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Weakly decaying waves near cyclotron resonance are investigated theoretically in a metallic ferromagnet 
located in a magnetic field inclined to the surface of the specimen. It is demonstrated that owing to vanishing 
of magnetic Landau damping and depending on the relative values of the physical parameters, there may exist 
in the vicinity of the decay minimum one, two, or three waves. The spectrum is shown to depend on the 
relation between the cyclotron resonance and antiresonance frequencies. The cases when the frequencies are 
the same or when the frequency of the coupled wave is close to the ferromagnetic resonance frequency are 
considered. In the latter case the expression for the wave spectrum obtained near the damping minimum is 
valid throughout the range of permissible values of the wave vector k. The dependences of the natural 
frequency, polarization, and damping on k, on the magnetic induction B, and on the angle between B and k 
are investigated for all waves. The waves near cyclotron resonance or the low-frequency waves are shown to 
be connected with the classical discrete spectrum. 

PACS numbers: 76.40. + b, 76.50. + g 

INTRODUCTION netic field on spin cyclotron waves. The peculiar low- 

Weakly damped waves in a metallic ferromagnet near 
cyclotron-resonance frequencies were first  investigated 
by Blank, Kaganov, and Yui LU' (see also the review2). 
These waves a re  close to cyclotron waves in a normal 
metal and propagate perpendicular to the magnetic-in- 
duction field of the ferromagnet, i.e., they a re  excited 
in a magnetic field parallel to the surface of the sam- 
ple. In contrast to Ref. 1, where the waves investigated 
were short compared with the cyclotron radius R of the 
conduction electrons, Bar'yakhtar, Savchenko, and 
Stepanov4 considered weakly damped excitations near 
cyclotron resonance, with wavelength 28k-I of the or-  
der of R .  Silin and Solontsov5 investigated spin cyclo- 
tron waves in a magnetic field parallel to the sample 
surface. These waves propagate near the frequency of 
the electron transition between the Landau levels, with 
reversal of the spin direction. 

Weakly damped waves near cyclotron resonance in 
metallic ferromagnets, propagating at arbitrary angle 
to the magnetic-induction field, have to our knowledge 
not been investigated. These waves a re  excited in a 
magnetic field inclined to the sample surface. The 
first  to investigate waves in a normal metal, close to 
cyclotron resonance and propagating at an angle close 
to ~ / 2  with the magnetic field, were Blank and Kaner.' 
In view of further progress in the theory of cyclotron 
resonance in an oblique magnetic field,7'8 the study of 
such waves in normal metals has been recently con- 
t i n ~ e d . ~ ' ~ " ~  It i s  of interest to extend these investiga- 
tion to include metallic ferromagnets. The appearance 
of sufficiently pure  material^".'^ uncovers a possibil- 
ity of performing more and more subtle experiments 
aimed at observing electron resonances in ferromag- 
nets. 

Weakly damped waves propagating at close to a right 
angle to the magnetic field in ferromagnets, at frequen- 
cies fa r  from the cyclotron frequency, were investigat- 
ed in a number of studies. Thus, Zverev, Silin, and 
SolontsoS3 investigated the influence of an oblique mag- 

frequency (o<<SZ, SZ i s  the cyclotron frequency of the 
conduction electrons in the induction field) excitations 
having a classical discrete spectrum were investigated 
in detail14'15 in ferromagnets in an oblique magnetic 
field. The possibility of propagation of such waves is 
due to the vanishing of the Landau damping at a definite 
relation between k and R." Analogous propagation con- 
ditions make waves near cyclotron resonance similar to 
waves with a discrete spectrum, so that it i s  also of in- 
teres t  to trace the connection between these excitations. 

DISPERSION EQUATION 

To describe the propagation of a weakly damped wave 
in an unbounded isotropic metallic ferromagnetic, we 
use the system of Maxwell's equations and the Landau- 
Lifshitz equation 

Here E is the alternating electric field, m, h, and b 
are,  respectively, the high-frequency parts of the mag- 
netization, of the magnetic field, and of the induction 
(m, h, b, E a eik ' -t'), H is the external constant 
magnetic field, M is the saturation magnetization, B 
=H+4rM, b=h+4nm, j is  the current density, k i s  the 
wave vector, w i s  the wave frequency, Y is  the gyro- 
magnetic ratio, and i s  the damping in the magnetic 
subsystem. We neglect in Maxwell's equations the dis- 
placement current and it follows then from (1) that 

which i s  analogous to the condition that the metal be 
quasineutral. 

We choose the coordinate system xyz such that the z 
axis is parallel to the magnetic field B and the x axis is 
perpendicular to the plane containing B and k. In addi- 
tion, we introduce also a coordinate system xql ,  in 
which the 5 axis i s  parallel to k (Fig. I ) ,  and makes an 
angle n-cp with the y axis. The connection between the 
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FIG. 1. Coordinate frame. The x axis is perpendicular to the 
plane passing through the magnetic induction vector B and the 
wave vector k. The 5 axis is parallel to k and makes an angle 
n- cp with the y axis. 

current and the electric field, a s  well a s  between the 
high-frequency induction and high-frequency magnetic 
field, i s  established with the aid of the conductivity and 
magnetic permeability, respectively. Then, substitut- 
ing the second equation of (1) in the first  and eliminat- 
ing with the aid of (3) the electric-field component E 
which is longitudinal with respect to k ,  we reduce Eqs. 
(1) to a system of linear homogeneous equations for the 
transverse components Ex and E,. The vanishing of the 
determinant of this system yields the dispersion equa- 
tion of the weakly damped waves in a metallic ferro- 
magnet: 

16n2a2 det 8det ~ + 4 n i w k z c 2  Sp 08-k'c4=0. (4 ) 

The first  term contains the product of the determin- 
ants of the two-dimensional matrices 8 and b ,  made up 
of the elements GaB and pap In the second term the 
trace i s  taken of the product of the matrices, where P 
i s  obtained from the matrix by cyclic permutation of 
the indices followed by reversal of the signs of the off- 
diagonal elements 

where a, ui (k, H, w) a r e  the Fourier components of the 
conductivity tensor. The indices a, 0 and i, j take on the 
respective values x ,  and x ,  q, 5:  

where p i jGpi j (k ,  H, w) a re  the Fourier components of 
the magnetic permeability. 

In the case of an isotropic ferromagnet we obtain from 
the Landau-Lifshitz equation (2) for the renormalized 
components of the magnetic-permeability tensor GaB 
(6), neglecting the terms sq2, 

Wx=~H-iPW, wa,=4nyM, p=yM'%. 

If we now go in the dispersion equation (4) to the ferro- 
magnetic-dielectric limit -O), we obtain at k + 0  
the dispersion law of the magnetostatic wave that is  
transverse to B (see, e.g., Ref. 17): 

In the case M=O (p,a=6,a) we obtain from (4) the known 
dispersion equations1' for a normal metal. 

We shall consider hereafter waves near cyclotron 
resonance 

where N i s  an integer and v i s  the electron collision 
frequency. The w a v e l e d h  i s  assumed to be much 
smaller than the cyclotron radius of the conduction 
electrons (JZR >> 1). We also assume a strong spatial 
dispersion of the wave in the B direction: 

where v i s  the Fermi velocity of the conduction elec- 
trons. The inverse limiting case  corresponds to the 
wave considered by Blank et al.' We note next that the 
main contribution to u,, i s  made by the resonant elec- 
trons that satisfy the phase relation 

We assume that k,v <<9; then, at a given w ,  the rela- 
tion (9) i s  satisfied only for one value of N, i.e., we 
can confine ourselves to only one group of resonant 
electrons. Gathering together all the inequalities pres- 
ented above, we can write 

IY - i (o -NP)  I <k,v<B<kv. (10) 

From this follows, in particular, that 

The asymptotic expressions for the components of the 
conductivity tensor under conditions (lo), in the ap- 
proximation where the conduction electrons have an iso- 
tropic and quadratic dispersion law, were obtained ear-  
lier.' It was shown that in the real part of $,, which i s  
mainly responsible for the damping of the wave, there 
i s  an oscillating t e rm 

which describes the magnetic Landau and 
vanishes at 

Here a=kR,  and the parameter w i s  a measure of the 
deviation of the section of the Fermi surface of the 
resonant electrons from the central section. The mech- 
anism of such oscillations of the Landau damping of 
electromagnetic waves that propagate at an angle to the 
magnetic field was f i rs t  described by Kaner and Sko- 
bov18 and is analogous to the geometric resonance that 
occurs when ultrasound i s  attenuated in a metal in a 
magnetic field.lg 

The expressions for the renormalized conductivity- 
tensor components cola in the vicinity of the points (Y 

defined by (11 ), i.e., near the minimum of the wave 
damping, a re  of the form 

a,,=o,(w/aR - f ) ,  a,,=-a,[ ( a - ~ p ~ ) / ~ a ? + Q f ] ,  a,=-a,,. (12) 

Here 

aa=3noez/2ma2Qcp, E=2 s inZ(a -a , -p2 /2 ) ,  f=N/2cpanZ, 
a=2n-':  sin (p'-n/4), P=C (p) -S ( p )  , Q=C ( p )  4-5' (p), 

where no i s  the density of the conduction electrons and 
m is  the electron effective mass. C and S denote the 
Fresnel integrals 
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In addition, we have used in (12) the notation 

p- (o0-N8)/cpa: 8, q= ( v - r N ~ ) l c p a :  8 ,  (13) 

where w =w,(l -iI'), I' i s  the relative damping of the 
wave, and w = 9 - ip. 

It follows from (10) that In the expression 
for 9 we put w,=NS1. We consider the case f << 1, and 
therefore omit from (12) terms of higher order  inf.  
From the condition on f and from the inequalities (10) 
we have N/2(u2 << cp << a-l. 

SPECTRUM, POLARIZATION, DAMPING 

We turn now to the dispersion equation (4). It is known 
that the modification of the spectrum of the interacting 
excitations i s  most substantial at the intersection of 
their spectral curves. The intersection of w, and NQ 
a s  functions of B in an external magnetic field i s  possi- 
ble only at y>Ne/mc. Expressing this inequality in the 
form of the ratio of the characteristic frequencies, we 
obtain wa >NQ, where wa= Rew, = YB i s  the antiresonance 
frequency. The magnetic field corresponding to the 
equation ws=Nn i s  equal to 

f11=4nM/ [ (o./NQ) z- 11. 

The excitation spectrum near cyclotron resonance in a 
magnetic field parallel to the sample surface also de- 
pends on the ratio w,/f2=gm/2m0 (m, i s  the mass  of the 
free electron and g i s  the Land6 factor), a fact shown by 
Blank el a 1.' 

Changing over to the solution of the dispersion equa- 
tion, we note that since we have fixed kR, it i s  conven- 
ient to change in (4) from k to 0,. In this case 

where b i s  the normalized magnetic-induction field 
( b  -Qc/w,v, and w, is the plasma frequency of the con- 
dition electrons). Substituting the expressions for the 
elements of the conductivity tensor ZaB (12) and the 
magnetic permeability tensor paB (7) in the dispersion 
equation (41, we obtain for its real  part  

where 

A,=q (az-o,),  ~ , = q [ o , - 2 q 6 - ~  ( ~ l q a :  +p) uJ], 6=o.lqa: 8, 

The quantity 

i s  the spectrum of the magnetostatic wave in terms of 
the variables b and p: 

p Z = ( 4 n M )  Z/3n"n,mux. 

For a normal metal (k=O), the equation analogous to 
(14) i s  biquadratic. The previously obtainedg solution of 
this equation i s  

Equation (14) can be solved for  the entire range of 
permissible values of p(lpl<< dh) only numerically. We . 
consider f i rs t  the case when w, crosses NQ, with 
I wa-N!21>>->NQ - wd, i.e., we consider waves far  from 
antiresonance. We construct the solution in the form 
of the relation plotted in Fig. 2 by thick solid lines. 
Account i s  taken of the fact that b > p in an isotropic 
ferromagnet. In the calculation we assumed 47rM =22 
kG, no= loz3 cmd3, = 1.46 lo8 cm sec-I (in which case 
p=6.  N = l ,  and wa/S1=1.5. The thin dashed 
curves of Fig. 2 show the function b, (p )  that follows 
from Eq. (15) that describes the spectrum of the elec- 
tromagnetic waves in a normal metal. The thin solid 
line i s  the spectrum of the magnetostatic wave (8a). It 
i s  seen from Fig. 2 that, depending on the relation be- 
tween b ,  and b,, the spectrum of the coupled waves in a 
metallic ferromagnet will consist of different numbers 
of branches. If b, > b ,  and b+ < p,  then the spectrum has 
only one branch b,, which l ies in the entire considered 
range of values of p. We note immediately that this 
branch of the spectrum describes a right-polarized 
wave. On the other hand, b+ > p at  p < 0, a second 
branch b, close to b+ appears in the spectrum of the 
coupled waves (Fig. 2a). However, b2 describes a left- 
polarized wave, whereas b+ in a normal metal is  right- 
polarized. When b, crosses  b,, the spectral curve of 
the right-polarized wave b, breaks up into two branches 
(Fig. 2b). In this case b, shifts towards lower values of 
b compared with b,. Finally, when b, approaches b -, 
the spectral curve b, becomes close to b,, and b, be- 
comes close to b- (Fig. 2c). We note that in all cases 
at 1 ~ 1 2 1  the slope of the spectral curve b, of the cou- 

FIG. 2 .  The thick solid curves show the spectrum of the coupl- 
ed waves, N - 1, wa/Q = 1.5. The thin dashed curves and the 
thin solid lines show the spectrum of the electromagnetic waves 
in the normal metal (15) and of the magnetostatic wave in the 
ferromagnet (8a); curve 1-spectrum of left-polarized wave 
b - ( p ) ;  a) n  - 17, q -4 . the thick dashed line shows the p- 

dependence of the polarization coefficient D, b) n = 14, cp = 4 
x C) n =  8, q = the thick dashed line shows the spec- 
trum of the coupled wave near the antiresonance (N= wa/Q = 1). 
In Figs. b and c, the induction b is  reckoned from the value of 
the normalized magnetization p .  
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pled wave in the ferromagnet coincides with the slope of 
b+. 

If w, does not cross NS1, but I wa -NSZl>>INS1- wl as  
before (for example, N=2, w,/S2=1.5), the spectrum of 
the coupled waves in the ferromagnet will be close to 
the spectrum of the waves in the normal metal, and the 
polarizations of the spectrum branches a re  also pre- 
served; b, = b+ and b, - b,. An interaction between b+ 
and b ,  now appears, so that at p >p, (at the upper limit 
of the region of existence of b-), b, will lie somewhat 
lower than b+. At lower values of the induction, b, i s  
likewise shifted in comparison with b-. 

Particular interest attaches to the case when the cy- 
clotron resonance and antiresonance frequencies coin- 
cide owa-NSZI<<INSZ- wl). Then b,>>b+ and Eq. (14) has 
a solution bl = b, that coincides with the spectrum of the 
magnetostatic wave. In addition, there are  solutions 
that a re  close to the spectrum of the electromagnetic 
waves in a normal metal. Thus, at p<O the branch bk 
=b+ and is left-polarized (the magnetostatic mode i s  
right-polarized in this region of p). At P > 0, there 
exist a right-polarized branch bi and a left-polarized b:. 
In the region p <p, the branch bj =b+. At pzp, an inter- 
action appears between b+ and b-, but a stronger one 
than in the preceding case, so that b j  lies much lower 
than b+ (Fig. 2c, thick dashed line). The branch b: i s  
likewise shifted towards lower values of the induction 
compared with b-. Thus, at  certain values of the physi- 
cal parameters, by virtue of the condition b > p ,  an in- 
terval p > p ,  in which there are  no waves can exist. 

We now represent the spectrum of the wave in the 
form of the function w,(k) at a fixed value of the mag- 
netic field H. From the definition (13) of p we obtain 

where p is no longer a function of B, Q,,, and cp, and 
must be determined from (14). At fixed H and cp, the 
function p(%) can be obtained by using the numerical 
solutions b ( P ) of Eq. (14), after which it is easy to con- 
struct the dispersion curve w,(k), a plot of which at B 
=4.25. lo4 G and cp=10'2 is shown in Fig. 3 in the coor- 
dinates A/a  and IzR, where A= w, - S1. The dashed lines 
join points belonging to one and the same branch of the 
spectrum in terms of the coordinates b and p. It is seen 

FIG. 3 .  Spectrum of coupled waves. Plot of wo(k) at  N =  1 and 
at constant H. The points mark  the values of wo a t  k R =  an. 
The dashes join points of the same branch of the spectrum; A 
= w-n. 

that the branch that exists in the region w < SZ has anom- 
alous dispersion. 

We rote that the spectral curves of the coupled and 
magnetostatic waves intersect. It can be found from 
(14) that the value of p at the intersection point i s  given 
by the equation 

baE=-q (oJ2+olo2) 10,. (1 7) 

The right-hand side of (1 7) i s  small (- b:) everywhere 
with the exception of the vicinity of the point where o, 
goes through zero. Therefore at b, >> b+ the intersection 
point of w, and w, i s  determined by the vicinity of the 
zero of a,. Determining p from the condition o,=O and 
using (16), we obtain approximately the spectrum of the 
coupled wave at frequencies close to w,: 

w,=NQ [ 1 + ( ~ a , ) - ' ] .  (18) 

In limiting cases, analytic solutions of the dispersion 
equation can be obtained. At I P  1 >> 1 the coefficients of 
Eq. (14) a re  given by 

(P=O, 1 & I  =I) .  Solving (14) for p, we obtain 

Using (16), we get 

w,=NQ [ i - 'IJan5K2U,] ,  

where K=cpOc/Nw,v. Letting M tend to zero, we obtain 
from this an expression for the wave spectrum in the 
normal metal.' In the opposite limit I P I  << 1 (P =Q 
= (2/r)lhp) we have 

We have neglected here terms of higher order in p and 
a,-'. 

Solving now Eq. (14) for P and using (16), we get under 
the condition s * 1 

- I 
W , = N Q { I + K ~ ~ ~ ' ~  + [ (n/8)"'an -'/,H-2(cp/~)'a,"']/(l-s)}, (21 ) 

where K= (28/9)'/~~. At M = O  this yields the spectrum 
obtained by Blank and Kaners for electromagnetic waves 
in a normal metal. 

In a ferromagnet, just as in a normal metal, the spec- 
trum of the wave can cross NSZ. In the expression for s 
at loa-NS1I>>INS1- wol we can put wo=NS1. Inthe oppo- 
site limit, i.e., if the cyclotron resonance and antireso- 
nance frequencies coincide, replacing w, by NSZ in the 
expression for s and recognizing that in this case s 
=- 6p/2pb and Isl>> 1 (U+=2s, U-=l), we obtain from 
(19) and (20) 

o,=iVQ [ l - ' / , a , S K 2 ] ,  (22) 

Expression (22) describes a wave close to an electro- 
magnetic wave in a normal metal (b; = 2'l4b+). The dis- 
persion law (23) is typical only of a wave in a ferromag- 
net and does not go over at M=O into any expression for 
the spectrum of the wave in a normal metal. By virtue 
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of the condition b > P ,  the waves (22) and (23) exist re- 
spectively at 

In the limit IpI<<l a t  w,=NSZ we find, since IsI>>l, 
that the spectrum of the wave i s  described by the first  
two terms in the curly brackets of (21 ). In this case 
the wave propagates only a t  a frequency higher than NO. 
The dispersion law of this wave coincides with the spec- 
trum obtained by Blank and Kanera for  an electromag- 
netic wave in a normal metal. 

The ratio of the longitudinal and transverse compo- 
nents of the electric field vector E of a weakly damped 
wave in a ferromagnet i s  determined by the same ex- 
pression as in the case of a normal metalg: 

whence E c  >>Ex, E ,,, i.e., the fieldE in the coupledwave 
wave i s  directed mainly along k. The transverse com- 
ponents of the electric field a r e  connected by the rela- 
tion 

where D i s  the polarization coefficient, 

Changing, just a s  the dispersion equation, from k to a 
we have near the damping minimum, i.e., a t  a deter- 
mined by (11 ), 

When we considered above the spectrum of the coupled 
waves, we discussed also the sign of D (the wave is 
right-polarized at D > 0 and left-polarized a t  D <O). As 
for the D(p ) dependence, it differs in a ferromagnet 
from the form obtained for a normal metalg primarily 
because of the t e rms  -F,, in (24), which a r e  small 
everywhere except in the vicinity of the point of inter- 
section of w, and w,. Near this point s =l  and accord- 
ing to (25) D = - u,/u,. At b, >> b,, a s  noted above, the 
intersection of w, and w, takes place in the vicinity of a 
zero of a,, and it i s  this which causes the existence and 
position of the maximum of the function D(p). F a r  from 
the point of the intersection of w, and us, those terms 
in D which a re  proportional to f ix,  can be neglected, and 
the difference between D of the coupled wave and its 
value in the normal metal is determined by the differ- 
ence between the spectra of the coupled and electromag- 
netic waves (Fig. 2a). 

In the limit Ipl>> 1, substituting in (25) the expression 
for b from (19) and expanding a,,,,, accurate to pan, we 
obtain 

At I sl>> 1 it  follows from this that D=* 1, i.e., in this 
case the wave polarization is circular and, in particu- 
lar,  the wave (22) is left-polarized and the wave (23) 
right-polarized. If Ipl<< 1, then in the case 1 we 
have 

At I sl<< 1 the polarization, just a s  the wave spectrum, 
i s  close to i t s  value in the normal metal. 

The damping of the coupled waves in a ferromagnet i s  
determined from the condition that the imaginary part of 
the dispersion equation (4) vanish, and has an electron 
contribution due to the dissipative currents and the Lan- 
dau damping, a s  well a s  a magnetic contribution due to 
the absorption of energy of the wave by the magnetic 
subsystem of the ferromagnet. The relative damping of 
the coupled wave i s  

where 

Here Lo determines the dispersion equation of an elec- 
tromagnetic wave in a normal metal; this equation can 
be obtained from (14) by multiplying by q-2 at M=O. 

If the coupled and electromagnetic waves a r e  close, X 
<< 1 and the last  term of r can be neglected; then 

The magnetic part of the damping i s  small in this case, 
since Lo i s  close to zero, i.e., the damping of the cou- 
pled wave, is  the same a s  in a normal metal.g We note 
that the damping i s  close to (27) wherever ~<<N/qcui'~; 
an exception is the situation w,= w,. In this case $ -0, 

and, since the point of intersection of w, and w, i s  de- 
termined a t  b, >> b+ by the vicinity of the zero of u,, the 
value of $ will tend to zero, while I i s  determined by 
the last  term. In this case the Landau damping of the 
coupling wave is small, and the magnetic damping i s  in- 
creased by a factor a?'. If, furthermore, X>>N/a!,,q, 
the magnetic part  of the damping is 

(L,=X at b >>b+), which coincides with the damping of 
the damping of the magnetostatic wave. At X>>N/~&', 
the same expression describes the total damping of the 
coupled wave. 

The dispersion equation (14) describes also a low-fre- 
quency (w<<O) wave with a discrete spectrum. At N=O 
Eq. (14) leads to an equation similar to that obtained 
earlier.I5 The difference between the coefficients is 
due to the fact that in Ref. 15 the integral in a,, was 
calculated approximately, but this leads only to a nu- 
merical difference between the results; all the wave 
features noted earlief15 remain in force here, too. 

CONCLUSION 

Thus, the dispersion equation obtained for weakly 
damped waves propagating in a ferromagnet a t  an angle 
to the magnetic field describes both waves near cyclo- 
tron resonance, a s  well a s  low-frequency (w << S1) waves 
with a classical discrete spectrum. The number of 
branches of the spectrum of the coupled waves and their 
polarization depend on the relation between the resonant 
value of the induction field and the magnetization of the 

1163 Sov. Phys. JETP 54(6),  Dec. 1981 Man'kov et ab 1163 



ferromagnet, as well as  on the magnitude and the sign 
of the frequency difference between the cyclotron reso- 
nance and antiresonance. A distinguishing feature of the 
spectrum of the coupled waves i s  its crossing the spec- 
trum of the magnetostatic wave. In the vicinity of this 
point, the dispersion law of the wave wo(k) has the sim- 
ple form (18), and the polarization coefficient D reach- 
es  a maximum. This behavior of D explains the obtain- 
ed decrease of the Landau damping of the wave at W, 

=us. Indeed, the increase of D corresponds to a de- 
crease of the component of the electric field Ex, and 
since the magnetic Landau damping i s  described by Gxx, 
this leads to a decrease of the Landau damping. The 
latter i s  evidence, particularly, that (18) i s  valid also 
when a! i s  far from 6,. This conclusion follows also 
from an analysis of the dispersion equation (4). 

The cyclotmn radius of the resonant electrons i s  R, 
=R (1 =p2/2a), so that the data obtained by observing the 
coupled waves near the cyclotron resonance can be used 
to obtain information on the non-extremal sections of 
the Fermi surface of the conduction electrons in the 
ferromagnet. We note, however, that the section of the 
resonant electrons can be distinguished from the cen- 
tral section if the difference of their radii Rp2/20! i s  at 
least larger than the straggling AR=R (A8)'/2 of the ra- 
dii of the resonant electrons, which is determined by 
the width A 0  = v/k,v of the resonance curve 

[v-i (a-NO-k.v cos 8)]-', 

i.e., if v/k,v < p / d 2 ;  v, = v cos0. From this inequality 
it followsthat v<Iwo-N51I. AtB=4.104 G (51=6.101' 
sec -I), cp = and kG! = 30, there are  two waves in 
the fermmagnet. For one of them w,- 51 =0.0251, and 
for the other 51 - w0=0.851, so that the last inequality 
i s  satisfied at a collision frequency v 5 101° sec-', which 
i s  typical of sufficiently pure materials at low tempera- 
ture. It can be noted that the system of inequalities (10) 
i s  likewise easily satisfied at the chosen values of the 
physical parameters. The most convenient for observa- 
tion i s  the right-polarized wave in cases when it i s  the 
only mode near the cyclotron resonance. Far from anti- 
resonance, this is the wave b,, and in particular at wo 
-us its dispersion law is determined by (181, while at 
w, =NG! it is the wave bi ,  the dispersion law for which 
at p >> 1 is of the form (23). 

The existence of a weakly damped wave in a metal in 
an oblique magnetic field leads to inversion of the cy- 
clotron-resonance line. By determining the position of 
the inverted peak as  a function of b and cp, we can re- 
construct the spectrum of the wave. The value of the 
wave vector is specified by the condition (11). At a 
fixed frequency of the external electromagnetic field, 
the resonant value of the induction B,, which corre- 

sponds to the inverted peak, is given by the expression 

where B d  = eN/wmc, and determines the cyclotron- 
resonance line in a magnetic field parallel to the sample 
surface. The expression for B, makes it also possible, 
given w, to estimate the maximum interval A.Z3 of the 
change of the induction field, i.e., the interval near B, 
in which one should expect the appearance of the invert- 
ed peak. Since p  << dk, it follows that hB << 2B,cp a/N. 
We note also that the intersection of the spectral curves 
of the weakly damped wave and the magnetostatic wave 
can apparently be used to observe weakly damped waves 
at wo=ws,  by exciting the magnetic subsystem of the 
ferromagnet. 
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