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We obtain and study analytically self-similar solutions of supersonic wave collapse. We find the effect of a 
"density funnel," in the center of which the energy of the high-frequency waves is absorbed. We show that the 
Langmuir collapse can be modelled by the one-dimensional equations of scalar collapse with a specially 
chosen self-similarity index. We give the numerically obtained solutions of the equations of the supersonic 
scalar collapse. 

PACS numbers: 03.40.Kf 

INTRODUCTION 

The Langmuir wave collapse phenomenon1 plays, in 
our opinion, a decisive role in the physics of a Lang- 
muir turbulent plasma-the collapse is the main mech- 
anism for energy transfer from the Langmuir waves to  
the electrons and ions in the plasma. It has gradually 
become ~ l e a r ~ ' ~  that the collapse is important not only 
for strong Langmuir turbulence when the ratio of the 
energy of the oscillations t o  the thermal energy W / ~ T  
> ( k ~ , ) ~  (Xu i s  the Debye radius), but even for weak tur- 
bulence, W / ~ T  <(me /mi )1/2k~,, the spectra of which 
become substantially restructured when collapse is  tak- 
en into account, and even more so  for kinds of turbu- 
lence which are  intermediate a s  far a s  their strength i s  
concerned. 

Although collapse has by now been successfully used 
to  explain a number of astrophysical p h e n ~ m e n a , ~  there 
i s  a s  yet no direct experimental proof of the existence 
of collapse. Faith in the correctness of the collapse 
concept i s  based first  of all on the many results of nu- 
merical calculations (see, e.g., Refs. 7 to 9 and the 
surveys in Refs. 5 and 10) and also on some analvical  
facts. Among the latter, self-similar substitutions play 
an important role; these describe self-similar collapse 
regimes a s  t - to (to is the moment of collapse). Self- 
similar substitutions were discovered already in the 
first paper of one of the present authorsi and subse- 
quently have been discussed in almost every paper de- 
voted to collapse (see, e.g., Ref. l l) .  

The numerical solution of the problem of the evolution 
of a packet of Langmuir waves7' demonstrates with 

ample of wave collapse is self-focusing. However, 
self-focusing simulates Langmuir collapse only very 
roughly. Considerably more common features a re  
shared with it by the model which was studied in Ref. 14 
and which we shall call scalar collapse. Scalar collapse 
allows exactly the same self-similar substitutions a s  
Langmuir collapse; however, the cavitons in the case of 
scalar collapse can have any symmetry, including 
spherical symmetry. 

In Ref. 14 we solved numerically the equations for  the 
scalar spherically symmetric collapse and we fixed 
with great accuracy the arrival  at the self-similar re- 
gime. Nonetheless doubts were expressed in Ref. 15, 
on the basis of numerical calculations, about the exist- 
ence of the corresponding self-similar solutions. 

In the present paper we present the self-similar solu- 
tions for scalar wave collapse. These solutions exist 
for any dimensionality of space and are  marked by an 
additional index a. We show that these solutions simu- 
late with great accuracy the problem of the self-similar 
solutions of rea l  Langmuir collapse for the special 
choice (Y = $ in the one-dimensional geometry. We show 
also that the self-similar collapse can exist also when 
the Langmuir waves are  damped, provided the damping 
rate does not increase too rapidly with increasing k. 
All results refer to  the most interesting case of super- 
sonic collapse. 

$1. GENERAL PROPERTIES OF SUPERSONIC 
COLLAPSE 

reasonable accuracy how a self-similar regime i s  The Langmuir wave collapse is  described in dimen- 
reached. However, the self-similar solutions them- sionless variables (see Ref. 1) by the set  of equations 
selves which describe the shape of the density wells 
(cavitons) which occur in the plasma have s o  far not v2(icp,+v?p) = d i v ( n ~ r p ) ,  

been found. This is explained partially by the fact that (= a= - czVj  n=v? vcpl '. 
the maximum symmetry for ~ o l l a p s e ~ ~ " ~  is axial. (1.2) 

Therefore, the evaluation of the shape of the caviton Here cp i s  the time envelope of the high-frequency elec- 
requires the solution of a rather complex two-dimen- trostatic potential, n  the variation in the plasma densi- 
sional non-linear elliptical problem. ty, and c the ion-sound speed. (Usually one makes the 

equations dimensionless in such a way that c = 1 ,  but it 
The present paper is devoted to an approximate solu- i s  convenient for us to  leave c undetermined.) 

tion of this problem. It is based upon a numerical sol- 
ution of a closely similar but simpler problem. Lang- The equations for scalar  collapse have the form 
muir collapse belongs to a number of physical phenom- i+,+ v2 $=n$, (1.3) 
ena which can be called wave collapses. A typical ex- ~ , , - C ~ V ~ ~ = V ~ D ,  a)= I$IZ. (1.4) 
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It i s  clear from Eqs. (1.1), (1.2) and (1.31, (1.4) that, 
roughly speaking, $I- Vq. 

Both sets of equations a re  physically universal, they 
describe a non-linear medium in which high-frequency 
waves with dispersion w, = k2 (or w, = wo + k2) interact 
with low-frequency waves with dispersion a, = c  1 k 1 .  
The systems differ in the details of the interaction 
mechanism between the high- and the low-frequency 
waves. 

The major part of the following results refer to the 
set (1.31, (1.4) and in the majority of the cases,  unless 
otherwise stipulated, we can easily transfer to the set  
(1.11, (1.2). The set (1.3) i s  a particular case of a more 
general system consisting of Eq. (1.4) and the equation 

if  we put v, = O .  Here v, i s  the group velocity of the 
high-frequency waves. 

The system (1.41, (1.5) describes light which i s  self- 
focused through striction, and in real  cases ti, >>c. 
This i s  the case, in particular, for self-focusing short- 
wavelength, (kX,)2 > m,/mi, Langmuir waves (v, 
= 3vr, (kb)', c = (~ , /m,)"~) .  In this situation Eq. (1.5) 
reduces to  (1.31, provided v*v#=O, i.e., if the Lapla- 
cian in (1.3) i s  two-dimensional. We shall assume in 
what follows that the problem i s  considered in a medi- 
um with an arbitrary dimensionality n~ . 

The equations for scalar collapse have a s  integrals of 
motion 

Here v is  the velocity of the medium and i s  determined 
by the set of equations 

which is equivalent to Eq. (1.4). 

Equation (1.3) can be modified by taking into ac- 
count the frequency wave damping. Let the dispersion 
law be 

Here y(k) is the damping rate. To take damping into ac- 
count we must substitute in (1.3) 

Here y = y ( - i ~ )  i s  a pseudo-differential operator with 
symbol y(k). 

We consider for the set (1.3), (1.4) a localized initial 
condition (wave packet) of characteristic size L and 

characteristic intensity @. Assume at the same time 
an initial density variation n and i ts  time derivative n,, 
while initially a >>c2n. This means that we can neglect 
in Eq. (1.4) the t e rm c2v2n in comparison with v2@. 
This approximation is equivalent to the condition that 
the sound velocity be negligibly small, and is tradition- 
ally called the supersonic approximation, a designation 
not too felicitous, a s  the real  velocity of the motion of 
the matter under the conditions of Eq. (1.4) is much 
smaller than the sound velocity. 

The qualitative nature of the process described by 
Eqs. (1.31, (1.4) in the supersonic approximation is 
clear from the equation 

IZ,,=V~ UJ. (1.8) 

Let initially n = 0, n, = O  while the field IC, has a maxi- 
mum a t  the origin. We then have at r = 0 v2@ < 0, n,, 
< 0, and after a time 7 there occurs at the origin a 
density well 

We note that Eq. (1.3) is a non-stationary Schradinger 
equation. It describes for sufficiently small n the dis- 
persive spreading of the wave packet, with a character- 
istic time 7- L2. If the condition 

i s  satisfied, a density well is formed after the time of 
spreading, and for the well n ~ '  2 1. In such a well there 
occurs a discrete level, in which part of the energy of 
the high-frequency wave i s  trapped. The spreading then 
stops whereas the deepening of the density well contin- 
ues. We give an estimate of the dynamics of this pro- 
cess. Let @ be the density of the "trapped" energy of 
the high-frequency waves. In the three-dimensional 
case we have then 

For the ground state n a 1/L2, whence we have an 
equation for the density variation in the center of the 
well: 

with a a positive constant. This equation has the solu- 
tion 

in which case 

Thus, the density variation and the quantity @ become 
infinite after a finite time. This is wave collapse. It is 
clear from a comparison of (1.11) and (1.12) that a s  the 
time to of the collapse is  approached the condition for 
the applicability of the supersonic approximation >>c2n 
i s  improved. 

It i s  important to  note the following. In the potential 
well the field oscillates with a frequency w of order 
n. The characteristic inverse time for changes in the 
well is then of the order of 

1 n, 1 _-_--. 
T n to-t 
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Notwithstanding the tendency of this time to zero  a s  t - to ,  it follows from (1.1 1) that the condition l/r << w is 
satisfied near the collapse, which means that the evolu- 
tion of the shape of the well can be considered to be 
adiabatically slow. In the adiabatic approximat ion 

Here -X2(t) i s  the time-dependent level in the well and 
x is the eigenfunction corresponding to it which satisfies 
the stationary equation 

The condition for the conservation of the integral Ii be- 
comes now an additional equation 

When we use 9 =x2 Eqs. (1.14) and (1.15) supplement 
Eq. (1.81, forming a complete set  of equations for adi- 
abatic scalar supersonic collapse. When we take damp- 
ing into account, Eq. (1.15) i s  replaced by 

a 
- - j x z d r + ( X ~ ~ l X > = ~ .  at (1.16) 

Equations (1.81, (1.141, (1.15) conserve the integrals 
N and M, and also the integral I2 which now, a s  one 
can easily check, has the form 

1 
I*=-h1(t)I1 + - J 9 dr. 

2 (1.1 7) 

The integral P is identically equal t o  zero. If I2 < 0, it 
follows at once from (1.17) that 

Thus, if I, < 0 the level certainly exists and, if I2 < 0 
this level can not disappear during the evolution. 

We note also that the adiabaticity condition w >> 1/r 
can be rewritten in a different form. Using n c~ 1 / ~ ~  we 
find from Eq. (1.8) that 1 / r= 9'". Hence, if we take 
the condition for the applicability of the supersonic ap- 
proximation into account, we have for the adiabaticity 
condition 

There can also be other levels in the density well. If 
the well is sufficiently deep so  that the frequency of a 
transition between neighboring levels Aw >> 1 / ~ ,  these 
levels also satisfy the adiabaticity condition. If the 
number of these levels is k, we have 

s o  that it is necessary to  have 

In this case the wavefunction J ,  can be written in the 
form 

Here X, and - X i  a r e  the wavf functions and eigenvalues 
of the n-th adiabatic level, $ is the non-adiabatic part 
which is expanded in terms of the non-adiabatic levels 
and the eigenfunctions of the continuous spectrum. 

Accurate to t e rms  of order ~/ (AwT) '  we can put 

The function $ satisfies Eq. (1.3). For X, we have 

which closes the set of equations. When damping is 
present it is necessary to include it explicitly into the 
equation for the non-adiabatic part and for X, to put 

If the number k is  large (k>> 1) we can use the quasi- 
classical approximation to  calculate the levels. Neg- 
lecting the non-adiabatic part we arr ive  in that case at 
the well known Vedenov-Rudakov equationsi6 for the col- 
lisionless kinetics of Langmuir waves. In the frame- 
work of these equations the difference between the scal- 
a r  and the Langmuir collapse disappears. ~ r e i z m a n "  
has studied the self-similar collapse in this case. We 
also note that when the conditions for adiabaticity a re  
not satisfied it i s  impossible to use the Vedenov-Ruda- 
kov equations. If there a re  no decays of high-frequency 
into low-frequency waves we can use instead Ruben- 
chik's collisionless kinetics." It is  valid for Langmuir 
waves in a plasma when 

$2. SELF-SIMILAR SCALAR COLLAPSE SOLUTIONS 

Numerically the set (1.3), (1.4) has been studied earl- 
ier  in Ref. 14 for the spherically symmetric case. Col- 
lapse was observed and to a gocd accuracy Eq. (1.11) 
was confirmed. It was also shown that a s  t - to the col- 
lapse becomes self-similar. This i s  explained by the 
fact that the set of Eqs. (1.8), (1.14) allows the self- 
similar substitution' 

x=( t3 - t ) - ' q (k ) ,  12= ( t o r t )  -?=v(Z), 
g= ( to- t )  -"I, k2= ( to- t )  -?'j .U * . 

In that case ~ ( 5 )  satisfies the Schrijdinger equation 

and V(5) the equation 

In (2.1) and (2.2) ff i s  an arbitrary constant. The con- 
servativeness condition (1.15) enables us to determine 
it uniquely: 

Solutions with CY # 2/m can be realized only in a non- 
conservative medium, i f  the damping has a power-law 
character y a p .  In a medium with damping, a > 2/m 
and we then find from (1.16) that P = l/a . Thus, if fi 
< 1/a damping cannot halt the collapse, and for f i  > l/a 
there are  no self-similar damped solutions. Solutions 
with (Y < 2/m can be realized only in an amplifying me- 
dium and have no physical meaning. 

The conditions for the applicability of the supersonic 
adiabatic approximation (1.19) impose on a the condi- 
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tions 

When CY > 1 self-similar solutions violate the condition 
for the applicability of the supersonic approximation. 
In that case they can be used only a s  intermediate a- 
symptot ic~ under the condition Q>>c2n. Just such a 
situation i s  realized in the one-dimensional case when 
m = 1 (a  = 2). When CY S a self-similar approximations 
have no physical meaning. Only when m = 3  do we have 

= $ and conditions (2.3) a re  satisfied up to the col- 
lapse itself. (A numerical experimenti4 gave for that 
case a! = $* 0.03.) Self-similar solutions have a mean- 
ing also in a medium with damping when 1 < 0 <$. 

The case m =2 i s  very interesting. In that case CY = 1 
and the ratio of the quantities c2n and Q remains con- 
stant in the collapse process. However, in that case 
the self-similar substitution is allowed not only by Eq. 
(1.81, but also by the more exact Eq. (1.4). 

We consider completely symmetric self-similar solu- 
tions. They satisfy the equation 

Integrating it we get 

We must solve Eq. (2.5) tqgether with Eq. (2.1) with 
the boundary condition 

TIE-o=Qo"a. 

The set (2.1) and (2.5) allows solutions with a singu- 
larity at some point to: 

As the point is  arbitrary, the singularity can occur 
almost for any value of Go. Only those solutions can 
have a physical meaning for which to =a. The corre- 
sponding values of Qo which are  determined by solving 
the equations on a computer a re  given in 05. We also 
note that Eqs. (2.1) and (2.5) a r e  invariant under the 
substitutions 

We can therefore, without loss of generality, assume 
that X = 1. We easily find from (2.5) the asymptotic be- 
havior of V a s  [- 00: 

The remaining terms of the asymptotic form a r e  ex- 
ponentially small  a s  { -- 00. 

It is  appropriate here to elucidate one of the apparent 
paradoxes of self-similar solutions. From the self- 
similar substitution (2.1) we find for the quantity 

the relation 

N ( t )  = ( to - t )  "'rn-2'N(0),  N (0) = N  1 ,=,. 

However, N i s  an integral of the motion. For finite N 
this is possible only if m =2. Therefore, if m# 2 the 
quantity N must either be equal t o  zero o r  be infinite. 
From (2.7) it i s  clear that when m =1, 

and N i s  given by an integral which diverges a s  5- a. 
When m = 1 we have thus N = 0. This agrees with the 
fact that n(5) > 0 when 5- whereas clearly n(5) < 0 
for sufficiently small 5. When m =3, 

The integral N now diverges, and N =m. It i s  then 
unnecessary to require that n(5) have a different sign in 
different parts of space. 

The fact that the integral N is infinite does not at al l  
mean that in the real  problem the density variation is 
infinite. Indeed, a self-similar solution can be realized 
only in a finite region of the physical space r < R .  Since 

a s  t -  to for any finite point of space 5- m and in it the 
asymptotic behavior (2.7) is established. Written in the 
variables r a n d t  Ea. (2.7) has the form 

We see that in any finite point r a s  t- to the quantity V 
tends to a finite limit 

i.e., a s  t -  to there occurs in the medium an integrable 
l/r2-type singularity. There i s  in this case no density 
influx from the external region-the singularity is 
formed from "the own resources" of the density well. 
This i s  particularly clear if we note that the second 
t e rm in the asymptotic expression (2.9) is negative and 
growing a s  compared to the first term a s  Y- 0. 

In the conservative case (Y =2/m the integral I, i s  
conserved. Like the integral N, the integral I, is not 
consistent with the self-similar substitution, but a s  one 
can see  easily, it always converges. Hence it follows 
that in the conservative case N p  0. This fact has been 
noted several times in the past (see Refs. 7, 8). There 
i s  also no paradox here a s  it is not at all presupposed 
that I ,  = 0  for any initial wave packet from which the 
self-similar singularity "grows." 

As we have already indicated, when CY = 1 the self- 
similar substitution is allowed also by the "sound" Eq. 
(1.2). We give the result of integrating the equation for 
the density V in that case, restricting ourselves to the 
most interesting variant m =2. In that case 

53. EFFECT OF THE "FUNNEL" 

In the symmetric case Eq. (2.1) has the form 
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We expand cp and V in s e r i e s  in  even powers of 5 a s  5 
-- 0: 

F r o m  Eqs.  (2.5), (3.1) we get 

Vo must be a negative quantity s o  that 

F o r  the c a s e  m = 3 t h e r e  follow important  conclusions 
f r o m  (3.7). A s  5 - the asymptotic behavior of V is 

T h i s  means  that the potential well in the  se l f - s imi la r  
solution has an infinite number of levels which condense 
towards ze ro .  T h i s  fact  was noted in a paper  by ~ r d -  
manig where it w a s  used  a s  t h e  b a s i s  f o r  a hypothesis 
that  supersonic collapse is unstable ( see  a l s o  Ref. 20)!' 
In actual  fact f r o m  Eq. (3.7) completely different conse- 
quences flow. 

A s  the se l f - s imi la r  solution is valid only in  a finite 
region of space t h e r e  will fo r  any t < to be  only a finite 
number of levels  which increases  a s  t -  to a s  2 bn[to/(to 
- t)] while the depth of the lower levels  will  become in- 
finite. 

In a r e a l  physical situation t h e  s ingular i ty  in the  am- 
plitude cp is, of course ,  not reached. When the wave 
pulse is compressed  t o  ra ther  s m a l l  dimensions yo, 
s o m e  dissipation mechanism o r  o ther  is switched on 
and leads t o  the absorption of the pulse energy.  After 
that there  remains  in the medium a "density funnel" 

V=-@alar2,  

with ao/a > f .  

T h i s  density funnel is a potential well inside of which 
a depression t o  the c e n t e r  must occur  ( see  Ref. 21). 
The funnel s t a r t s  t o  "draw in" the energy of the high- 
frequency waves which a r e  absorbed in the  funnel cen- 
t e r  when they r e a c h  i t  f r o m  the surrounding space. 
T h i s  p r o c e s s  can be described a s  follow. Equations 
(1.3), (1.8) have exact solutions 

and in th i s  c a s e  

These  solutions a r e  invalid when r < ro where ro 
= c2no/ I cpo 1 is a quantity determined by the sound s p e e d  
In the funnel t h e r e  occurs  absorption of the wave ener-  
gy, but the funnel itself is not a s tat ionary formation 
s ince a spher ica l  wave is formed in i t  and diverges with 
a velocity c .  

If cpo is a charac te r i s t i c  value of the  field a t  the edge 
of the  funnel and T a charac te r i s t i c  lifetime f o r  it: t h e  
following value of the integral  I ,  is additionally absorb- 
ed  in  the  funnel: 

If c is sufficiently s m a l l ,  the  quantity 611 can he conl- 
parable  with and even s u r p a s s  the d e c r e a s e  in the  inte- 
g r a l  I ,  due t o  the se l f - s imi la r  col lapse which f o r m s  the 
funnel. Finally we can s a y  that the  appearance of an 
infinite number of levels  in the well does  not only pre -  
vent the collapse, but even i n c r e a s e s  t h e  absorption of 
energy due t o  that  mechanism. 

54. SELF-SIMILAR LANGMUIR COLLAPSE 
SOLUTIONS 

All  considerat ions given in Sec. 1 equally pertain t o  
Langmuir  collapse. Equations (1.1) and (1.2) a l s o  admit  
of a t ransi t ion t o  supersonic and adiabatic approxima- 
t ions and the  se l f - s imi la r  substitution 

In th i s  c a s e  

rp=f exp  ( - iho2t ) ,  f = g  ( 6 )  ( k t )  "-"'. (4.1) 

F o r  g and V we get the equations 

Of course ,  in the three-dimensional  c a s e  we must  put a 
2 - - - 3. 

One shows easi ly  ( see ,  e.g., Ref. 8) that Eqs.  (4.2) 
and (4.3) can not have spherical ly  symmetr ic  solutions 
a s  in that c a s e  the quantity IVg l 2  has  a minimum in the  
cen te r .  Langmuir  collapse has a dipoie character-the 
density well f o r  it h a s  ax ia l  symmetry  around the z - a x i s  
and the potential g is ant isymmetr ic:  

g(-2 ,  r ) = - g ( z ,  r ) .  

T h i s  fact can  be  used t o  simplify Eqs .  (4.2) and (4.3). 

It is known f r o m  numer ica l  experiments7 '*  that the 
Langmuir  caviton is very flat-its r a d i a l  s ize  I, is 
t h r e e  t o  five t i m e s  l a r g e r  than i t s  thickness  1,. The  
quantity p =lJl ,  can thus  be  considered t o  be  a s m a l l  
p a r a m e t e r .  

We shal l  solve the se t  (4.2) and (4.3) ir, the vicinity of 
r = 0 by expanding in a s e r i e s  in r .  One checks easi ly  
that  we need then consider  only even powers  of r: 

By vir tue of what we have sa id  above 

a2go a kg, 
g , = ~ ~ ~ ,  gz=p4- a z4 

and s o  on. Substituting (4.4) into (4.2) and (4 .3)  we con- 
s i d e r  t e r m s  of zeroth o r d e r  in  Y and i n  them put p =(!. 
T h i s  yields a closed se t  of equations f o r  the  junctions 
g o ( z )  and Vo(z)  which, if we put 
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FIG. 3 .  Legend: See legend to Fig. 1 .  m  = 3 ,  ff = 2 / m .  

FIG. 1. Legend: Solutions ~ ( 6 )  and V(E ) of Eqs. ( 2 . 1 ) ,  (2 .4 ) :  
Solid lines-quantities *,*i from the interval f f ( 2 f f +  1)  <GOi 
< 2  a ( 4 f f  + 1 ) ;  dots-quantities *$z from the interval 2 f f ( 4 u +  1)  
<ao2 < + m.  The cross x indicated the value po = ( f f ( 2 a  +I)] 'I2, 
the circle 0 the value cp, = [ 2 f f ( 4 f f  + 1)l  'I2. a) m  = 1 ,  a = 2 / 3 ;  
b) m =  1, ff= 2 / m ;  c) m =  1, ff= 2 / 3  with the upper curve 
given by the value a .  = *,*i + A*,, and the lower one by G o  
= -A*,, A @ o / @ &  0.03.  

are  the same a s  the set  ( 2 . 1 ) ,  ( 2 . 5 )  for rn =1, a = g ,  
i.e., a s  the problem of one-dimensional collapse with 
an anomalous value ( $  instead of 2 )  of a .  The terms 
which we have dropped a r e  of order p 2  so  that the zeroth 
approximation which we considered guarantees an ade- 
quate accuracy. 

As t- to there ar ises  in the Langmuir case an axially 
symmetric density variation 

Here B is the angle with the z-axis. From the results 
of 03 it follows that ~ ( 0 )  > 0 .  It is at the present time 
unknown whether there is an infinite number of levels in 
the well ( 4 . 5 ) ,  i.e., whether for the plasma collapse a 
funnel effect is possible. At any rate,  for this it is 
necessary that s ( T / ~ )  < 0 .  An elucidation of this prob- 
lem would be important for an estimate of the absorp- 
tion which i s  produced in plasma turbulence by the col- 
lapse. 

55. NUMERICAL RESULTS 

To check on the existence of a localized ground state 

FIG. 2 .  Legend: See legend to Fig. 1 .  m = 2 ,  ff = 2 / m .  

of the function p in the potential well V, we numerically 
integrated Eqs. ( 3 . 1 )  and ( 2 . 4 )  which had been integrated 
once: 

The expansion ( 3 . 2 )  t o  ( 3 . 6 )  leaves, when integrating 
from [ = 0 ,  a single parameter a. in the problem. The 
solution of Eqs. (3.11,  ( 5 . 1 )  is thus determined by the 
value 9% for which cp and V tend to zero a s  5-- -. For 
small  deviations AGO from 9$ the function p goes to in- 
finity in accordance with ( 2 . 6 )  (see Fig. l c ) .  In that 
case,  when A+o > 0 ,  the function p- +- whereas for 
A Q 0  < 0  we have p- --. Such a behavior of the func- 
tion cp is typical of Eqs. (3 .1)  and (5.1) and was ob- 
served for a l l  values of m and a .  

Somewhat unexpected was the presence of two solu- 
tions for each spatial dimensionality. One can easily 
obtain an explanation of this fact from the expansion of 
cp and V, ( 3 . 2 )  to ( 3 . 6 ) ,  a s  5- 0  and the asymptotic be- 
havior (2.7) a s  [ - -. Indeed, for the correct  behavior 
of cp a s  5 - 0  we have Qo > a ( 2 a  + 1 ) .  In that case the 
function V, > 0  when < 2 a ( 4 a  + 1 )  at small  [- 0  and 
we have a monotonic function V when V< 0 ,  whereas 
when iPo > 2 a  (40 + 1 )  and 5 << 1 we have V, < 0 and to  join 
it t o  i t s  asymptotic behavior we must have an extrem- 
um of the function V when [ 2  0  and V< 0 .  

The solutions a re  given in Figs. 1 to  3 .  The values 
9$, and ad; a re  given in Table I with a relative accuracy 
of 1 O-3. (we note that our result contradicts the paper 
by Gol'tsman and ~ r a i m a n ' ~  where on the basis of a 
numerical calculation it was stated that there are  no 
supersonic self-similar collapse regimes in the case of 
scalar collapse with ~m = 2 ,  a = 1 .) The solution with m 
= 1 ,  a = $ simulates the Langmuir collapse problem 
( 0 4 ) .  The solution with rn = 1, a = 2  is the intermediate 
asymptotic behavior for the formation of a large ampli- 
tude one-dimensional soliton. 

There a r e  also solutions for values of the self-sim- 
ilarity index a #  2 / m .  In Fig. 4  we give the correspond- 
ing values of @ for m = 3 .  It is clear that when ff 

TABLE I. 
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FIG. 4. Legend: The intensity O: a s  function of the self- 
similarity constant a (m = 3): 1: *&(a); 2: *&.(a). 

changes from 2/m to 1 the amplitude changes by an 
amount A @ ~ / w  - 1. 

In order to increase the accuracy of the calculations 
we used the ehpansion (3.2) to  (3.6) up to 5 - 10"to loe2, 
after that the calculation was performed using the 
Runge-Kutta method of fourth order of accuracy and in 
a number of cases for comparison using the sixth-order 
Milne f~ r rnu la . '~  The accuracy of the calculations was 
monitored by the approach to  the asymptotic behavior 
and in the case of m = 1 by the condition N = 0. In all  
calculations the e r r o r  was less  than 

In conclusion the authors express their gratitude to 
E. B. Bogomol'nyi for  useful discussions. 

Note added inproof (29 October 1981). In fact, Eqs. 
(3.1) and (5.1) admit an infinite number of solutions. 
This is connected with the fact that when a, =na(2na! 
+ 1) the terms a, and V,-, in the expansion (3.2), (3.3) 
tend to infinity at k 3 n. In other words, when @,= @, 
the terms a:2n and ~,,-,5~("-') in the expansion make an 
appreciable contribution, irrespective of how small  
5 is. We a r e  grateful to L. M. Degtyarev for dis- 
cussing this problem. 

') The problem of the additional levels is not a t  all  connected 
with the problem of instability. The latter must be solved 
on the basis of an analysis of theJinearized equations. How- 
ever, the analogy induced by Fraiman and ~ i t v a k ( ~ ~ . ~ ~ '  with 
the one-dimensional instability of a soliton is inadmissible 
if only because the collapse, in constrast to a soliton, is an 
essentially non-stationary effect which takes place during 
a finite time. The higher levels in the density well corres- 
pond to slower processes which a t  the instant of collapse 
turn out to be in fact "frozen in" and do not affect the col- 
lapse. 
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