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The stability of the nonequilibrium states of a superconductor with a finite difference between the populations
of the electron- and hole-like spectral branches is investigated. It is shown that an instability similar to the
Cooper instability of a normal metal arises at a sufficiently large value of the imbalance. This eliminates the
imbalance within quantum-mechanical (nonkinetic) time periods. The consistency of the allowance for the
imbalance in the nonequilibrium Ginzburg-Landau equations is discussed.

PACS numbers: 74.20. — z

1. INTRODUCTION

The purpose of the present communication is to show
that the nonequilibrium state of a superconductor is un-
stable against order-parameter fluctuations when the
imbalance between the populations of the electron- and
hole-like branches of the excitation spectrum is suffi-
ciently large. The physical cause of the instability
consists in the following.

Let an imbalance between the populations of the elec-
tron- and hole-like spectral branches be produced in a
superconductor. For simplicity, we limit ourselves to
the spatially homogeneous case with T .- T< T_.. (Here
T_.and T are respectively the superconducting-transi-
tion and sample temperatures.) As shown by Tinkham,}
in such a situation the imbalance relaxation time 7, is
much longer than the energy-relaxation time 7, of the
quasiparticles:

1200/ T% 1e=T.JT/A>1..

Here ©, is the Debye energy and A is the energy gap in
the superconductor. As a result, there is established
in the superconductor over a time period of the order
T, a quasiparticle distribution function'™ described
when £,>> A by the formula

-1

€p—V sign E, + 1) .

n,=(exp T )

Ep=t,+0=p"/2m—e, 40, &= +A%)",

where & = 37X+ e is a gauge-invariant scalar poten-
tial, x being the phase of the order parameter and ¢
the electrostatic potential.

It follows from the quasineutrality condition that the
chemical potential v of the quasiparticles is equal to &
when small corrections of the order of A/T,<«< 1 are
neglected. By substituting (1) in the self-consistency
equation, we can verify? that the presence of the imbal-
ance leads to a decrease of the gap:

A*(0)=A*(0)—20". (2)

From this it follows that the gap should vanish when &
= &, = A(0)V2. On the other hand, when A= 0 and &
= &, #0, we in fact have a normal metal: &, has the
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meaning of a shift of the excitation energy reference
level, and should not enter into any observable quanti-
ties. But a normal metal at T<T, is unstable against
Cooper pairing; it is important that the increment of
this instability be finite at A= 0. Therefore, the insta-
bility sets in earlier, at those values of & at which A is
finite [the instability point is that value of & (=4, at
which the instability growth rate vanishes].

We shall see that the development of the instability
leads to restructuring of the spectrum of the super-
conductor and, as a result, to elimination of the im-
balance. The characteristic time of this restructuring
turns out to be much shorter than 7, The foregoing
arguments imply that: (1) the imbalance of the popula-
tions of the branches of the energy spectrum cannot
completely suppress the superconducting gap; (2) at
some critical value, the imbalance relaxes rapidly on
account of quantum-mechanical (nonkinetic) mechan-
isms. The purpose of the calculation below is to verify
these ideas quantitatively.

2. DISPERSION EQUATION FOR THE ORDER-
PARAMETER OSCILLATIONS

We wish to investigate the dynamics of the order pa-
rameter of a superconductor over time periods much
shorter than 7,. For the case of distribution functions
that are even in £ (i.e., in the absence of an imbal-
ance), this problem has been considered by Aronov and
Gurevich® through the investigation of the poles of the
two-particle Green function. It will be convenient for
us to use another method, which is similar to the meth-
od used by Volkov and Kogan® to analyze the equilibrium
case.

We shall, in the spatially homogeneous situation of
interest to us, proceed from the system of equations
for the Green functions

g(p, t)=—i [a,,(t), an+(t)]>1 (3)
f(p, t)=—i[aps (), a-p(t)17, (4)
in the formS®
5)
ig—f+ Af+&f=0, Reg=0, (
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( i % - zg.) f+2Age* =0,

(6)
ep
Bmis | b,
Jos ("
Here A is the complex order parameter and A is the
electron-electron interaction contant (#=1). Equation

(7) is the self-consistency equation.

Equation (6) differs somewhat in form from the cor-
responding equation given in Volkov and Kogan’s pa-
per.® We assume that the potential ¢, which does not
depend on the space coordinates and the time, is in-
cluded in the chemical potential ¢, + e of the electrons.
Therefore the term 2e¢ does not occur in the round
brackets, but the factor ¢%¢“t enters in the second term
instead.

Let us, as usual, linearize Egs. (5)=(7). We seek

the solution in the form

(5 1) =go(Es) T&1(En, 1), F(Em £) =(fol(Ep) +i1(Epr 1)) e,
A(t)=(A+A4(t)) ¥,
: A (8)
8o (&)= “'?’ (1=2ny), fo(&)= —i— (1-2n,).

Here g,, f,e?'®*, and Ae?i®t are the values of the Green
functions and the complex order parameter in the
steady state characterized by the quasiparticle distribu-
tion function n,. The quantity ¢ is connected with n by
the neutrality condition?:°:

Q= j“_nndgv

Assuming that all the contributions are proportional
to ei“t, we obtain from the system (5)—(7) the following
dispersion equation determining the frequency of the
spatially homogeneous oscillations in the system, giv-
en the quasiparticle distribution function:

A 0*—4A* 1-2n, A : 43
(4 o o 12
_'[ foi—de ey 173 _-L Ei’m’—lgs,,z €p )
( J~ ds 2§,m 1-2n,
P oi—4e?, % Ep ) ! (9)
1= 1____]‘ d, 1—2n, )

—ep e

Let us apply this equation to the case A=0, &#0
(T<T) discussed in the Introduction. From (9) we have

ep
A 1-2n, = ~
—_—— =0
g [ B (10)

Using the distribution function (1) with A= 0, we obtain

from (10) the relations

(11a)
(11b)

Re ox=7F20,
|Im wx|=A%(0)/10T..

This solution describes an instability with a finite
growth rate Im w, >0, the growing order-parameter
fluctuations A,e*®t being, on account of (11a), indepen-
dent of &.
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To find the point where the instability appears (i.e.,
the point where Im w= 0), we must investigate Eq. (9)
in the superconducting state. In this case the relation
between A and n, is determined by the self-consistency
equation, which in our notation has the form y=0. We
then have from (9)

1—2n,
ep(w*—4ep”

- ([

ep
(0?44 [_-[ B o de) ep(0*—4e,p?)
If the distribution function n, is even in g, the right-
hand side of Eq. (12) vanishes, and we arrive at the

dispersion equation obtained by Aronov and Gurevich.®

Using again the self-consistency equation y= 0, we
can reduce Eq. (12) to a form most convenient for us
and applicable to both the superconductor and the nor-
mal metal:

1—2n, §p

—7:! R T (0/2)'—A%]" €, (13)

It can be seen from the dispersion equation (13) that the
characteristic values £, are greater than or of the or-
der of max(w, A). Then the characteristic values of

Re w~A(0), i.e., much greater than A(®). Therefore
the region of small values of £,~ A is unimportant, and
we can use for #, the function (1). Substituting (1) in
(13) and expanding in powers of the small parameters
A/T<« 1 and A/T,< 1, we obtain from (13) the rela-
tions?

Re 0=T20, |1mm|=%((n—r)—A(o)). (14)

It should be borne in mind that A and & are connected
by the relation (2).

From (14) we obtain the instability point at which
Imw=0:
Al A*(0)

=0, ——— A=
0.=0: 2%A (0) 9T,

Figure 1 shows the A(®) dependence and the charac-
teristic values of & and A.

, A(0)=3.09[T.(T.—T)1". (15)

Thus, we have found that instability sets in at A= A,
>0. Notice that the instability considered is of the
same type as the normal Cooper instability that con-
verts a normal metal into a superconductor at T<T.

The smallness of A, and &, - &, is due only to the
specific nature of the T,- T< T case. Equations (9)
and (10) are valid for an arbitrary distribution function.
For Ts T, the distribution function n, no longer has the
simple form (1), since no hierarchy of relaxation times
exists in this case. Nevertheless, the gap width A(0)
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is the only characteristic energy scale of the problem.
It can therefore be asserted that at T'< T, all the phe-
nomena will be qualitatively the same, and &_~ &,

~ 4(0).

It is important to note that Re w_= -2%, i.e., that
the A fluctuations that build up are precisely those
which correspond to the steady equilibrium state in the
absence of an imbalance.

In conclusion let us, in the light of the results ob-
tained, discuss the time variation of the order parame-
ter of a superconductor in the presence of a finite im-
balance. Here we focus our attention on the simplest
and at the same time often encountered case of tunnel-
ing injection. [Let us note, however, that from our
point of view Eqgs. (9) and (12) and their corollaries are
valid for spatially inhomogeneous systems as well if
all the characteristic scales of the spatial variations
are much greater than the coherence length £. There-
fore, the results obtained above are applicable to a
much broader class of systems.]

We begin with the elucidation of the conditions under
which the distribution function (1) is formed in the
steady state.?)? We assume that the collisions of the
quasiparticles with the phonons are responsible for the
relaxation of the imbalance, and that T .- T< T, As
is well known, the quasiparticle—phonon collision inte-
gral includes two types of processes: 1) absorption
(emission) of a phonon by a quasiparticle, the probabil-
ity for which is proportional to

1+ Ev&p'_Az ,
EpEp’
and 2) quasiparticle-pair production (recombination)
with the emission (absorption) of a phonon, the proba-
bility for which is proportional to

_ gvgp’_Al

€p€p’

1 ,
where p’ = p+ 7iq, q being the phonon wave vector. It
can be seen that, for A« 2,, 'gp,, the most probable of
the processes of the type 1) are transitions within the
same branch, i.e., the processes for which E,,Zp. >0,
while the most probable of the processes of the type 2)
are those for which E;gp,< 0. Therefore, the processes
of the type 1) establish over a time period ~7, a distri-
bution with fixed branch chemical potentials v, and v_.
The condition for the vanishing of that part of the colli-
sion integral which corresponds to the processes of the
type 2) for a« 'gp, 'g,, then requires that v = -v_=v.
From the quasineutrality condition it follows that v= .
These arguments are inapplicable to the small region
-gps A. It is precisely this region that is responsible
for the relaxation of the imbalance, and it is precisely
because of this that 7,~ 7,T/A> 7.

It is clear from the foregoing arguments that the
steady state value of & is established by tunneling in-
jection within a time 7, and is equal to &= IT7, (] is
the imbalance-injection rate). Substituting this ex-
pression for ¢ and T, =7, T/A in Eq. (2), we obtain for
A? a quadratic equation whose solution is (cf. Ref. 12)

A=/, {A*(0) = [A*(0) 8T (I7.)*]"}.
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This solution is depicted in Fig. 1(b). For I7 < A¥0)/
2%2TZ the equation has two solutions, one of which is
always stable, while the second is stable when A>A_
= A%0)/9T,. Under injection conditions corresponding
to I7,> A% 0)/2¥2T? the system possesses no steady
states. For fixed I > 4%(0)/2%2T%7, the imbalance in-
creases monotonically until it attains a level equal to
&, after which the instability begins to develop. As
can be seen from the formulas given, the characteris-
tic value of the instability increment for & > &_ is of
the order of Im w~73'=A%0)/9T.. This means that
for time periods short compared to the kinetic times,
the system strives to go over into the state in which &
= 0. As already indicated, this assertion follows from
the fact that Re w= -2%.

To identify decisively the state that the superconduc-
tor will go into during the time period 7, <<f{<«< 7¢, wWe
need to find the nonlinear solutions to the system (5)—
(7), which we do not as yet know how to do. Let us
note that all the schemes known to us”?? for describing
nonequilibrium phenomena in superconductors are
based from the very beginning on the assumption that
the state of the condensate is established over a time
period {, ~T,. Meanwhile, the nonlinear equations (5)-
(7) could, in principle, have oscillating solutions®
(which would die down over time periods equal to 7).
This circumstance, in our opinion, limits the appli-
cability of the existing approaches to the solution of
problems of the type considered.

Nevertheless, at low supercriticality levels we can
qualitatively follow the dynamics of A and &. Indeed,
the time ¢, does not in any case exceed 7,. But if the
supercriticality is low, the characteristic time of the
variation of the potential & turns out to be much longer
than 7,. As a result, there arise A and & oscillations,
which are schematically depicted in Fig. 2. These os-
cillations can be experimentally observed, e.g., in
A(f) and ®(f) measurements. Let us note that the char-
acteristic frequencies of these oscillations are of the
order of 77!, i.e., fairly high.

We now discuss the experimental situation with tun-
neling injection as applied to our discussion. We have
assumed equal quasiparticle and thermostat tempera-
tures (i.e., the absence of quasiparticle warm-up). In
actual experiments warm-up always occurs to one or
another degree. But it is clear that if the warm-up
does not suppress the superconductivity completely, all
the qualitative phenomena described above are pre-
served. Furthermore, we have assumed that the im-
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balance is relaxed by the phonons. But in the case of
tunneling injection there can arise competing imbalance
relaxation mechanisms, e.g., scattering by the im-
purities under conditions in which the condensate veloc-
ity vg is finite. It seems to us that allowance for these
mechanisms does not change the above-discussed qual-
itative picture.

The problem of tunneling injection in the vicinity of
T, has been considered with allowance for the imbal-
ance by Ivlev,!! who predicts the instability of super-
conductors against spatially inhomogeneous fluctuations
with a characteristic scale of the order of the diffusion
length L. Under certain conditions (sufficiently high
barrier transparency), this instability can arise soon-
er, i.e., at I <A%/2%/2T?r_. In this case the results
can be applied to a small region of the superconductor
with dimensions much smaller than L ,; they indicate
that the gap cannot be made to vanish in the inhomoge-
neous situation also when the characteristic inhomoge-
neity dimension is greater than the coherence length &.
Furthermore, the phenomena described by Ivlev!! do
not occur when eV> A, where V is the potential differ-
ence across the tunnel junction. Let us note that an in-
homogeneous state can arise in isolated, sufficiently
long tunnel junctions as a result of the flow of a current
in the plane of the junction.!?:!3 We think that this in-
homogeneity will not change the described qualitative
picture.

In conclusion, we note that the instability considered
can apparently manifest itself not only in the course of
tunneling injections, but also in a much broader class
of nonequilibrium states for a superconductor with a
large imbalance between the populations of the electron-
and hole-like spectral branches. The spatial homoge-
neity condition (i.e., the requirement that the charac-
teristic scale of the inhomogeneity be much greater
than the coherence length £) is the only serious limita-
tion. In particular, we doubt the applicability of the
nonstationary Ginzburg-Landau equations to a situation
with a large imbalance. The point is that these equa-
tions, which describe the Cooper instability of a nor-
mal metal at T<T,, do not reveal the instability of a
normal metal at &= &,, T<T, We believe that the im-
balance is inconsistently taken into account in equations
of this type.
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We are grateful to A.G. Aronov, B.I. Ivlev, and V.S.
Shumeiko for useful discussions.

1 The condition Re w=%2% is a consequence of the specific
form of the distribution function (1), and may not hold in the
general case. Separating the imaginary part of Eq. (13) at
the instability point (Imw = 0), we obtain an equation for Re
w:

n(Ep=F[!/s(Re 0)2—A?]) =],

which yields the indicated condition for the distribution func-
tion (1). A similar equation has been obtained by Aronov
and Gurevich® in the case of even ny.
2) The distribution function (1) is derived in a number of
papers.'™ We expound here the known qualitative picture
to facilitate the understanding of the subsequent discussions.
3) We are grateful to V. S. Shumeiko for demonstrating to us
the existence of a solution of this type.
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