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Expressions are obtained for the distribution function of the electrons of a gas or semiconductor plasma in an 
electric field E, when the scattering is determined by one mechanism with a fixed energy loss E,. At 
kT(eEA (E,, where Tis the lattice-atom temperature and A is the electron mean free path, the distribution is 
strongly asymmetrical. The distribution function can be represented as a sum of two terms. The first 
predominates at small angles 0 between the mornentump and the field direction, and decreases rapidly with 
increasing angle in proportion to exp ( - O2/03E)). The second term depends less on the angle (like 

The energy dependence is proportional to exp 
The calculation is performed for cases when the scattering probability w does not depend 

PACS numbers: 72.20.Dp, 51.10. + y 

1. INTRODUCTION 

Simple situations a r e  possible ,  in  which the sca t -  
ter ing of the  e lec t rons  of a g a s  o r  semiconductor  
p lasma situated i n  a constant homogeneous e l e c t r i c  
field E is determined by  a s ingle  mechanism, with a 
fixed energy loss  go. In semiconductors  this  cor-  
responds t o  sca t te r ing  by optical phonons (go=tiwo), 
while in gases  i t  corresponds t o  the c a s e  when the 
probability of excitation of levels  having an energy go 
exceeds the probability of e las t i c  sca t te r ing  and of 
excitation of o ther  levels .  

The c h a r a c t e r  of the distribution function f (P) of the 
electrons t u r n s  out to  b e  significantly different ,  de-  
pending on the relat ion between g l ,  which is the  charac  
te r i s t i c  energy sca le  of the fall-off of the distribution 
function, and go. The quantity g1 can be  defined as 

where f (,(@ I s  the isotropic  p a r t  of the  distributionfunc- 
tion. If g1 >>go,  then the sca t te r ing  can  be  regarded 
a s  quasielastic,  and the Davydov a p p r ~ x i r n a t i o n ~ ' ~  is 
applicable. In th i s  c a s e  the distribution function i s  
a lmost  isotropic .  The gain o r  l o s s  of energy in the 
e le lc t r i c  field have the c h a r a c t e r  of s m a l l  random 
walks,  and this  corresponds to diffusion in energy,  
with a diffusion coefficient 

where  AT and v T  a r e  t h e  t ranspor t  mean  f r e e  path and 
the collision frequency. The kinetic equation reduces 
then to the diffusion equation. If the  quantum absorp-  
tion go is d is regarded ,  the equation takes t h e  f o r m  

If gl << go ,  however, t h e  distribution is strongly elon- 
gated along the e lec t r ic  field. This  c a s e  w a s  con- 
s idered  qualitatively by  Townsend f o r  gasesS and by 
Shockley f o r  semiconductors.4 They obtained glw eEh. 
The  f o r m  of t h e  distribution function f o r  high energies  
in the c a s e  of isotropic  sca t te r ing  was  obtained by 
Keldysh." 

We obtain in th i s  paper  express ions  f o r  the distribution 
function i n  the nearby energy region f o r  two part icular  
cases :  isotropic  sca t te r ing  with probability w inde- 
pendent of the energy (scat ter ing by deformation opti- 
ca l  phonons), and sca t te r ing  by polar  optical phonons 
with m ( Q )  -Q-', where  Q i s  the momentum t rans fe r .  
In these  c a s e s  the integral  f o r  the t ranspor t  c r o s s  
sect ion converges,  s o  that the anisotropy of the dis-  
tribution function is connected with t h e  d i s c r e t e  char-  
a c t e r  of the energy l o s s ,  and not with the sca t te r ing  
anisotropy as in the c a s e  of Coulomb  collision^.^'^ 
It  is shown that  a t  s m a l l  angles  6' between the momentum 
P and t h e  field direct ion,  the distribution function is 
governed mainly by the par t i c les  accelerated by the 
field f r o m  low energ ies  g <  go (from the  passive re- 
gion) and experience in  this  c a s e  not a s ingle  collision. 
This  highly anisotropic  needle-shaped p a r t  of the d i s -  
tribution function makes  the main contribution to f0(@ 
and d e c r e a s e s  with increasing 6' a s  expi-(0/6', @))'I. 
The par t i c les  f r o m  the  "needle," however, land in the 
large-angle region ("halo") a f t e r  experiencing the l a s t  
collision a t  high energy - g + I o .  The  distribution func- 
tion fal ls  off with increasing 0 much s lower  in the halo 
than in the needle: f - (1 - cos0)-l. The distribution 
at high energ ies  is determined by the c h a r a c t e r  of t h e  
scat ter ing.  

d dfo 
- - & I h  ~ $ - + a ~ f ~ )  = 0,  
0% ( 0 %  

In the c a s e  of scat ter ing by  deformation phonons, 
s ta r t ing  with a certain energy,  the number of par t ic les  

where v is the energy-loss  frequency. Equating the in  the needle becomes s m a l l e r  than in the halo, and 
energy flux t o  z e r o ,  we  obtain the resu l t s  of Ref. 5 a r e  obtained. This  means that  

I a (8') (2) the contribution made t o  f0(@ by the electrons that  
f.-ep{- I--?-ddr). De (8') a r r i v e  f r o m  the  pass ive  region ( I  < g o )  is smal l .  In 

in which c a s e  the angular  dependence, however, the  needle-shaped 
component -exp{-(6'/6'o(1))2) can b e  t raced a l so  a t  

8, (a)  = D , ( l )  /8,,~ (8) .  (3) high energ ies .  
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In scattering by polar phonons, the mean free path 
increase: with increasing &3, and starting with a certain 
energy 9 ,  the quantity eEA($) becomes larger than go. 

-- 

At 9 >> the distribution function becomes almost- 
isotropic. 

2. SCATTERING BY DEFORMATION PHONONS 

Neglecting the thermal motion of the atoms of the 
gas o r  of the lattice (go ,  %', >>kT), we write down the 
Boltzmann equation in the form 

where the z axis is directed along the electric field 
and Q is the phonon momentum. In scattering by 
deformation optical phonons we have w(Q) = const. We 
rewrite (4) in terms of the dimensionless variables 
r =%/go, p = ~/ (2 rn '8 , ) l /~ ,  and a = g,/eEA, where A 
= 1/4rm-2w is the mean free path of the electron at 
& "1: 

We a r e  interested in the case a >> 1. It i s  more con- 
venient then to reduce (5) to an  integral equation. 

In the passive region I ( E <  1, see Fig. I) ,  there a r e  
no collisions and 

f l (p)=la  j ( ~ ~ + i ) ' f . ( ~ ~ + l ) d p ~  
- ( , - s ~ ) ~ / .  

(6) 

Here &, = C  -p:  is the transverse energy. At r > 1 ,  
p, > 0,  E, < 1 (region I1 in the figure) we have 

FIG. 1. Regions in phase space; the dashed line corresponds 
to  f '" ' ,f 'h ' .  

In the remaining region 111, 

The exponential factors of the form 

have the meaning of the probability that a particle with 
energy 6, will acquire in the electric field an energy 
E ,  without experiencing a collision. At a >> 1 the bulk of 
the particles is contained in the passive region. The 
electric field transfers them into the region 11, and 
most of them experience collisions at O <  c - 1 sa-'I3 
and return to the passive region. Therefore the 
principal role in (7) is played a t  - 1 << 1 by the first  
term (the remaining terms a re  here exponentially 
small): 

In region I it suffices likewise to take into account 
only the f i rs t  term. Averaging (9) over the angles, 
substituting in (6) the expression obtained for f,, 
and putting E = 1, we obtain an equation for (P(E,) = f (E 
= 1,  El): 

l+x?+el 

x exp {-a 5 (S)''' d d }  . , E - Y  

Accurate to quantities -a-ll3 we can write in place of 
(10) 

Thus, the integration with respect to y drops out and 

The constant A is determined by the normalization con- 
dition. Subsittuting (12) and (9) in (6) and neglecting 
the contribution made to the normalization integral 
by the regions I1 and I11 (-a-' I3 << I ) ,  we obtain 

where n is the particle concentration. Substituting 
(91, (12), and (13) in (6) we obtain the distribution 
function in region I: 

At p, > 0 it decreases relative to E ,  like exp(-2/3 
a&;lz), and a t  p, > a-lI3 i t  is practically independent 
of p,. At negative p,< there a r e  practically no 
particles. The distribution function in the passive 
region was investigated in Ref. 8. 
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We consider  now Eq. (7) f o r  the solution in region I1 
The third t e r m  cor responds  to  par t i c les  that have 
af ter  the l a s t  collision c' > 1 and p: < 0 ,  and a r e  then 
drawn by the  field into region I1 without col l is ions.  
T h e  number of such  par t i c les  is negligibly s m a l l ,  
s o  that  this  t e r m  can  be  left out. T h e  f i r s t  t e r m  

descr ibes  the distribution of the par t i c les  accelerated 
without collisions f r o m  the pass ive  region. The  func- 
tion ( ~ ( 6 , )  d e c r e a s e s  i n  accordance with (12) l ike 
"exp{-2/3ac3,/*}. At c>> 1, the  second fac tor  in  (12) 
decreases  with increasing c, much m o r e  rapidly 
than the f i r s t ,  s o  that  in this  c a s e ,  set t ing the  argument  
of the function ~ ( c , )  equal to  z e r o  and then using (12) 
and (13), we obtain 

This  expression is in fact  the distribution function c o r -  
responding to the Townsend-Shockely mechanism. 
I t s  principal dependence on t h e  energy takes  the  f o r m  
-exp(-a&) =exp(-%'/eEa). The  last fac tor  descr ibes  
the  abrupt  Gaussian d e c r e a s e  of th i s  needle-shaped 
function with increasing angle : -exp(- 82/82,(&)), where  
B,2(c)=cuc(ln2c112-1). The probability that a part ic le  
emitted f r o m  the pass ive  region will  acqui re  without 
collisions a n  energy c is determined b y  the length of 
i t s  path, which increases  logarithmically with increasing 
c,. Th is  is the  reason f o r  the  narrowing of the needle 
width relat ive to  &, with increasing E .  

The second t e r m  in (7) corresponds t o  par t i c les  
that have experienced the l a s t  collision at a n  energy 
c > 1. The distribution function in the region I11 a l s o  
descr ibes  such  par t i c les .  At not too high energ ies  
these two p a r t s  of the  distribution function (halo) 
make a s m a l l  contribution t o  fo. I t  is there fore  
possible to  claculate fo(c) using expressions (121, (131, 
and (15) f o r  the  needle. At E >> 1 we obtain 

Substituting (17) in  (7) and (8) we can verify that i n  
the halo region the  main contribution to the  integral 
is made by the vicinity of the upper  l imi t ,  and the d i s -  
tribution function is of the f o r m  

Thus,  the angular  dependence of the distribution func- 
tion in  the regions of s m a l l  and l a r g e  angles differ  sub-  
stantially. At s m a l l  angles  t h e r e  is a n  abrupt  Gaus- 
s ian d e c r e a s e  with increasing 8, while a t  l a rge  angles  
t h e r e  is a much smoother  variat ion in  accordance with 
(18). The  boundary between the needle and the halo 
corresponds to  the angle1 ' 

which is obtained f r o m  the equation f ' ( E ,  8 )  =f ("I  

( c ,  9 ) .  The total  distribution function i s  the s u m  of 

f '"'(c , 8) and f "(c , 8) 

Integrating (18) o v e r  the  angles  f r o m  8(&) to a,  we 
obtain the cor rec t ion  t o  fo(c) needed t o  account f o r  the  
halo : 

T h e  solution method develops h e r e  is valid under the  
condition f $ )(&)/f: O)(E) << 1. Comparing (20) and (171, 
we  obtain a cr i t e r ion  in the f o r m  

e < e , ~ ' / ,  exp (ea) . (21 

At  energ ies  exceeding E,,, t h e  main contribution t o  
fo(&) is determined by  the halo. T h e  kinetic equation 
f o r  th i s  c a s e  was  solved b y  Keldysh5: 

The total  distribution function a t  E >&,, i s  the s u m  of 
(22) and (16). 

3. SCATTERING BY POLAR PHONONS 

In th i s  c a s e  w =w0/Q2. Substituting this  express ion  in 
(4) and changing o v e r  to  dimensionless  var iab les ,  we  
obtain 

H e r e  

and @ ( x )  is the s t e p  function. 

In view of the anisotropy of the sca t te r ing ,  t h e  ar- 
r iva l  t e r m  in the kinetic equation is determined not by  
the isotropic  p a r t  of t h e  distribution function fo(&), but 
by 

1 f (&+I, 0')dP' 
~ ( e + l , 0 ) = - j  

4x ~ E + I - ~ ( E ( E + I ) ) ' ~  cos 0 cos 0'+sin 0 sin 0' cos(cp-cq') ' 

We so lve  (23) by the method developed in Sec. 2 above. 
F o r  the  distribution function in region I we  obtain 

A == 2 
f I  (p) = J (i+2x)exP{- - ~ ( z z + e ~ ) ~ ~ ] d z ,  

-a 
3 

na (25) 
A =  

r c ( 2 ~ , ) ~ ( 1 - ( v l , ~ r ( 5 / , ) a - ~ )  ' 

T h e  needle-shaped p a r t  of the  dis t r ibut ion function takes 
the  f o r m  

At c >> 1 the angular  dependence off "' i s ,  as before,  
Guassian -expi-6c P/z} ,  and the energy dependence 
is given by -exp{ - 6 ( l n 4 ~ ) ~ / 4 ) .  In the halo region 
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The substantial difference between this case and the 
preceding one is that the time between collisions in- 
creases with increasing energy, ?(&) - ~ ' / ~ / l n c .  
The transport mean free path is A,(&) -~, ,a .  Therefore 
a t  a certain E = a p W 5  the energy acquired on ,XT(cp) 
becomes comparable with go. At c >>a, the distribution 
function becomes close to isotropic and the Davydov 
approximation i s  applicable. This energy region was 
investigated in Ref. 9. It must be noted, however, 
that the Davydov distribution function (2) i s  not renor- 
malizable a t  -&  , corresponding to the so-called 
energy runaway. lo To obtain a physically meaningful 
result in this region it is necessary to take into 
account additional scattering mechanisms a t  high 
energies. 
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"since the contribution of the halo to the total distribution func- 
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tion i s  smal l  a t  0 <0 (c), expression (18) was written f o r  
s"e(&)/ff. 
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