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The stability of the nonequilibrium states of a superconductor with a finite difference between the populations 
of the electron- and hole-like spectral branches is investigated. It is shown that an instability similar to the 
Cooper instability of a normal metal arises at a sufficiently large value of the imbalance. This eliminates the 
imbalance within quantum-mechanical (nonkinetic) time periods. The consistency of the allowance for the 
imbalance in the nonequilibrium Ginzburg-Landau equations is discussed. 

PACS numbers: 74.20. - z 

1. INTRODUCTION 

The purpose of the present communication is to show 
that the nonequilibrium state of a superconductor is un- 
stable against order-parameter  fluctuations when the 
imbalance between the populations of the electron- and 
hole-like branches of the excitation spectrum i s  suffi- 
ciently large. The physical cause of the instability 
consists  in the following. 

Let an imbalance between the populations of the elec- 
tron- and hole-like spectral  branches be produced in a 
superconductor. Fo r  simplicity, we limit ourselves to 
the spatially homogeneous case  with T ,  - T << T,. (Here 
T ,  and T a r e  respectively the superconducting-transi- 
tion and sample temperatures.) As shown by Tinkham,' 
in such a situation the imbalance relaxation time T~ i s  
much longer than the energy-relaxation t ime T, of the 
quasiparticles: 

meaning of a shift of the excitation energy reference 
level, and should not en ter  into any observable quanti- 
t ies .  But a normal metal a t  T c T ,  i s  unstable against 
Cooper pairing; i t  i s  important that the increment of 
th is  instability be finite at  A =  0. Therefore,  the insta- 
bility s e t s  in ear l ie r ,  a t  those values of @ at  which A i s  
finite [the instability point is that value of ( = a d  a t  
which the instability growth r a t e  vanishes]. 

We shall see  that the development of the instability 
leads  to restructuring of the spectrum of the super- 
conductor and, a s  a result ,  to elimination of the im- 
balance. The characterist ic  time of this restructuring 
tu rns  out to be much shor ter  than T,. The foregoing 
arguments imply that: (1) the imbalance of the popula- 
tions of the branches of the energy spectrum cannot 
completely suppress the superconducting gap; (2) at  
some cri t ical  value, the imbalance re laxes  rapidly on 
account of quantum-mechanical (nonkinetic) mechan- 

~ . = e d / T ' ;  T ~ = T ~ T / A > T ~ .  i sms .  The purpose of the calculation below is to verify 
these ideas quantitatively. 

Here 0, i s  the Debye energy and A  is the energy gap in 
the superconductor. As  a result ,  there i s  established 
in the superconductor over a time period of the order  
T, a quasiparticle distribution f ~ n c t i o n l - ~  described 
when tO>> A by the formula 

where a = $n,f+ e p  i s  a gauge-invariant sca lar  poten- 
tial, x being the phase of the order parameter  and cp 
the electrostatic potential. 

It follows from the quasineutrality condition that the 
chemical potential v of the quasiparticles is equal to @ 
when small  correct ions of the o rde r  of A/T,,<< 1 a r e  
neglected. By substituting ( I )  in the self-consistency 
equation, we can verify2 that the presence of the imbal- 
ance leads to a decrease  of the gap: 

A"@) =A2(O) -2(D2. (2) 

From this it follows that the gap should vanish when 
= el = ~ ( 0 )  a. On the other hand, when A =  0 and iP 
= a, #0,  we in fact have a normal metal: iP, h a s  the 

2. DISPERSION EQUATION FOR THE ORDER- 
PARAMETER OSCILLATIONS 

We wish to investigate the dynamics of the order  pa- 
r ame te r  of a superconductor over t ime periods much 
shor ter  than T ~ .  -For the case  of distribution functions 
that a r e  even in 5 ,  (i.e.,  in the absence of an  imbal- 
ance), th is  problem has  been considered by Aronov and 
Gurevich5 through the investigation of the poles of the 
two-particle Green function. It will be convenient for  
us  to use another method, which is s imi lar  to the meth- 
od used by Volkov and Kogan6 to analyze the equilibrium 
case .  

We shall, in the spatially homogeneous situation of 
interest  t o  us, proceed from the system of equations 
for  the Green functions 

g ( p ,  t )  =-i(  [ a p + ( t ) ,  a ,++( t ) l  ), 

f(p, t ) = - i ( [ a p + ( t ) ,  a - . , ( t ) l ) ,  

in the form6 
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Here Z\ is the complex order parameter and X i s  the 
electron-electron interaction contant ( E  = 1). Equation 
(7) i s  the self-consistency equation. 

Equation (6) differs somewhat in form from the cor- 
responding equation given in Volkov and Kogan's pa- 
per.' We assume that the potential p, which does not 
depend on the space coordinates and the time, i s  in- 
cluded in the chemical potential c ,  + e p  of the electrons. 
Therefore the term 2ep does not occur in the round 
brackets, but the factor e2ewt enters in the second term 
instead. 

Let us, a s  usual, linearize Eqs. (5)-(7). We seek 
the solution in the form 

Here go, foeziet, and Ae2iat a r e  the values of the Green 
functions and the complex order parameter in the 
steady state characterized by the quasiparticle distribu- 
tion function n,. The quantity Q i s  connected with n, by 
the neutrality c o n d i t i ~ n ~ * ~ :  

Assuming that all the contributions a r e  proportional 
to eiwt, we obtain from the system (5)-(7) the following 
dispersion equation determining the frequency of the 
spatially homogeneous oscillations in the system, giv- 
en the quasiparticle distribution function: 

Let us apply this equation to the case A = 0, Q # 0 
(T  T J  discussed in the Introduction. From (9) we have 

Using the distribution function (1) with A =  0, we obtain 
from (10) the relations 

This solution describes an instability with a finite 
growth rate Im w, > 0, the growing order-parameter 
fluctuations ~ , e ' @ '  being, on account of ( l l a ) ,  indepen- 
dent of Q. 

To find the point where the instability appears (i.e., 
the point where Im w = 0), we must investigate Eq. (9) 
in the superconducting state. In this case the relation 
between A and n, i s  determined by the self-consistency 
equation, which in our notation has the form y = 0. We 
then have from (9) 

If the distribution function n, i s  even in 1, the right- 
hand side of Eq. (12) vanishes, and we arrive at the 
dispersion equation obtained by Aronov and Gurevich.' 

Using again the self-consistency equation Y =  0, we 
can reduce Eq. (12) to a form most convenient for us 
and applicable to both the superconductor and the nor- 
mal metal: 

It can be seen from the dispersion equation (13) that the 
characteristic values 5 ,  a r e  greater than o r  of the or- 
der  of max(w, A).   hen the characteristic values of 
Re w - A(O), i.e., much greater than A(@). Therefore 
the region of small values of <,-A is unimportant, and 
we can use for n, the function (1). Substituting (1) in 
(13) and expanding in powers of the small parameters 
A/T<< 1 and A/T,<< 1, we obtain from (13) the rela- 
tions') 

It should be borne in mind that A and @ a r e  connected 
by the relation (2). 

From (14) we obtain the instability point at which 
Im w =  0: 

Figure 1 shows the A(+) dependence and the charac- 
teristic values of Q and A. 

Thus, we have found that instability se ts  in at A =  A, 

>O. Notice that the instability considered i s  of the 
same type a s  the normal Cooper instability that con- 
verts a normal metal into a superconductor at T < T,. 

The smallness of A, and 9, - Q, i s  due only to the 
specific nature of the T, - T<< T, case. Equations (9) 
and (10) a r e  valid for an arbitrary distribution function. 
For  T-5 T, the distribution function n, no longer has the 
simple form ( I ) ,  since no hierarchy of relaxation times 
exists in this case. Nevertheless, the gap width &O) 

FIG. 1. 
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is the only characteristic energy scale of the problem. 
It can therefore be asserted that at T 5 T, all the phe- 
nomena will be qualitatively the same, and 9,-9, 

- 4 0 ) .  

It is important to note that Re wc= -29,, i.e., that 
the Z\ fluctuations that build up a re  precisely those 
which correspond to the steady equilibrium state in the 
absence of an imbalance. 

In conclusion let us, in the light of the results  ob- 
tained, discuss the time variation of the order parame- 
t e r  of a superconductor in the presence of a finite im- 
balance. Here we focus our attention on the simplest 
and at the same time often encountered case of tunnel- 
ing injection. [Let us note, however, that from our 
point of view Eqs. (9) and (12) and their corollaries a r e  
valid for spatially inhomogeneous systems as well if 
al l  the characteristic scales of the spatial variations 
a r e  much greater than the coherence length 5 .  There- 
fore, the results  obtained above a r e  applicable to a 
much broader class of systems.] 

We begin with the elucidation of the conditions under 
which the distribution function (1) is formed in the 
steady state.') We assume that the collisions of the 
quasiparticles with the phonons a re  responsible for the 
relaxation of the imbalance, and that T, - T << T,. As 
is well known, the quasiparticle-phonon collision inte- 
gral  includes two types of processes: 1) absorption 
(emission) of a phonon by a quasiparticle, the probabil- 
ity for which i s  wroportional to 

and 2)-quasiparticle-pair production (recombination) 
with the emission (absorption) of a phonon, the proba- 
bility for which is proportional to 

where p' = p+ tiq, q being the phonon wave vector. It 
can be seen that, for A<<lp,  l,,, the most probable of 
the processes of the type 1) a re  transitions within the 
same branch, i.e., the processes for which l,,2,. > 0, 
while the most probable of the processes of the type 2) 
a r e  those for which <,l,, < 0. Therefore, the processes 
of the type 1) establish over a time period -7, a distri- 
bution with fixed branch chemical potentials v+ and v-. 
The condition for the vanishing of that part of the colli- 
sion integral which corresponds to the processes of the 
type 2) for A<< ID, ip, then requires that v+ = -v-= v. 
From the quasineutrality condition it follows that v = 9. 
These arguments a re  inapplicable to the small region - 
5,s A. It is precisely this region that i s  responsible 
for the relaxation of the imbalance, and it i s  precisely 
because of this that T,= T~T/A>> T&. 

It i s  clear from the foregoing arguments that the 
steady state value of 9 is established by tunneling in- 
jection within a time T,, and is equal to 9 = ITT, ( I  i s  
the imbalance-injection rate). Substituting this ex- 
pression for 9 and T,=T&T/A in Eq. (2), we obtain for 
A' a quadratic equation whose solution is (cf. Ref. 12) 

This solution is depicted in Fig. l(b). For IT < A ~ O ) /  
23"T: the equation has two solutions, one of which is 
always stable, while the second i s  stable when A>A, 
= A2(0)/9T,. Under injection conditions corresponding 
to IT6> A ~ ( O ) / ~ ~ / ' T %  the system possesses no steady 
states. For  fixed I > A ~ ( ~ ) / ~ ~ / ~ T : T , ,  the imbalance in- 
creases  monotonically until it attains a level equal to 
a,, after which the instability begins to develop. As 
can be seen from the formulas given, the characteris- 
tic value of the instability increment for 9 > 9, is of 
the order of Im w-72' =A2(0)/9T,. This means that 
for time periods short compared to the kinetic times, 
the system strives to go over into the state in which 9 
= 0. As already indicated, this assertion follows from 
the fact that Re w =  -29. 

To identify decisively the state that the superconduc- 
tor will go into during the time period T,<< t<< T,, we 
need to find the nonlinear solutions to the system (5)- 
(7), which we do not a s  yet know how to do. Let us 
note that all the schemes known to us7-'' for describing 
nonequilibrium phenomena in superconductors a r e  
based from the very beginning on the assumption that 
the state of the condensate i s  established over a time 
period t, -T,. Meanwhile, the nonlinear equations (5)- 
(7) could, in principle, have oscillating solutions3) 
(which would die down over time periods equal to T ~ ) .  
This circumstance, in our opinion, limits the appli- 
cability of the existing approaches to the solution of 
problems of the type considered. 

Nevertheless, at low supercriticality levels we can 
qualitatively follow the dynamics of A and 9. Indeed, 
the time t, does not in any case exceed T,. But if the 
supercriticality i s  low, the characteristic time of the 
variation of the potential 9 turns out to be much longer 
than rC. AS a result, there ar ise  A and 9 oscillations, 
which a r e  schematically depicted in Fig. 2. These os- 
cillations can be experimentally observed, e.g., in 
A(t) and Q(t) measurements. Let us note that the char- 
acteristic frequencies of these oscillations a r e  of the 
order of T;', i.e., fairly high. 

We now discuss the experimental situation with tun- 
neling injection a s  applied to our discussion. We have 
assumed equal quasiparticle and thermostat tempera- 
tures (i.e., the absence of quasiparticle warm-up). In 
actual experiments warm-up always occurs to one o r  
another degree. But it i s  clear that i f  the warm-up 
does not suppress the superconductivity completely, all 
the qualitative phenomena described above a r e  pre- 
served. Furthermore, we have assumed that the im- 
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balance is relaxed by the phonons. But in the  case  of 
tunneling injection there  can a r i s e  competing imbalance 
relaxation mechanisms, e.g., scat ter ing by the im- 
purities under conditions in which the condensate veloc- 
ity v ,  is finite. It s e e m s  to  u s  that allowance for  these 
mechanisms does not change the above-discussed qual- 
itative picture. 

The problem of tunneling injection in the vicinity of 
T, has  been considered with allowance for  the imbal- 
ance by Ivlev,ll who predicts  the instability of super- 
conductors against spatially inhomogeneous fluctuations 
with a characteris t ic  sca le  of the o rde r  of the diffusion 
length I,,. Under certain conditions (sufficiently high 
ba r r i e r  transparency), this  instability can a r i s e  soon- 
e r ,  i.e., a t  1 < A ~ / ~ ~ ' ~ T : T , .  In this  case  the resu l t s  
can be applied to  a smal l  region of the superconductor 
with dimensions much smal le r  than L,; they indicate 
that the gap cannot be made to  vanish in the inhomoge- 
neous situation a l so  when the characteris t ic  inhomoge- 
neity dimension is g rea t e r  than the coherence length 5 .  
Fur thermore ,  the phenomena described by Ivlevll do  
not occur when eV>> A, where V i s  the potential differ- 
ence ac ros s  the tunnel junction. Let u s  note that an in- 
homogeneous state  can a r i s e  in isolated, sufficiently 
long tunnel junctions as a resu l t  of the flow of a cur ren t  
in the plane of the junction.12*13 We think that this  in- 
homogeneity will not change the described qualitative 
picture. 

In conclusion, we note that the instability considered 
can apparently manifest itself not only in the course  of 
tunneling injections, but a l so  in a much broader c l a s s  
of nonequilibrium s ta tes  for  a superconductor with a 
la rge  imbalance between the populations of the electron- 
and hole-like spectral  branches. The spatial homoge- 
neity condition (i.e.,  the requirement that the charac-  
te r i s t ic  scale of the inhomogeneity be much grea ter  
than the coherence length 5 )  is the only ser ious  limita- 
tion. In particular, we doubt the applicability of the 
nonstationary Ginzburg-Landau equations to  a situation 
with a la rge  imbalance. The point i s  that these equa- 
tions, which describe the Cooper instability of a nor- 
mal  metal at T < T,, do not reveal  the instability of a 
normal metal at  9 = a, ,  T < T,. We believe that the im- 
balance i s  inconsistently taken into account in equations 
of this  type. 

We a r e  grateful t o  A.G. Aronov, B.I. Ivlev, and V.S. 
~ h u m e f k o  for  useful discussions. 

The condition Re w = ~ 2 %  is a consequence of the specific 
form of the distribution function (I), and may not hold in the 
general case. Separating the imaginary part of Eq. (13) a t  
the instability point (Imw = 0), we obtain an equation for Re 
W : 

n ( g D = 3 [ l / , ( ~ e  W ) ~ - A ~ ] ' " ) = ' / ~ ,  

which yields the indicated condition for the distribution func- 
tion (1). A similar equation has been obtained by Aronov 
and ~ u r e v i c h ~  in the case of even np. 

')The distribution function (1) is derived In a number of 
papers.'-4 We expound here the known qualitative picture 
to facilitate the understanding oyf the subsequent discussions. 

3, We are  grateful to V. S. Shumeiko for demonstrating to us 
the existence of a solution of this type. 
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