At 46 038
S0 o cu 8¢ 199 022
1
g 11:8 Bxx 12(Cry+C12) +Cos 6‘} g?g 8533
% C 5! 183 0.07
e [100 o " 64 108 004

experimentally determined amplitudes of the quantum
oscillations of the velocity of sound for the extremal
cross sections mentioned above are listed in Table III.
This table shows also the corresponding components
of the strain and elastic moduli tensors, and also the
values of the product S,A5°®° governing the deformation
anisotropy of the Fermi surface. The amplitudes of
the quantum oscillations of the velocities of transverse
and longitudinal sound given in this table were deter-
mined at T=4.2°K in a magnetic field H =70 kOe. (In
the case of longitudinal sound traveling along a [110]
axis we used the nominal notation of the component of
the strain tensor ¢,,.)

According to Egs. (11) and (12) and according to the
data in Table III, the deformation anisotropy of the
Fermi surface for the extremal sections 8} and 6% in
the third hole band and for the extremal cross section
7} in the sixth band are given by the ratios

8, (D +1):(Dut1): (Dii—1)=0.87:1:0.37,
8.2(Dy+1) 1 (Dat1):(Di—1)=0.85:1:0.36,
T:‘ (D1|+1) . (D:J+1) H (Du_l) : (Doa‘—'l) =0.88:1:0.25:0.08.

The ratios of the different values of D;; for each en-
ergy band govern the reaction of the Fermi surface
to the crystal lattice deformation. Magnetoacoustic
measurements made it possible to study not only the
diagonal components of the tensor A;; (as, for example,
in the hydrostatic pressure experiments), but also the
shear components.

The relationships obtained together with the data of
Table I described, in principle, the structure of the
deformation potential for the selected extremal sec-
tions of the Fermi surface. Unfortunately, the data on
the diagonal components of the deformation potential
tensor were contradictory, so much so that different
signs of the same components of the tensor D,; were
obtained in different experiments. Therefore, we did
not include the absolute values of the various compo-
nents of the deformation potential tensor in the tabula-
ted data.

The authors are grateful to A. P. Perov for his help
in the development of an acoustic oscillator, and to
V. M. Kontorovich and M. I. Kaganov for valuable dis-
cussions.

A. N. Vasil'ev and Yu. P. Gaidukov 1191



IR. A. Alpher and R, J. Rubin, J. Acoust. Soc. Am. 26, 452
(1954).

2A. A. Galkin and A, P, Korolyuk, Zh. Eksp. Teor. Fiz. 34,
1025 (1958) [Sov. Phys, JETP 7, 708 (:1958)].

3G. A. Alers and P, A, Fleury, Phys. Rev. 129, 2425 (1963).

L. R. Testardi and J. H. Condon, Phys. Rev. B 1, 3928
(1970).

51, M. Lifshitz and A, M. Kosevich, Zh, Eksp. Teor. Fiz, 29,
730 (1955) [Sov. Phys. JETP 2, 636 (1956)].

63, E. Craven, Phys. Rev. 182, 693 (1969).

V. M. Pudalov and M, S. Khaikin, Zh. Eksp. Teor. Fiz. 67,
2260 (1974) [Sov. Phys. JETP 40, 1121 (1975)].

M. M. Finkelstein, J. Low Temp. Phys. 14, 287 (1974).

%J. M. Perz and I. M, Templeton, Can, J. Phys. 57, 884
(1979).

105, A, Rayne and B. S, Chandrasekhar, Phys. Rev. 120, 1658
(1960).

1M, S. Khaikin, S. M. Cheremisin, and V. S. Edel’man, Prib.
Tekh, Eksp. No. 4, 225 (1970).

1192 Sov. Phys. JETP 54(6), Dec. 1981

12y M. Kontorovich and A, M. Glutsyuk, Zh. Eksp. Teor. Fiz.
41, 1195 (1961) [Sov. Phys. JETP 14, 852 (1962)].

13F . Bloch, W. W, Hansen, and M. Packard, Phys. Rev. 70,
474 (1946).

l4yy, P, Gaidukov, A. N, Vasil’ev, and A. G. Lyubimov, Fiz.
Nizk. Temp. 5, 1318 (1979) [Sov. J. Low Temp. Phys. 5, 623
(1979)1.

155, N. Vasil’ev, Yu. P. Galdukov, and A, P, Perov, Prib,
Tekh., Eksp, No. 6, 176 (1980).

R, D, Mindlin, J. Appl. Phys. 22, 316 (1951).

17y, M. Kontorovich, Zh. Eksp. Teor. Fiz. 61, 1181 (1971)
[Sov. Phys. JETP 34, 630 (1972).

18yu, P, Gaidukov and A, P, Perov, Pis’ma Zh, Eksp, Teor,
Fiz, 13, 307 (1971) [JETP Lett. 13, 219 (1971)].

19yy, P. Gaidukov, A. P. Perov, and I. F, Voloshin, Pis’ma
Zh, Eksp. Teor. Fiz. 9, 585 (1969) [JETP Lett. 9, 356
(1969)1.

Translated by A. Tybulewicz

A. N. Vasil’ev and Yu. P. Gaidukov 1192




