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Inhomogeneous crystal ordering is investigated within the framework of a theory in which a tensorial local- 
order parameter (a cubic nonor) is used. The correlation length in the vicinity of the point of absolute 
instability is found in the approximation of small fluctuations about the mean field: r, -r,(7*)-"4, rc (T, ) -  
2.4 r,. The order near a plane surface of a crystal is found. The corrections due to the inhomogeneity of the 
surface layer are phenomenologically taken into account. The theory predicts that the temperature derivatives 
of the surface characteristics of the crystal can behave anomalously. 

PACS numbers: 68.20. + t 

1. INTRODUCTlON The mean value ? of the parameter  A i s  found from 

In the crystal-ordering theory developed by u s  earl i-  
er1-3 the state of a crystal  is described in t e r m s  of a 
local-crystal-order field A(r). The quantity A(r) for  
al l  c rys ta ls  except those having hexagonal symmetry i s  
a fourth-rank irreducible tensor representing the hexa- 
decapole moment of the density distribution for the ma- 
terial  in a small  volume enclosing several  coordination 
spheres.  Various experiments indicate that this  vol- 
ume element contains about lo2 atoms. Calculations 
with various model effective Hamiltoniansl-3 have 
shown that these models yield similar  propert ies in the 
vicinity of the melting point T,, and that these proper- 
t i e s  can be found to within 10% in the mean-field ap- 
proximation. 

In the cited papers we considered the case  of ho- 
mogeneous ordering in an infinite crystal .  The purpose 
of the present paper i s  to consider inhomogeneous 
crystal  ordering within the framework of the same 
models. In particular, an important source of inho- 
mogeneity i s  the surface of a spatially bounded body. 
Cutside the immediate neighborhood (AT - O.lTm) of the 
melting point, the crystal  s tructure turns out to be 
rigid, and the correlation length, which coincides with 
the range of the influence of a point inhomogeneity on 
the order  in the system, i s  small. As T, i s  approach- 
ed,  this range increases,  becoming infinite a t  the point 
of instability of the crystal. 

2. EQUATIONS DESCRIBING THE INHOMOGENEOUS 
ORDER IN THE MEAN-FIELD APPROXIMATION 

We limit ourselves to the case  in which the Hamil- 
tonian of the order  has the form1 

where ie i s  the external field. In the mean-field ap- 
proximation i ( r )  i s  replaced by i t s  mean value (I\(r)) 
= T a t  all points except the one in question, and fpr the 
point in question the probability distribution for  A i s  
equal to 

The Hamiltonian of the self-consistent field ~ { i )  i s  
> -  - 

H {A) = - ~r h.%, lz (c.) = he (r) + hs (r), is (r) = J (1 r - r' 1) 2 (r') dv1. 

(3) 

In Refs. 1-3 Eqs. (3) and (4) a r e  solved for  the case  
in which the integration over all the I\ configurations 
reduces to integration over all the rotations d of the 
three-dimensional rotation group SO(3) (A = di,; the 
continuous model2), o r  over the rotations forming a 
d iscre te  subgroup of SO(3) in the case  of homogeneous 
ordering in zero  external field (i.e.,  at  ie= 0). Near 
the melting point the quantity ?(h) depends little on the 
model. 

Let us  consider a system in which the local order  
possesses  cubic symmetry. -In this  case  all the irredu- 
cible tensors  ?, h ,  ie, and A a r e  proportional to the 
standard tensor ijaBra (the cubic nonor), which i s  the i r -  
reducible part  of the tensor 

na6m = znalb w ( 0  (O 
n~ n, na , 

1=1 

(5) 

where n'l), nt2), and n(3) a r e  the se t  of three mutually 
orthogonal unit vectors. Introducing the invariant 
amplitudes 

we write Eqs. (3) and (4) in the form 

In the d iscre te  four-state model1 with the temperature 
measured in units of the quantity 

To= S ~ ( l r l ) d v  

the function a(h) has the form1 

Equation (7) with suitable boundary conditions de- 
scr ibes  the inhomogeneous ordering. Let u s  consider 
the solution to th is  nonlinear equation when the devia- 
tions from the homogeneous order in an infinite system 
with h, = 0 a r e  small :  
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For  the purpose of solving the l inear equation ( l o ) ,  
we go over to the Fourier  t ransforms 

6h (r) =x Ghke'k', h, (r) =z hakeek', 
I I 

We find from (10) that 

The solution for  the change that occurs in the order  
when a delta-function perturbation h,(r) - 6(r) i s  
switched on at  the coordinate origin i s  the Green func- 
tion for Eq. ( lo) ,  and coincides up to a constant factor 
with the correlation function in the approximation of 
small  fluctuations about the mean field. Then hek 
= const, and i t  i s  necessary to consider the zeros  of 
the denominator in ( l l ) ,  i.e., the roots  of the equation 

The line h = Joa  touches the curve a =  a ( h / ~ )  at  the 
point T* of absolute instability of the crystal; there- 
fore,  

and Eq. (12) has the root kc= 0. Fo r  small  T * =  (T* 
- T)/T*, the small  k region where 

i s  important; the quantity yo-k0-' i s  the range of the 
interaction of the order  parameter .  The point of con- 
tact a =  a, at T =  T* i s  a regular  point on the a(h) curve, 
and near this point 

Recognizing that a(ao) = J0-l and that near T* (see  Ref. 
1) 

a(T) -a,= (s'ld) '", (15) 

we find for the quantity kc in the vicinity of T* the ex- 
pression 

~ , z = - ~ , z T  (s'la)'", (1 6) 

and for the Green function G(Y) the relation 

The quantity Y, i s  the correlation length. Substituting 
the specific values for the constants of the four-state 
model (8) at  the melting point T,, we find that 

re (T,,, ) - 2 . 4 ~ ~ .  (18) 

The formulas (14) and (15) a r e  valid in the immediate 
neighborhood (T* - of T*. Outside this neighbor- 
hood Y, = yo. 

We can expect that the quantity ro will be of the order 
of the cluster  dimension, and that the interaction of the 
crystal  order  will primarily have the character  of a 
nearest-neighbor interaction. In this case,  a s  follows 
f rom experiment, ro i s  equal to four-seven interatomic 
distances. F a r  from the melting point the lattice de- 
fec ts  having these characterist ic  dimension a r e  local- 
ized, while in a narrow neighborhood of Tm the changes 
in  the structure a r e  smeared over an appreciably large 
region. 

3. ONE-DIMENSIONAL INHOMOGENEITY. PLANE 
CRYSTAL BOUNDARY 

Let us consider the case  in which the order  depends 
on only one coordinate x. We write Eq. (7) in the form 

h(x)=h.(r)+ j~(lx-x'l)a(x')dx', (19) 

where 

J ( l ~ l ) =  J ~ ( l r l ) d y  dz. (20) 

We can expect the propert ies of the solutions to Eq. 
(19) for  the function z( lx I ) ,  which decreases  fairly 
rapidly with increasing x > xo and var ies  little in the re-  
gion x < x,, to depend weakly on the specific form of 
>( l x  1 ). It i s  convenient to take 5 in the form 

Here we have used the system of units in which To 
= x o =  1. 

Differentiating (19) twice, we obtain a differential 
equation that takes a t  he = 0 the form 

d2h/dx2=h (x) -a[h (x) 1. (22) 

Equation (22) coincides in form with the equation of the 
one-dimensional motion of a material  particle with unit 
m a s s  and with a coordinate h that depends on the time 
x .  The role of the potential energy i s  played by the 
quantity 

The solution to (22) i s  

where E i s  a constant. The quantity U(h) i s  directly 
related with the thermodynamic potential @(h). Thus, 
in the four-state model1 

~ ( h )  =-*/,a ( h )  -'/,T ln 4. (25) 

Figure 1 shows the plots of U(h) for  T = T, and T, < T 
< T,, where T, i s  the absolute-instability temperature 
fo r  the high-temperature phase (liquid). 

The system exhibits behaves differently at different 
energies E ,  under different boundary conditions, and 
a t  different temperatures. The simplest solutions de- 
scribe:  the transition region between the liquid and 
crystal  phases at  T = T,, the periodic oscillations of 
the order  parameter  about some mean value, plane nu- 
cleation centers  of the corresponding phases, and the 
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FIG. 1. Plot of U(h)  for T = T, (curve 1 )  and TL < T < T, 
(cunre 2). 

FIG. 3. Graphical solution of Eq. (29) for h ( 0 ) .  

smal l  inhomogeneities due to  the smal l  deviation of the 
order  from i t s  homogeneous value. 

We limit ourselves to the "domain wall" between the 
liquid and crystal  phases a t  T =  T,. The boundary con- 
ditions h - h, (x - + m), h - 0 ( X  - --), where h, i s  the 
homogeneous-order parameter ,  a r e  fulfilled for  E = 0. 
The solution (24) describes three  regions. Fo r  Ix -xol 
> L there occur two different phases whose order  pa- 
r ame te r s  approach the boundary values exponentially. 
The region Ix -xoI < L i s  a domain wall with thickness 
L - 1. The plot of h(x) is shown in Fig. 2.  

Let u s  now consider the solution for  the case  in 
which the crystal  occupies the half-space x > 0 and the 
crystal  boundary l ies  in the plane x = 0, i.e., the case  
in which 

a=O for x<O. (26) 

The properties of the material at  the surface a r e  physi- 
cally different from i t s  properties in the interior. 
Thus, for  example, the density of the surface layer i s ,  
generally speaking, not equal to the volume density. 
Equation (19) is therefore inapplicable in a small  neigh- 
borhood of the point x = 0. We assume f i r s t  that the 
change in the form of the equation i s  slight, and neglect 
this  change. Differentiating Eq. (19) once at  x = 0, we 
obtain in this approximation the boundary condition for 
the field h(0) at  the surface: 

The f i r s t  integral of Eq. (22) 

' I ,  (dhldx) '+U(h)  =E (28) 

at  the point x = 0 yields together with (27) the relation 

E-'lzh"0) = U ( h ( O ) ) .  (29) 

The relation (29) determines the quantity h(0). Figure 
3 shows a plot of Eq. (29). 

We expand E = U(h,, T) in powers of T = ( T  - T,)/T, 
fo r  T < Tm near T,. Fo r  sufficiently small  h and 1 T I  we 
have U(h, T) = U(h, 0). For  h(0) we get a s  a result  

h(O) -(Qr)'", (30) 

-LIZ 0 L I Z  S 

FIG. 2. Plane boundary between liquid and crystal at  T = T,. 

where Q is proportional to the heat of fusion. The solu- 
tion (24) for  I T I  << 1 and with allowance for  the condition 
(30) descr ibes  a crystal  for  which a layer of thickness 
X at  the surface i s  practically melted; for  7 - 0  and h 
<< 1 we have near the surface 

h  ( x )  =h ( 0 )  exp (2,38x), (31) 

s o  that 

For  sufficiently large 1 T I  outside a narrow range of 
temperatures near T,, h(0) and a(0) a r e  close to their 
values in the interior ,  the influence of the surface and 
the range of this  influence a r e  small ,  and a small  
change in the conditions a t  the surface has little effect 
on the solution. As T-0 ,  small  changes in the condi- 
tions in the surface layer greatly change the properties 
of the solution. We shall take account of the singular 
propert ies of the surface layer phenomenologically, in- 
troducing an additional field 6h that ac t s  on the surface 
and i s  responsible for  the total effect of the surface- 
related distortions of the homogeneity of the material  
on the cubic component of the order  parameter .  Ac- 
cordingly, in place of the condition (27), we write 

As  T - 0 and at  h << 1 ,  the order  parameter  h(x) near  
the surface i s  given by the formula (31), where 

It follows from (34) that, in the immediate neighbor- 
hood of the phase transition (i.e.,  for 1 T I  << C2), A(T) i s  
a constant proportional to - lnC, while A(T) - -1nl T I  for 
C2<< IT[<< 1. 

An important characterist ic  i s  the derivative of A(T): 

Figure 4 shows the behavior of aA/a 1 T 1 fo r  C = 0.1 
and C = 0.01; from this it follows that for  C 0.01 a t  
T =  Tm(l 71s the change in the character  of the or -  
dering in the boundary layer occurs rapidly a s  the tem- 
perature i s  varied. 

In the region of metastable existence of the crystal 
( see  Ref. I ) ,  at  T,= 2.04C2, radicand of (34) and (35) 

FIG. 4. Plot of ah/a1 T (  for C =  0.1 and C = 0.01. 
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FIG. 5. The 7 dependence of h(0) as given by Eq. (34). 

vanishes if C i s  sufficiently small. When T > r b ,  the 
crystal  disintegrates because of the instability of the 
surface. Using (T* - T,)/T* = 0.02 a s  the width of the 
metastable region, we find for the constant C the 
boundary value C, = 0.1. Fo r  C > C b  the surface does not 
disintegrate spontaneously in the region of metastabil- 
ity of the crystal: the transition into the liquid state i s  
due to volume effects. Fo r  C <  C, there exists  a region 
T,< 0.02 in which the surface i s  unstable; the destruc- 
tion of the crystal  s tructure i s  connected in this case  
with the surface o r  with defects. The dependence of 
h(0) on T i s  shown qualitatively for  different values of 
C in Fig. 5. 

The analytic formulas (34) and (35) a r e  valid for  C 
C,,, - 0.1 (C,,, -* h,). It i s  possible that the behavior 

of the surface characterist ics  of some crys ta ls  in the 
neighborhood of the melting point i s  connected with the 
small  value of C (see  below). 

In the general case  the extent to which the field 6h 
affects the properties of the crystal  near the surface 
and the value of C depends on the mutual orientation of 
the crystallographic axes  and the surface. When this  
orientation i s  changed, the energy U(h), i.e., @ [see 
(25~1, changes. In other words, the constant C i s  re -  
lated to the surface tension of the crystal. 

4. SURFACE EFFECTS 

The difference between the physical properties of a 
crystal  at  i t s  surface and in i t s  interior  i s  expressed 
by a number of surface characteristics: the blackness 
factor, the surface microhardness and conductivity, 
the work function, etc. Each of these characterist ics  
contains integrated information about the character  of 
the crystal ordering in a layer of thickness R near the 
surface. At low temperatures the entire crystal  is al- 
most homogeneous, and no strong surface anomalies 
occur. In the vicinity of the melting point the system 
behaves differently, depending on the rat io A(r)/R. The 
quantities for which A(O)/R <.: 1 have strong anomalies 

PIG. 6. Qualitative behavior of a surface characteristic W 
and of dW/dr as functions of 7. 

near  the surface.  In the A(O)/R >> 1 case  the order  in 
the entire crystal  region that determines a given sur-  
face characterist ic  W differs  greatly from the order  in 
the interior  of the crystal .  

Let difference between the value of W(r) and 
W(T, h = h,) be designated AW(r). F o r  T such that h(r)/ 
R<< 1, we have 

where ~ W ( T )  i s  the change in the density W(T). In the 
region A(T)/R >> 1 

If C i s  sufficiently small ,  then 

aa asw dc - - -  
a~ a~ a~ 

(for small  171). From this  i t  follows that the derivative 
d ~ / d ~  has  a maximum at  T - r0 (A(T~) -R), and that the 
smal ler  C the grea ter  this  maximum. The behavior of 
W and d ~ / d ~  a s  functions of the temperature i s  qual- 
itatively depicted in Fig. 6. 

It i s  possible that the experimentally observed4e5 
anomalies attest the smallness of the quantity C in the 
investigated materials ,  and that they a r e  a manifesta- 
tion of the effects described above [see (34) and (35)]. 

We a r e  grateful to Ya. A. Kraftmakher for  a discus- 
sion of the experimental data. 
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