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I t  is shown that for an arbitrary electron elastic scattering length I, and for d < (1i1,)"2 (d is the point contact 
d i e t e r  and I, is the electron-phonon relaxation length) the second derivative of the current with respect to 
voltage at the point contact is proportional to the electron-phonon coupling (EPC),transport function 
G'"' = e2(w)F(o), which diiers from the isotropic EPC function g(w) = a2(w ).F(w) (Eliashberg function) by 
the presence of a K-factor. The mean value of the latter is (K) = (a')/a2 = 0.5891i/d in the dirty limit 
I, <d, whereas for the model with an opening in a pure metal (Ii >d) we have (K) = 0.25. The results signifies 
that point-contact spectroscopy should be feasible in a metal with an arbitrarily small elastic scattering length. 
The magntiude of the K-factor is expressed in terms of the probability for scattering of electrons with a 
momentum p at a point r [Eq. (2.29)] and for arbitrary values of the Knudsen parameter li/d. 

PACS numbers: 71.38. + i, 72.15.Qm, 72.10.Di 

1. INTRODUCTION 

The nonlinear dependence of the current and the volt- 
age in point contacts of normal metalsis2 makes it pos- 
sible to  reconstruct the electron-phonon coupling (EPC) 
function of the metal G(w) =h2(w)F(w), where ~ ( w )  is 
the phonon state-density function and 02(w) i s  the squared 
matrix element, averaged over the Fermi surface, 
of the electron-phonon coupling. As shown in Ref. 3 ,  
the d?/dv2 is proportional to  the function G(w) for pure 
single-crystal point contacts, and the definition of G(w) 
contains the K-factor that characterizes the probability 
that the electron will pass through the opening between 
the metals. 

According to  the t h e ~ r y , ~  for a round opening1) 

dS,. as, 
G(")=  EJ: J v1,(2na)3 W Z . - K ( P ,  p r )6 (u - r : . - )  /j; 

= a ' ( o ) ~  ( a ) ,  
(1.2) 

where i s  the squared modulus of the matrix element 
of the interaction of the electrons with the branch ff of 
the phonon spectrum, 

~ ( w )  is the state density of the phonons, &2(w) differs 
from the square matrix element 02(w) averaged over 
the Fermi surface in that Eq. (1.2) contains the function 
K(p, p'). The known function g(w) =(x2(w)~(w) [expres- 
sion (1.2) without the K-factor] is the isotropic Eliash- 
berg EPC function. In contrast to  the latter, G(w) de- 
pends on the direction in the crystal and makes it pos- 
sible to  study the anisotropy of i t s  phonon s p e ~ t r u m . ~  
At absolute zero temperature, the function (1.1) takes 
the form 

Here d i s  the orifice diameter, R =dv/dl i s  the dynamic 
resistance of the contact. The foregoing expressions 
a re  valid if the impurity scattering length is large com- 
pared with the opening diameter. It will be shown below 
that they remain in force [with the form of K(p, p') mod- 
ified] also in a more general case. 

Verkin et ~ 1 . ~  have shown that, depending on the ratio 
of the contact diameter and the elastic (1,) and inelastic 
(1,) electron scattering lengths, three spectroscopic 
regimes can be realized: ballistic (d << I,, I,), diffusion 
[I, << d<< (1f1,)"2], and thermal (d >> l,, 1,). A theory of 
the thermal regime is also presented in that reference. 
The diffusion regime was considered in a preceding 
paper6 where it was shown that the form of the deriva- 
tive R- '&/~v describes as  before the spectrum of the 
electron-phonon coupling. The treatment in Ref. 6, 
however, was based on a qualitative model of a channel 
with a specific carr ier  scattering law. It was noted 
that the maximum of the phonon state density corre- 
sponds to maxima of the derivative of the differential 
resistance with respect to  voltage. Thus, Ref. 6 led to  
the important possibility of studying, with the aid of 
point-contact s p e c t r o s ~ o p ~ , ~  not only perfect single 
crystals, but also of alloys of strongly deformed o r  
amorphous metals. An experimental study of point- 
contact centers in alloys was carried out in Ref. 7 and 
confirmed this conclusion. 

The purpose of the present article is to  develop a con- 
sistent theory of point-contact spectroscopy in the dif- 
fusion regime, i.e., in metals with finite elastic- scat- 
tering length in the limit 

where X = ( ~ ~ 1 , ) " ~  i s  the electron "cooling" length, i.e., 
the length over which the energy acquired by the elec- 
tron from the field is consumed by the excitation,of the 
phonon spectrum. In contrast to  the preceding paper,6 
where a model collision integral was used, we consider 
in the present paper a more general form of electron 
elastic scattering, both from point defects (62.1) and 
from delocalized inhomogeneities due to  random elas- 
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tic-deformation fields (02.2). Just a s  in the preceding 
investigations5 we neglect the capture (reabsorption) 
of the nonequilibrium phonons in the point contact, 
which produce according to Ref. 8 a background for the 
function R - ' ~ R ( v ) / ~ v ,  but also multiphonon processes 
that lead to  replicas of the spectrum at multiple fre- 
quencies.' An expression that generalizes the results 
of the theory of Ref. 6 is obtained for the K-factor. 
This expression i s  valid for point contact in the form of 
a long impurity-containing channel which connects pure 
metallic conductors. We consider in the present paper 
the electric conductivity of point contacts of varying 
cross  sections, so  that the transition from the model 
with a round opening to  the model of a long channel can 
be tracked (§03,4). An interpolation procedure i s  pro- 
posed that makes it possible, i f  the condition d << X is 
satisfied, to calculate the elastic and inelastic compon- 
ents of the resistance of the point contact at arbitrary 
values of the Knudsen parameter li/d (64). It is also 
shown that in the diffusion limit the average value of the 
K-factor can be represented in universal form that is 
valid for a multicontact system of arbitrary geometry 
($3). 

2. NONLINEAR ELECTRIC CONDUCTIVITY OF 
MICROCONTACT I N  THE PRESENCE OF 
SCATTERERS (GENERAL RESULTS) 

An analysis of the electric conductivity of a dirty 
point contact should include an examination of the inter- 
action of the electrons with other scatterers.  Depend- 
ing on the nature of these scatterers one can consider 
the interaction of electrons with point defects of the 
structure and with impurities, o r  else their motion in 
stochastic elastic-deformation fields. In this section 
we consider both elastic-scattering mechanisms. 

1. Electric conductivity of point contacts with pointlike 
elastic-scattering centers 

The kinetic equation for the electron distribution 
function in the presence of elastic scattering by point- 
like defects a s  well a s  inelastic scattering by phonons 
i s  of the form 

where Ii{f,} i s  the elastic-collision integral, 

and ~,~{f,} is the integral of the collisions with the pho- 
nons: 

w;,) is the squared matrix element of the scattering 
from the impurity, and is the squared matrix ele- 
ment of the electron-phonon coupling. The electric 
field eE = - ~ @ ( r ) ,  determined from the electroneutral- 
ity condition, is expressed in terms of the voltage V ap- 
plied to  the point contact: 

FIG. 1. Trajectory of electron in a point contact in the dif- 
fusion limit. 1-Trajectory arriving at the pint r from 
+ w  ; 2-trajectory of flight from -a. 

Since the current spreads out with increasing distance 
from the point contact, the disequilibrium of the elec- 
tron system decreases, s o  that the distribution function 
should satisfy the boundary condition 

f p ( l " ~ ) = n ~ ( ~ p ) .  (2.5) 

The boundary condition in the surface C of the point 
contact (F'ig. 1) is  determined by the character of the 
electron reflection. Hereafter, however, we shall con- 
fine ourselves mainly to extremely dirty contacts, li 
<< d. In this case the physical results should not depend 
on the character of the scattering of the electrons by 
the surface C. We therefore assume for simplicity the 
scattering by the surface C to be specular (the subscript 
R means specular reflection of the vector p in the plane 
tangent to the contact ~ u r f a c e ) ~ :  

f p ( r E 2 )  = f p ~ ( r E Z ) .  (2.6) 

Point-contact spectroscopy is possible because of the 
relatively weak intensity of th'e electron-.phonon relaxa- 
tion, at which the inequalities d ,  1, <<I, a re  satisfied. 
In this limit it i s  possible to formulate a perturbation 
theory in terms of the electron phonon collision inte- 
gral  I,i,{f,). We represent the distribution function f, in 
the form of a ser ies  in the parameter d/l,: 

f P ( r )  =fd" ((1.1 +fi" ( I )  + . . . . (2.7) 

For the functions fjO' fj i '  we obtain from the kinetic 
equation (2.1) the chain of equations 

We have introduced here an increment eE1 =-a1 to the 
self-consistent field eE; of the first  order in the param- 
e ter  d/l,. 

The elastic and inelastic components of the point-con- 
tact current, I. and I, a r e  given by the relations 

Io.,=e J d~ J c ~ z , f ~ ~ " '  ( r )  v. (2.10) 
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It is convenient to represent the zeroth-approximation 
distribution function fiO' in the form6 

f ~ " ) = a p ( r ) f o + + [ l - a p  ( r )  l f o - ,  (2.11) 
f o * = n x [ ~ p + @  ( r )  T e V / 2 ] ,  

(2.12) 
where 1 - ctp(r) is the probability that the electron, 
which has at the point r a momentum p, arrives there 
from -a, (the left half-space), whereas cy,(r) i s  the 
probability of arrival  at this same point from +- (the 
right half-space) (see Fig. 1). 

The equation for ct,(r) can be obtained from the kinetic 
equation (2.9). If account is taken of the fact that the 
function f i  depends only on the electron energy ED, a s  
well a s  of the definition eE = -VO, this equation can be 
written in the form 

As will be shown below, a,(r) varies in momentum 
space in a region of size p-p,, while in coordinate 
space it varies over lengths r - d .  The presence of the 
field term e ~ a a d a ~  in Eq. (2.13) leads therefore to  
small  corrections for the function ct,, inasmuch a s  in 
the real  case the inequality elf/&, << 1 is always satis- 
fied. As a result, Eq. (2.13) can be rewritten in the 
form 

8% v-- 1, {a , }  =O. 
ar  

This does not include the electric field. The boundary 
conditions for a, follow from the analogous relations 
(2.5) and (2.6) for the distribution function 

The inelastic increment f,"' t o  the electron distribu- 
tion function i s  obtained from the solution of Eq. (2.9) 
with zero conditions at infinity 

At ~v /E ,<<  1 the kinetic equation (2.9) can be repre- 
sented in the form 

an, 
1;" ( r ) = 0 1 ( r )  -+ x P ( ~ ) .  a E 

The boundary conditions for XD(r) a re  of the form 

The solution of the boundary-value problem for the 
function X, can be represented with the aid of the Green's 
function 

gpp. ( r ,  r') -g-P.-,(rl, 1 ) .  

which satisfies the relations 
a 

vr-gpp.(r,r')+Ii{gpP,(r,r')}=-6(p-pf)8(r-r'), (2.20) 
dr' 

g,,, ( r ,  r '+-)  =0, g p p ,  ( r ,  rr=Z) = g p p p .  ( r .  ~ ' E C ) ,  (2.21) 

where 

Using Eqs. (4.5) and (4.6) it is easy to  obtain expres- 
sions for the inelastic increments to the distribution 
function f,"' and to the point-contact current I t :  

where the introduced function G,(r) is of the form 

G ,  ( I )  = j d ~ j  dp 'vZfgp . ,  (r', I ) .  (2.25) 

Starting from Eqs. (2.20)-(2.22) and relation (2.251, we 
find that the function G,(r) is a solution of the following 
boundary-value problem: 

Comparing these equations with the boundary-value 
problem (2.14) and (2.15) for the elastic electric con- 
ductivity, we easily find a connection between the 
Green's function G,(r) and the previously introduced 
function ct,(r): 

G p ( r )  = a - , ( r )  - B ( z ) .  (2.28) 

Equation (2.24) allows us to  represent the second de- 
rivative of the current-voltage characteristic of the 
contact in the form ( l . lk(1 .3) .  By using in this case 
Eq. (2.28) for the factor K(p, p'), an expression can be 
obtained that is  valid at an arbitrary value of the pa- 
rameter l t /d  and for an arbitrary geometry of the con- 
tact. This expression i s  of the form 

(2.29) 
3n v, 

K ( p ,  p') = -- 32 d  j d 3 r [ a p ( r )  -ap. ( r )  ] [.-,(I) -a-p. ( r )  1 / d S ( v a , ) ,  

where S i s  the cross  section of the contact. In the sec- 
tions that follow we shall obtain specific equations for 
the K-factor under special assumptions concerning the 
geometry of the contact and i ts  purity. 

2. Electric conductivity of point contact in the presence 
of random elasticdeformation forces 

Contamination of a point contact can be due in a r ea l  
case also to  the presence of scatterers that a r e  not lo- 
calized in space. Such "defects" a r e  the fields of the 
elastic s t resses  and of dislocations in metals, o r  the 
charged impurities in semi-metals and semiconductors. 
In the present section we show that in this case the cal- 
culation of the point-contact spectrum can be reduced to 
a determination of the function a,, which characterizes 
the elastic electric conductivity of the contact. 

In the presence of extended defects, their influence 
cannot be accounted for by introducing an elastic-colli- 
sion integral that is  local in space. If the potential of 
the scatterers varies slowly i n  space in the scale of the 
de Broglie wavelength of the electron, their presence 
can be taken into account by introducing into the dynam- 
ic part of the Boltzmann equation the force F, that acts 
on the conduction electrons. The kinetic equation then 
takes the form {cf. Eq. (2.1)] 
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The influence of force Ff =-VUf reduces to a distortion 
of the trajectories of the electron motion, which can 
take a rather tangled form in the complicated potential 
of the scatterers. 

In exactly the same manner a s  in the preceding sec- 
tion, we can formulate a perturbation theory in terms 
of the electron-phonon relaxation, and introduce dis- 
tribution functions fdo' and f;l' of the zeroth and first 
order in the parameter d/l,, respectively. These func- 
tions are  satisfied by Eqs. (2.8) and (2.9) if the elastic- 
collision integral ~ ~ { f , }  in these equations i s  replaced by 
the field term -Fi af,/ap. We shall find it convenient to 
introduce the transition probability density P(r, p [ r ' ,  p'; 
T) of an electron moving from the vicinity of a phase- 
space point r' , p' into the vicinity of the point r, p within 
a time T. Using this quantity, we easily rewrite Eqs. 
(2.8) and (2.9) in integral form 

- 
H(pf, r'lp, r ) =  drP(p',r' lp,  r; z). (2.33) 

0 

We have assumed that the motion of the electrons in 
the field Ui can be regarded a s  an aggregate of uncorre- 
lated elastic scatterings through small angles. At suf- 
ficiently high scatterer density, the main contribution 
to the integral (2.33) i s  made by times ~2d /v , ,  which 
greatly exceed the time TO of the correlated motion. 
The changes of the momentum over different time in- 
tervals that are separated from one another by a time 
longer than T, a re  statistically independent. The state 
density of the transition P(pt ,  r' I p ,  r ; ~ )  at T>> T, satis- 
fies in that case the closed integral equation (the Smol- 
uchowski equationi0' "I3' 

P ( p ,  rlp', r'; T) = j d p M d ~ u ~ ( p ,  rlp", r"; z-z,) P(pr', rNlp', r'; TI). (2.34) 

The assumption that the scattering i s  relatively weak 
on the correlated-motion segments (the assumption of 
the "softness" of the scatterers)  means that the time T[ 

in which an appreciable change takes place in the elec- 
tron velocity greatly exceeds the time T ~ ;  T( >> T,,. This 
condition means the existence of a time scale such that 
the changes in the electron velocity becomes uncorre- 
lated, whereas the characteristic changes of the coor- 
dinate p, r a re  still small. The last circumstance makes 
it possible to  obtain, with the aid of the Smoluchowski 
equation (2.341, a differential Fokker-Planck equation. 
For an isotropic electron dispersion law this equation 
takes the form4' 

We have left out of the last equation the field term 
e ~ a g / a r ,  which is  small in t e rms  of the parameter 
e ~ / & ,  << 1 [see (2.13) and (2.1411. 

Equations (2.35) and (2.36) do not describe the change 

of the kinetic energy of an electron moving in the scat- 
t e r e r  field U,. This conservation law is satisfied accu- 
rate to fluctuations of the random potential Uf, which 
we assume to  be small  compared with the characteristic 
energies of the problem. The quantity rf in (2.35) and 
(2.36) is a phenomenological parameter that determines 
the rate of fall-off of the electron velocity correlator on 
the trajectory of the random motion. The operator A, 
constitutes the dimensionless angular part of the La- 
place operator in the electron-momentum space. The 
boundary conditions for Eqs. (2.35) and (2.36) follow 
from the conditions for the spreading (2.5) and reflec- 
tion (2.6) of the electrons on the point-contact surface. 

Just as  in the preceding section, the function fd0' can 
be expressed in t e rms  of t h e  probability ff,(r) of tKe 
arrival  of an electron at a point r ,  p from the region r 
==, z > 0. This connection is determined by Eqs. 
(2.11) and (2.12). The function ff,(r) is then the solution 
of the following boundary-value problem: 

The inelastic component of the point-contact current 
can be represented in the form 

Comparing the equations for and a, with the anal- 
ogous equations of the preceding section, it is easy to 
note that they a re  similar in structure. The only dif- 
ference is that in the case of distributed scatterers the 
corresponding "scattering operator" i s  not integral but 
differential. The functions G, and a, a r e  also connected 
by a relation similar to (2.28): 

The general expression (2.29) for the K-factor, obtain- 
ed in the preceding section, remains the same. In the 
present case, however, the function a, must be deter- 
mined from the boundary-value problem (2.37) and can 
differ from the function a, for the problems with point 
scatterers.  In the next section it will be shown that in 
the diffusion limit << d) the form of the function a, 
is  independent of the character of the elastic scattering. 

3. PHONON SPECTROSCOPY IN THE DIFFUSION 
LIMIT 

We consider the case of extremely dirty point con- 
tacts, for which the condition ii/d<< 1 i s  satisfied. In 
this case the kinetic equations (2.8) and (2.9) can be 
solved by expanding in the small parameter l,/d. If it 
is  recognized, however, that these equations them- 
selves a re  the results of an expansion of the initial 
equation (2.1) in the small parameter of the electron- 
phonon relaxation d/l,, then for the perturbation theory 
indicated above to be correct it i s  necessary to satisfy 
the additional inequality l,/d >> d/l, which is  equivalent 
to the criterion d<< (l,~,)~'"iven in $1. 
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We represent the quantity a,(r) by a ser ies  in the 
small  parameter li/d. With the aid of (2.14) we then 
obtain 

aa, 
ap(r) =ao (I) -ziv- . (3.1) 

ar 

We have confined ourselves in (3.1) to consideration of 
elastic scattering in the isotropic model (~&)=Llfi$,) 
and of a spherically symmetrical ca r r i e r  dispersion 
law. We have introduced in (3.1) the transport mean 
f r e e  path time 7,: 

The zeroth approximation ao(r) in t e rms  of the pa- 
rameter li/d should be obtained from the solution of the 
following boundary-value problem (n is the normal to  
the contact surface z): 

According to (2.11), ap ( r )  determines the electron dis- 
tribution functionfp) and, with the aid of the electro- 
neutrality condition (2.4), the distribution of the elec- 
t r ic  field 

We note that the solution of Eq. (2.37) for the function 
irp(r) that corresponds to elastic scattering by deloca- 
lized center in the diffusion limit uFri<<d,  can also be 
represented in the form (3.1) and (3.2). Thus, all the 
results obtained below for dirty contacts a r e  indepen- 
dent of the character of the elastic scattering of the 
electrons. 

As seen from relations (3.1) and (3.4), a s  well a s  
from Eq. (2.11), in the dirty limit the filling of the elec- 
tronic states in momentum space is characterized by 
two concentric Fermi spheres 

Inside the smaller sphere, the function f,"' is equal to 
unity, and outside the larger sphere it i s  equal to zero. 
In the remaining part of p-space the filling is not in 
equilibrium, is anisotropic, and 0 < fiO' < 1. The dis- 
tribution function is  symmetrical with respect to  rota- 
tions of the momentum p about the electric-field inten- 
sity vector E drawn through the point p=O (Fig. 2). 

The boundary-value problem (3.3) can be solved in the 
sufficiently general case of a contact in the form of a 
single-cavity hyperboloid of revolutioni3 (see Fig. 1). 
The function a0(r) for such a contact is of the form (r i s  
the radius vector drawn from the center of the contact) 

ao(r) =O (z) -(po(r) sign z ,  

1 
vo(r) = arctg 

The result makes it possible to  calculate directly both 
the elastic and inelastic components of the current in 
the point contact. 

Under the condition e ~ / & , < <  1, the elastic component 
of the current satisfies Ohm's law. The resistance R 
of the contact i s  of the form ( ~ ~ = n e ~ ~ ~ / w z  is the conduc- 
tivity of the metal and a =d/2) 

FIG. 2. Filling of electronic states (shown hatched) in p- 
space: a) in a point contact, b) in a uniform current state. 

We have introduced in (3.7) the area  S = nd2/4 of the 
smallest contact cross  section and the effective length 
of the contact L (see Fig. 1): 

We note that according to  (3.6) we obtain, in the limit of 
a flat round contact for which b =d/2 (see Fig. I ) ,  the 
well-known result R - I  = uod (Ref. 14). 

The form factor K(n, n') is calculated by substituting 
in the general expression (2.29) the function a, obtained 
for the considered contact (Fig. 1) [see (3.1), (3.511. 
After simple calculations we obtain (n = p/pF, n' = p'/P,) 

K (n, n') --K (n-n') 

- 9n 1, (n,-n,')2 (I-'/,xz) +'/,(n-n')'x2 --- 
32 d i +xz (3.9) 

The parameter x in (3.9) is determined by the geometry 
of the contact and i s  expressed in terms of i t s  diameter 
d and effective length L [see (3.811: 

The variation of x is restricted by the limiting values 
for a long channel (x =0)  and a round opening (x = 1). 

As seen from (3.91, in the case of a long channel the 
anisotropy of the form factor K(n - n') is pronounced 
most strongly. In this limit, we obtain from (3.9) the 
expression 

9n 1, 
K c h  (n-n')= --(n,-n.')2. 

32 d (3.11) 

For a round opening, the K-factor depends also on the 
component, perpendicular to the contact axis, of the 
vector n - n' : 

9n I 
K OP (n-n') = --L[(nz-n,')'+(n-n')". 

128 d (3.12) 

In conclusion, we present the values of the K factors 
averaged over the Fermi surface: 

where we consider, to complete the picture, both a 
dirty (Ii << d,  L )  and a pure (Ii >> L ,  d) channel (of length 
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L )  And opening (of diameter d). In the case of a clean 
opening we have3 

i.e., a, i s  equal to unity if the vector p lies within the 
solid angle a ( r )  at which the opening is seen from the 
point r ,  and to zero when p cSl(r) .  Calculation of the 
integral of (2.29) yields in this case the known result3 

In,nZr.l 
K (n, n') = 0 (-nZnz1). 

In,n'-n,'nl 

Taking the azimuthal symmetry into account, we ob- 
tain, after substituting (3.15) in (3.13), 

Calculation of this integral yields'" 

( K ) p u r e  op-i14. (3.17) 

For a pure channel [see (4.2) below] the average K- 
factor is5' 

It is proportional to the length of the channel, a reflec- 
tion of the fact that the length of the inelastic interac- 
tion of the electrons with the phonons increases with in- 
creasing channel length L. One must not attach too 
much importance to this circumstance, however, since 
a long channel with specularly reflecting walls i s  pat- 
ently an unrealistic model of a point contact. Much 
more realistic i s  the model with the opening. This i s  
evidenced, in particular, by the good agreement be- 
tween known data and the value of the electron-phonon 
interaction in point contacts, a s  determined from the 
intensity of the point-contact (PC) spectrum16 in ac- 
cordance with (1.5). 

In the dirty limit, the values of the K-factor, aver- 
aged over the orientations of the vectors n and n', coin- 
cide for an opening and a channel, and are  equal to [see 
(3.11) and (3.12)] 

3n I 1 ( K ?  = - - ! - = 0 . j 8 g ~ .  
diri 16 d d 

In the diffusion case, this result i s  more general and 
does not depend on the concrete geometry of the con- 
tact. Indeed, changing over to the quantity 

d 
q (n-n') = - K (n-n') 

l i  

we obtain in accordance with (3.1) and (2.29) 
9n 

q(n-n') = -Jdrl (n-n') vaol8/f dSVao, 
32 

where dS i s  an area element of an arbitrary section of 
the contact. After averaging over the orientations of 
the vectors n and nl, Eq. (3.20) yields 

The validity of the last equation follows from the fact 
that the function ff0(r)  is  harmonic and from the bound- 
ary conditions, which a re  valid in the diffusion limit 
[see (3.3)]. It follows in particular from (3.21) that the 

isotropic PC spectra, which a r e  proportional to the 
averaged K-factor, depend in the diffusion limit only on 
the mean free path I ,  and a re  insensitive to  the geom- 
e t ry  of the contact region, including the possible pres- 
ence of many contacts in this region. 

4. POINT-CONTACT SPECTRUM AT ARBITRARY 
VALUE OF THE PARAMETER /;Id 

An essential parameter used in the preceding section 
was the homogeneity of contamination of the system 
[T, ( r )  = const]. As a result of this homogeneity, the 
function ~ , ( r )  could be represented in the form (3.1), 
with a, independent of the electron velocity v. The last 
circumstance made it possible to average the form fac- 
tor K(n, n') over the orientations of the vectors n and n' 
in explicit form [see (3.20) and (3.2111. In the case of a 
strongly inhomogeneous distribution of the impurities 
(including the contact between the pure and dirty re- 
gions of the metal), the function a,(r) can no longer be 
represented in the form (3.1), and-relation (3.21) may 
not hold for the averaged form factor. By way of ex- 
ample of such a system we consider a dirty channel of 
diameter d and length L ,  joining pure bulk metals. 
Such a channel was considered earl ier6 under the condi- 
tion L >> d with a model used to take into account the 
elastic scattering of the electrons. Generalizing the 
expressions obtained in Ref. 6 for the functions ff, to in- 
clude the case of arbitrary values of ~ / d ,  we obtain in 
accordance with the general relation (2.29) for the form 
factor of the channel 

where Ko(n, n') is the form factor of a pure opening [see 
(1.411. 

Equation (4.1) describes the dependence of the aniso- 
tropy and of the form factor on the parameters ~ / d  and 
l,/d, which characterizes the geometry and degree of 
contamination of the contact. It takes a simpler form 
for the cases of dirty and pure channels6': 

An analysis of the electric conductivity of homogen- 
eously contaminated systems at an arbitrary ratio l,/d 
is more complicated, since a model description of elas- 
tic scattering, similar to  that considered e a r ~ i e r , ~  is 
not adequate in the present case. A more rigorous ap- 
proach to this problem calls for an exact solution of Eq. 
(2.14) with the boundary conditions (2.15). In this case, 
when w;'=const [see (2.2)], the integro-differential 
equation (2.14) can be represented in the form 
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We have introduced in (4.4) the time t and the coordin- 
ate r,,, on the electron-trajectory that s tar ts  out from 
the point r, -p, at the time t = O ,  with account taken of 
the specular reflection from the surface of the contact 
(Fig. 3). If (4.4)-is integrated over the directions of the 
vector p (SdSlm/4n.. .), then we obtain for the function 
(Y(r) an integral equation, t o  the solution of which the 
calculation of ctm(r) reduces. The problem of finding 
z ( r )  is still complicated and does not admit of an anal- 
ytic solution. However, an interpolation procedure can 
be proposed, which yields the solution at an arbitrary 
value of the parameter l,/d. If ct,(r) is chosen in the 
form 

in which use is made of the function ffO(r), which is a 
solution of the boundary-value problem (3.21, then, a s  
can be easily understood, we obtain the correct  value 
for the distribution function fto '(r)  in the dirty limit lI 
<< d. 

It can be verified by a direct check that relation (4.5) 
determines the correct  ft0'(r) dependence also in the 
pure limit I, >> d. Thus, the choice of the distribution 
function f,"' in the form (2.11) and (4.5) ensures correct  
limiting values of the resistance of the point contact in 
the pure and dirty limits. At an arbitrary ratio of the 
length lI and d, Eq. (4.5) yields an interpolation relation 
for ~ ( l ~ / d ) .  This relation, calculated for a round open- 
ing in a plane partition with the aid of relations (2.10) 
and (2.4) is shown in Fig. 4. As seen from the figure, 
the form of the function ~ ( l , / d )  differs little from the 
results obtained by wexler,15 who determined the re- 
sistance of a round orifice by a variational method. 

The interpolation expression (4.5) can be used to cal- 
culate the K-factor at arbitrary values of l,/d. It i s  
convenient to  do this for a long channel (L >> d). In this 
case f f0 (z )  is of the form 

Calculating the function ct,(z) from Eq. (4.5), we ob- 
tain the form factor in accordance with (2.29) in the 
form (X = I,/L) 

FIG. 3. Illustrating the calculation of the function ap(r). 

FIG. 4. Dependence of the reduced electric conductivity of a 
flat round contact on the Knudsen parameter ll/d (R, is the 
resistance of a pure point contact, d is  its diameter). Curve 
1-calculation by a variational method.15 Curve 2-results 
obtained by the interpolation formula (4.5). 

For an arbitrary geometry (L/d 2 1) the interpolation 
procedure makes possible only a numerical calculation 
of the K-factor a s  a function of the parametry l,/d. In 
accordance with the "theorem" (3.21) at small  values, 
(K) is a linear function of i,/d with slope that does not 
depend on the contact geometry. In the pure limit Il 
>> d the function (K) tends to  a limiting value (K), that 
depends on the parameter L/d [see (4.211: 

A qualitative plot of (K) against the parameter l,/d i s  
shown in Fig. 5. 

5. DISCUSSION OF RESULTS 

The results  of the present paper pertain to the case 
when the electron energy scattering length X = (111,)"2 
is large compared with the characteristic dimension 
of the point contact. In this limit, an electron, passing 
through the localization region of the accelerating field, 
does not perturb the phonon system greatly. This 
makes possible phonon spectroscopy similar to  that in 
the ballistic regime It >>d (Ref. 3). Calculation of the 
point-contact spectrum reduces to  the calculation of the 
form factor ~ ( p ,  p'), which depends on the geometry of 

FIG. 5. Dependence of the average K factor on the parameter 
li/d for contacts with different values of the ratio L/d. At 
small lt/d the function (IC) takes the universal form (K) = 0.589 
Z,/d. The arrows show the limiting values of the K-factor at 
ll/d = m , corresponding to different values of L/d: 1) L/d = 0, 
2) L/d= 0.3, 3) ~ / d =  0.6. 
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the contact and on the degree of i t s  contamination. In 
the most general case,  the determination of the form 
factor K can be reduced to  an analysis of the point- 
contact elastic electric conductivity characterized by 
the probability function a,(r) [ E ~ .  (2.2911. Using the ob- 
tained relation (2.29), we can calculate the K-factor for 
different particular cases. In the diffusion limit li <<d 
the intensity of the point-contact structure decreases by 
a factor li/d compared with the pure limit. The value 
of the K-factor averaged over the directions of the mo- 
menta p and p', according to theorem (3.211, depends 
linearly in the diffusion limit on the Knudsen parameter 
li/d, with a slope that i s  not sensitive to the geometry 
of the contact region, including the possibility of many 
contacts in this region. An analysis of the scattering by 
stochastic continuous inhomogeneities (strain fields) 
shows that in the diffusion regime their influence can be 
described by introducing the mean free path li and re- 
taining the form of the K factor obtained in the model 
with point-like elastic scatterers.  By way of example 
of an inhomogeneously contaminated contact, we con- 
sidered the model of a dirty channel connecting pure 
metals. 

The universality of the form of the function (~)(l{/d) 
in the region of small mean free paths, and the depend- 
ence of the limiting value @), at lt/d =- on the geom- 
etry of the contact, provide a favorable possibility of 
experimentally investigating the shape of the point con- 
tact. For this purpose it i s  necessary to normalize the 
measured spectrum in such a way that i ts  dependence 
on the parameter li/d at small li/d has the necessary 
slope [independent of the shape of the point contact, see 
(3.2111. From the intensity of the point-contact spec- 
trum in the pure limit it is possible to  determine u- 
niquely the shape of the point contact [the parameter 
~ / d ,  Eq. (4.81, Fig. 51. 

This study of metals with small  mean free paths by 
the method of point-contact spectroscopy is present 
only in the starting phase.6' * Our results explain the 
following experimental data given by Yanson and co- 
workers': the existence in dirty contacts of a point- 
contract spectrum whose shape coincides with that of 
the spectrum in pure contacts; the proportionality of the 
intensity of the point-contact spectrum to the Knudsen 
parameter li/d, and others. Thus, point-contact spec- 
troscopy method can yield information on the phonon 
spectra not only of pure single crystals but also of 
metals with arbitrarily small mean free path (alloys, 
films, metals subjected to  strong plastic deformation). 

' ) ~ ~ u a t i o n  (1.3) i s  valid at eV>> T. For a more general ex- 
pression see Ref. 3. 

2 ) ~ e  note that the analysis can be carried out also for an arbi- 

trary scattering characterized by a scattering indicatrix 
B (p, p.), of electrons by a surface. The principal relations 
of the present section [see (2 .28)  and (2.2911 are  valid also 
if the surface scattering has the symmetry property 
B(p ,  p.1 = B  (fl , p) . This property i s  possessed, in particular, 
by both specular and diffuse scattering from a surface. 

3 ) ~ h ~ s ,  trajectories of electrons in the field of scatterers are  
described a s  trajectories of a Markov random process. 

4)The procedure for deriving these equations recalls the de- 
rivation of an equation for  the distribution function of the or- 
ientation of a flexible polymer chain.12 

5 ) ~ h i s  value differs by 25% from that obtained earlier6 with a 
model collision integral. 

6 ) ~ e  note that according to (4 .2) ,  in the case of a long pure 
channel the asymptotic function G(w) [see (1.2)1 at w << w S (wD is  the Debye frequency) is of the form G(w) = (w/wD) . 
This dependence differs from the relation G(w) = (w/wD)I, 
which i s  valid for a plane point contact with L / d c  w/%. 
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