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Expressions are obtained for the distribution function of the electrons of a gas or semiconductor plasma in an

electric field E, when the scattering is determined by one mechanism with a fixed energy loss E,. At

kT <eEA <E, where T is the lattice-atom temperature and A is the electron mean free path, the distribution is

strongly asymmetrical. The distribution function can be represented as a sum of two terms. The first

predominates at small angles & between the momentum p and the field direction, and decreases rapidly with

increasing angle in proportion to exp (— 8%/64E)). The second term depends less on the angle (like
0s6)~') and predominates at large angles. The energy dependence is proportional to exp

(1—
(— I”dif’eE/l (&) The calculation is performed for cases when the scattering probability w does not depend

on the momentum transfer Q and when w ~Q =2

PACS numbers: 72.20.Dp, 51.10. +y

1. INTRODUCTION

Simple situations are possible, in which the scat-
tering of the electrons of a gas or semiconductor
plasma situated in a constant homogeneous electric
field E is determined by a single mechanism, with a
fixed energy loss &,. In semiconductors this cor-
responds to scattering by optical phonons (&, =7%w,),
while in gases it corresponds to the case when the
probability of excitation of levels having an energy &,
exceeds the probability of elastic scattering and of
excitation of other levels.

The character of the distribution function f(P) of the
electrons turns out to be significantly different, de-
pending on the relation between &, which is the charac-
teristic energy scale of the fall-off of the distribution
function, and €,. The quantity &, can be defined as

(&) =—(d 0 {/d&),

where f (%) isthe isotropic part of the distribution func-
tion. If & > &,, then the scattering can be regarded
as quasielastic, and the Davydov approximation®*? is
applicable. In this case the distribution function is
almost isotropic. The gain or loss of energy in the
elelctric field have the character of small random
walks, and this corresponds to diffusion in energy,
with a diffusion coefficient

D.="/;(eEM (&) V. (&),

where A1 and v are the transport mean free path and
the collision frequency. The kinetic equation reduces
then to the diffusion equation. If the quantum absorp-
tion &, is disregarded, the equation takes the form

?.1%‘?% (Dg ;1; +$va) =0, 1

where v is the energy-loss frequency. Equating the
energy flux to zero, we obtain

'3
gav(g,) ’ (2)
f”“‘{{‘ D& dg}’

in which case

&.(&)=D,(8)/Ew (&). (3)
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If & «< &, however, the distribution is strongly elon-
gated along the electric field. This case was con-
sidered qualitatively by Townsend for gases® and by
Shockley for semiconductors.® They obtained &, ~ e£A.
The form of the distribution function for high energies
in the case of isotropic scattering was obtained by
Keldysh.?

We obtain in this paper expressions for the distribution
function in the nearby energy region for two particular
cases: isotropic scattering with probability w inde-
pendent of the energy (scattering by deformation opti-
cal phonons), and scattering by polar optical phonons
with w(Q) ~@ %, where Q is the momentum transfer.

In these cases the integral for the transport cross
section converges, so that the anisotropy of the dis-
tribution function is connected with the discrete char-
acter of the energy loss, and not with the scattering
anisotropy as in the case of Coulomb collisions.®”’

It is shown that at small angles 6 between the momentum
P and the field direction, the distribution function is
governed mainly by the particles accelerated by the
field from low energies & < &, (from the passive re-
gion) and experience in this case not a single collision.
This highly anisotropic needle-shaped part of the dis-
tribution function makesthe main contribution to f, (%)
and decreases with increasing 6 as expl-(6/6, (¥))}.
The particles from the “needle,” however, land in the
large-angle region (“halo”) after experiencing the last
collision at high energy <& +&,. The distribution func-
tion falls off with increasing 8 much slower in the halo
than in the needle: f~(1-cos6)*. The distribution

at high energies is determined by the character of the
scattering.

In the case of scattering by deformation phonons,
starting with a certain energy, the number of particles
in the needle becomes smaller than in the halo, and
the results of Ref. 5 are obtained. This means that
the contribution made to f,(#) by the electrons that
arrive from the passive region (¥ <&,) is small. In
the angular dependence, however, the needle-shaped
component ~exp{--((9/60($f))21L can be traced also at
high energies.
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In scattering by polar phonons, the mean free path
increases with increasing &’ and starting with a certain
energy 8’ the quantity eE (%) becomes larger than &,
At ® > # the distribution function becomes almost
isotropic.

2. SCATTERING BY DEFORMATION PHONONS

Neglecting the thermal motion of the atoms of the
gas or of the lattice (%,, €,>kT), we write down the
Boltzmann equation in the form

EFdf__ (Q) {8(& (P+Q) —& (P) —&4) f(P+Q)

_8(& (P) -8 (P—Q) -8 {(P)}dQ, @)

where the z axis is directed along the electric field
and Q is the phonon momentum. In scattering by
deformation optical phonons we have w(Q)=const. We
rewrite (4) in terms of the dimensionless variables
e=%/%,, p=P/(@m&)'/?, and @ =&,/eE), where )
=1/4mm%*w is the mean free path of the electron at
e>1:

0f/0p,=—2a(e—1)"f(p) +2a (e+1) “fo (e +1),

(5)
1

h(e)=——{ ip)de.
We are interested in the case ¢ >1. It is more con-
venient then to reduce (5) to an integral equation.

In the passive region I (€<1, see Fig. 1), there are
no collisions and

Pz
A@=2a [ (e'+0)*o(e’+H)dp,

—(t—eyyh

e+l \'% C el — \
+ e — ] ” ’ ’
J( e'—e, ) exp{ -‘.( e’— eL) de }f.,(e H)de'.
Here ¢, =¢ - pZ is the transverse energy. Atg>1,
P«>0, g, <1 (region II in the figure) we have

"+ "_q
e ) exp{ j( o ) ds”}f (e'+1)de’
e —&,

e ‘4 1y e ”_ A
+aj( et ) exp{—aj( ° 1) de”}fc(e’+1)de’

J\el—e, J\e—ey

+ajl( F:+1) exp{
| &€ —¢

] .
J.(:—sl ) de

”__ II’
—aj( et ) de”}fo(e’+1)da’.
: €

(6)

fu(p)=2a | (

7)

—&,

FIG. 1. Regions in phase space; the dashed line corresponds
to f(’l) =f(h).
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In the remaining region III,
Pz Ps
fm@=2a | @+ exp {2 [ 0"}l H)dp’.  (8)

The exponential factors of the form

exp{_a:gj (o) )

have the meaning of the probability that a particle with
energy ¢, will acquire in the electric field an energy

€, without experiencing a collision. At o >1 the bulk of
the particles is contained in the passive region. The
electric field transfers them into the region II, and
most of them experience collisions at 0<€ - 1sa~2/3
and return to the passive region. Therefore the
principal role in (7) is played at ¢ —1 <1 by the first
term (the remaining terms are here exponentially
small):

1 3
NEVEN RN
fn(P)=20‘j('—e,_e ) fo(e'+1)de’ exp{ - j( :”—e ) de”}
L¥Y + 1 +

-rtemeenfef (G=7) o)

In region I it suffices likewise to take into account
only the first term. Averaging (9) over the angles,
substituting in (6) the expression obtained for f,,

and putting £ =1, we obtain an equation for ¢(,)=f(c
=1, g,):

©)

g o)
=e 0\ dxode (142> +e —y)"
H—x?:H:_L P Vs
X exp {——a S ( :,_; ) / ds’} . (10)

Accurate to quantities ~@-1/3 we can write in place of
(10)

P ’ 2 Y
o) =a [ dz [ dyoy)exp { - 5-aleute)" . 11)
Thus, the integration with respect to y drops out and

CP(BJ_)=A}exp{—%a(e ._+z’)”‘}da:. (12)

The constant A is determined by the normalization con-
dition. Subsittuting (12) and (9) in (6) and neglecting
the contribution made to the normalization integral

by the regions II and III (~a~!/3<«<1), we obtain

A=an|z (2m&,)*, (13)

where 7 is the particle concentration. Substituting
(9), (12), and (13) in (6) we obtain the distribution
function in region I:

Pz

j exp{-——g—a(el+z’)”‘}da:. (14)

an
)= e amaa )

At p,> 0 it decreases relative to ¢, like exp(-2/3
agd/?), and at p,>a-1/3 it is practically independent

of p.. At negative p,<-2"'"? there are practically no
particles. The distribution function in the passive
region was investigated in Ref. 8.
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We consider now Eq. (7) for the solution in region II.
The third term corresponds to particles that have
after the last collision ¢’ >1 and p; <0, and are then
drawn by the field into region II without collisions.
The number of such particles is negligibly small,
so that this term can be left out. The first term

g
e'—e,

19 e =g (e exp{ —a f ( Smi) "ae') (15)

describes the distribution of the particles accelerated
without collisions from the passive region. The func-
tion ¢(€,) decreases in accordance with (12) like
~exp{-2/3a€%/?%}. At £> 1, the second factor in (12)
decreases with increasing £, much more rapidly

than the first, so that in this case, setting the argument
of the function ¢(g,) equal to zero and then using (12)
and (13), we obtain

m_rL(/s) ( 3a?
™ 2
+aln(e”+(e—1)")}exp{—ae, (In 2e"—1)}.

)" am&) " exp(-a(e(e—1))"
(16)

This expression is in fact the distribution function cor-
responding to the Townsend-Shockely mechanism.

Its principal dependence on the energy takes the form
~exp(—ae) =exp(—&/eE)). The last factor describes
the abrupt Gaussian decrease of this needle-shaped
function with increasing angle: ~exp(-6%/6(c)), where
6%(e) =ac(In2¢*/2-1). The probability that a particle
emitted from the passive region will acquire without
collisions an energy ¢ is determined by the length of
its path, whichincreases logarithmically with increasing
€,. This is the reason for the narrowing of the needle
width relative to ¢, with increasing ¢.

The second term in (7) corresponds to particles
that have experienced the last collision at an energy
€>1. The distribution function in the region III also
describes such particles. At not too high energies
these two parts of the distribution function (halo)
make a small contribution to f;,. It is therefore
possible to claculate f,(¢) using expressions (12), (13),
and (15) for the needle. Ate¢ > 1 we obtain

[ nI'(*/s) _, 2_“_ ~'h
fo (8)=6neln(4e) (@m& o) ( 3 )

Xexp{—a(e(e—1))"+aln(e"+(e—1)")}. an
Substituting (17) in (7) and (8) we can verify that in
the halo region the main contribution to the integral
is made by the vicinity of the upper limit, and the dis-
tribution function is of the form

fXe, 0)=1S" (e+1)/(1—cos 8). (18)

Thus, the angular dependence of the distribution func-
tion in the regions of small and large angles differ sub-
stantially. At small angles there is an abrupt Gaus-
sian decrease with increasing 6, while at large angles
there is a much smoother variation in accordance with
(18). The boundary between the needle and the halo
corresponds to the angle!’

6*(e)~1/e 1n2e", (19)

which is obtained from the equation f * (¢, 6) =f ("
(€, 6). The total distribution function is the sum of
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f®, 6)and f *'(, 6).

Integrating (18) over the angles from 6(g) to 7, we
obtain the correction to f,(¢) needed to account for the
halo:

10 (e)=1"" (e+1)1n (4/6% (e)). (20)

The solution method develops here is valid under the
condition f8’(e)/f{ °’(e) < 1. Comparing (20) and (17),
we obtain a criterion in the form

e<e ="/, exp(e?). (21)

At energies exceeding £, the main contribution to
f,(e) is determined by the halo. The kinetic equation
for this case was solved by Keldysh®:

a(a-l)/ze-m(:ﬂ)

1®)e,0)=B

1—scos® (22)
n(m&,) —% (4g)¢/2

@n)? ,  s=1—2exp(—2e%).

B=

The total distribution function at € > ¢, is the sum of
(22) and (16).

3. SCATTERING BY POLAR PHONONS

In this case w =w,/Q?. Substituting this expression in
(4) and changing over to dimensionless variables, we
obtain

9I®) _ _ B 0) 128 (e+1)"F (e+1,0). (23)
9p: t(e)

Here
_ 2amuw, 1 8(—1) 2e—1+2(e(e—1))*

’

eE ' t(e)  4e* 1 2e—1—2(e(e—1))"

and ©(x) is the step function.

In view of the anisotropy of the scattering, the ar-
rival term in the kinetic equation is determined not by
the isotropic part of the distribution function fo(e), but
by

1 f(e+1,0")dQ’
4-31--‘. 2e+1—2(e(e+1))" cos 8 cos 8" +sin 6 sin 8’ cos(p—¢’) ~

F(et1,0)=

(24)

We solve (23) by the method developed in Sec. 2 above.
For the distribution function in region I we obtain

fi(p)= % ’} (1+21)exp{ - —g_é(x"*'e;)"’}dx,

na (25)

A= T EmE ) (A=) T e ™
The needle-shaped part of the distribution function takes
the form

f e 0)=4 § exp {_ % PICHER 12)’/:} dz
o

. _ _&; J de’
{exp { 2 § € (e — €_-_))l B

(26)

SI“: - (' — 1)‘_':
gt — (e — 1)

At £ > 1 the angular dependence of f @’ is, as before,
Guassian ~expl-de 62/2f, and the energy dependence
is given by ~expl —d (In4e)2/4}. In the halo region

i (1) @n
21n(4e) [1—(1—e~")cos 8] [1—(1—e*'8)cos 0]

e, 8)=
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The substantial difference between this case and the
preceding one is that the time between collisions in-
creases with increasing energy, 7(e) ~¢!/?/Ing.
The transport mean free path is A;(e) ~a,e. Therefore
at a certain ¢ =¢,~ @ the energy acquired on A((g,)
becomes comparable with &. At € >¢, the distribution
function becomes close to isotropic and the Davydov
approximation is applicable. This energy region was
investigated in Ref. 9. It must be noted, however,
that the Davydov distribution function (2) is not renor-
malizable at A;(s) ~¢, corresponding to the so-called
energy runaway.!® To obtain a physically meaningful
result in this region it is necessary to take into
account additional scattering mechanisms at high

" energies.

The authors are deeply grateful to V.I. Perel’ and
I.N. Yassievich for interest in the work and for help-
ful discussions.

DSince the contribution of the halo to the total distribution func-
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tion is small at § <6 (g), expression (18) was written for
6> 6 () /a.
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