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Expressions are derived for the energy and heat capacity of the electrons localized at impurity centers in the 
case in which the temperature is significantly higher than the impurity-band width. The case of a 
compensated semiconductor, in which the impurity-band width is determined by the random Coulomb fields 
of the charged donors and acceptors, is considered. The impurity concentration is assumed to be so low that 
the quantum overlap of the electronic states localized on neighboring impurities can be neglected. The 
analogy and diierence between the energy of the impurity-band electrons and the correlation energy of a 
high-temperature plasma are emphasized. 

PACS numbers: 71.55.Ht 

1. The low-temperature properties of disordered 
systems with localized electronic states, such a s  spin 
and ordinary glasses, have recently been the subject 
of intensive studies in which the thermodynamic pro- 
perties and, above all, the heat capacity a r e  given 
much attention. A unique example of systems with 
localized states is the impurity band of a slightly doped 
compensated semiconductor. Its distinguishing fea- 
ture is the Coulomb interaction, which gives r ise  to 
distinctive low-temperature properties. 

The electronic heat capacity of semiconductors has 
been measured in the vicinity of the Mott transition3 
but, unfortunately, only in the case of weak compensa- 
tion. At present, computer modeling of the thermo- 
dynamic properties of compensated semiconductors is  
being carried out by some members of our group. We 
hope also that the low-temperature heat capacity of 
compensated semiconductors will soon be experimen- 
tallv studied. 

In Ref. 2 the case in which the temperature is low 
compared to the impurity-band width is considered. 
(In a slightly doped semiconductor this width can be a s  
high a s  1-10 meV. ) 

It makes sense for the purpose of comparing the 
theory with the experimental data and the results  of 
the computer modeling to consider the opposite limiting 
case, which corresponds to high temperatures. It is 
this problem that the present paper is devoted to. As 
shown below, the first  terms of the expansions of the 
energy and the specific heat capacity in powers of T' 
can be found exactly with the aid of the method of func- 
tional integrals, and have a somewhat unusual form. 

2. In the region of low concentrations the impurity- 
band width is determined by the random fields pro- 
duced by the charged donors and acceptors. For de- 
finiteness, we shall consider a semiconductor of the 
n-type, i. e . ,  we shall assume that the donor concentra- 
tion N, is higher than the acceptor concentration N,.  
Then the system consists of negatively charged accep- 
tors, positively charged donors, and neutral donors. 
The number of charged donors is equal to the number 
of acceptors, s o  that the system is neutral. The ratio 
N,/N, is called the degree K of compensation. 

The quantity K varies in semiconductors within wide 
limits-from the case of weak compensation K << 1 t o  
the case of strong compensation 1-K << 1. We shall 
call the case in which neither the quantity K nor the 
quantity 1-K can be considered to be a small  parame- 
t e r  the case of intermediate compensation. The quan- 
tities K and 1-K can in this case be replaced by unity 
in order of magnitude estimates. 

In this case of intermediate compensation the im- 
purity-band width i s  of the order of e 2 ~ i J 3 / u ,  where e 
is the electron charge and x i s  the dielectric constant 
of the lattice. As in Ref. 2, here we consider the 
 classical" impurity band, i. e . ,  impurity concentra- 
tions that a r e  s o  low that the quantum overlap of the 
wave functions of the electrons occupying neighboring 
donors can be neglected. For small  impurities such a 
situation is realized when the condition N,a3 << 1, where 
a i s  the Bohr radius of an electron on an impurity, i s  
satisfied. The energy of the classical impurity band 
has the form 

where r i j  = I ri - rj 1 ,  ri and rj  a r e  the coordinates of the 
donors; r, and r, those of the acceptors. The occupa- 
tion number ni = 0 i f  the donor is ionized and ni = 1 if the 
donor is neutral. 

The expression (1) describes the Coulomb interac- 
tion energy for all  the charges of the system. To com- 
pute the thermodynamic energy, we must average (1) 
f i rs t  over the occupation numbers with the aid of the 
Gibbs distribution and then over all  possible donor and 
acceptor configurations. 

In its physical content, the formulated problem is 
closest to the computation of the correlation energy of 
a slightly nonideal plasma. The electrons of the im- 
purity band can migrate from donor to donor, effecting 
screening. Therefore, the sought thermodynamic ener- 
gy should have the form 

where V is the colume of the system, a ( K )  is some di- 
mensionless function of the degree K of compensation, 
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is the reciprocal screening length, which contains 
another function B @ )  of the degree of compensation. 
Accordingly, the specific heat capacity is equal to 

The aim of the theory put forward below is to deter- 
mine the functions a@) and @@). 

The formulated problem differs from the plasma 
problem for the following reasons: 

a )  The electrons can be on the donors only, and not 
anywhere. In itself the discreteness of the donor co- 
ordinates is not important, since the potential changes 
significantly over distances of the order of q;', and 
there a re  many charged donors in a sphere of radius 
9,' a t  high temperatures. But the point is that only one 
electron can be on each donor, and this produces ad- 
ditional correlation between the charges. This can be 
stated differently. If the degree K of compensation i s  
close to unity, then the electron (neutral-donor) con- 
centration i s  low [it i s  equal to (I-K)N,], and the posi- 
tions that can be occupied by the electrons (i. e. , the 
empty donors) a r e  very many. Then we can neglect the 
effect of the additional correlation, and assume that 
the mobile carr iers  effecting the screening a r e  elec- 
trons. Indeed, a s  will be shown below, a s  K - 1, the 
screening length is determined by the electrons, and 
P(K) = 1-K. In the K << 1 case almost a l l  the donors 
a r e  occupied, and we can asser t  that the screening is  
effected by the holes, which in this case can move 
without impeding each other. Thus, for K << 1, we can 
assume that the mobile ca r r i e r s  a r e  the holes, whose 
concentration is equal to KN,. Indeed, for K << 1 we 
have P(K)=K. The general result, a s  will be shown 
below, has the form 

and i t  is quite difficult to interpret i t  in terms of 
screening by mobile carr iers .  

b) The donor and acceptor a r e  assumed to have 
Poisson distributions in space. We should, in 
averaging over the occupation numbers, assume the 
fluctuations in the donor and acceptor concentrations 
to be "frozen. This circumstance decreases the cor- 
relation energy, since the potential of the fluctuations 
having dimensions of the order of the screening length 
prevents the screening charge ca r r i e r s  from "accom- 
modating" themselves to each other in the best way. 
This i s  the second reason why the problem under con- 
sideration does not reduce to the plasma problem a t  
arbitrary values of K. In the limiting case K << 1, in 
which the carr iers  can be considered to be holes and 
the frozen charged-donor fluctuations can be neglected, 
the problem becomes equivalent to the problem of a 
plasma with stationary ions distributed according to the 
Poisson law. The role of these ions is played by the 
charged acceptors. The frozen acceptor-concentration 
fluctuations with dimensions of the order of the screen- 
ing length give r ise  to a situation in which, for K << 1, 

the correlation energy is somewhat lower than the cor- 
relation energy of a plasma with stationary ions. As 
fa r  a s  we know, the correlation energy of a plasma with 
stationary ions has not been computed before. 

c)  In the case of a plasma the correlation energy is a 
correction term in the expression for the total energy, 
and this term should be small  compared to the dominant 
term in the entire region of applicability of the theory. 
In the case of localized electrons the kinetic energy is 
equal to zero, and the formula (2) gives the first  non- 
vanishing approximation. As T -- a, the energy of the 
electrons in the impurity band and their heat capacity 
tend to zero. 

3. Let us discuss the scheme of the computation of 
the correlation energy. As has already been indicated, 
the donor- and acceptor-concentration fluctuations with 
dimensions comparable to q,', i. e . ,  significantly 
greater than the mean charged-impurity spacing, turn 
out to be important in the computation. From this we 
can draw the following conclusions: 

a )  The fluctuations can be considered to be Gaussian 
(the mean number of impurities in the fluctuation re -  
gion is high compared to unity, while the excess num- 
ber of impurities is small  compared to the mean num- 
ber). The conditions for the fluctuations to be Gaus- 
sian have the form 

In the case of intermediate compensation the conditions 
(5) determine the region of applicability of the high- 
temperature expansion (T  >> e 2 ~ ; l 3 /  x). 

b) The concentrations, N,(r) and N,(r), of a l l  the 
impurities can be considered to be smooth functions of 
the coordinates. 

Let the functions q(r )  and $(r) represent the devia- 
tions from the mean donor- and acceptor-concentra- 
tion values: 

Let us represent the charged-donor concentration 
N,(r, t )  in the form 

NC(r, t )  =.3'.4+:(1, t ) .  (7) 

(The mean number of charged donors is equal to the 
number of acceptors. ) Let us note that the donor- and 
acceptor-concentration fluctuations a r e  "frozen. " They 
a r e  frozen in during the sample preparation. The 
charged-donor concentration, on the other hand, de- 
pends on the time, since the electrons, executing ther- 
mal motion, migrate from donor to donor. We have by 
definition 

where the symbol (. . .) denotes averaging over all pos- 
sible impurity configurations. Such averaging is 
equivalent to averaging over all  points in space, so  that 

The random functions q ( r )  and + ( r )  a r e  given by the 
correlation relations 
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(q (r) q(rr) )=ND6 (r-r'), <$(r)$(rl) )=NA6(r-r'), 

<q (r) $ (r') >=O. (10) 

The higher-order correlators break up into pair cor- 
relators. 

Because of the neutrality of the system, the inter- 
action energy of homogeneously distributed charges is 
equal to zero. The terms linear in the fluctuations 
a r e  equal to zero owing to the property (9). Therefore, 

The plan of the computations is a s  follows. We deter- 
mine for given donor and acceptor concentrations the 
time-averaged values ((r ,  t )  and ((r ,  t)((r, t )  with the aid 
of the formula 

where R,,,{[} i s  the minimum work that must be done 
in order to produce the fluctuation ((r) a t  fixed donor- 
and acceptor-concentration values. Then we find the 
configuration-averaged quantities: 

L, ( 1 r-r' 1 ) =(E (r, t) E (r', t) )-NA6(r-r'), (13) 

LZ(lr-rfl)=<b(r, t)$(rl)) .  (14) 

The correlation energy is equal to 

The subtraction of a term with the 6 function should be 
done in the computation of the interaction between iden- 
tical particles in order to eliminate the self-action (see 
Ref. 4, 8116). According to (lo), the contribution to 
the correlation energy from the last term in ( l l ) ,  a 
term which describes the interaction between the ran- 
domly distributed acceptors, i s  equal to zero. 

4. The minimum work i s  given by the expression 

where the last term in the expression (11) for H can be 
neglected, since it does not depend on 5. The quantity 
AS is the entropy change due to the fluctuation ((r). To 
compute AS, let us divide the whole system into regions 
each containing many impurities, but having dimensions 
that a r e  small compared to q,', so  that the functions 
ND(r) and Nc(r) can be considered to be constants inside 
it. Let 51 be the volume of each region. Then the num- 
ber 4 of donors inside a region i s  equal to 4, = ND(r)S1 
while the number of charged donors is equal to 4 
= N,(r)Q. Let us denote by r the number of ways 
4-& electrons can be distributed over 4 donors. 
Then the entropy S, of a region Q is equal to 

Using the Stirling formula, a s  well a s  (6) and (7), we 
find that S, = S2u(r), where the entropy density 

Let us determine the total entropy 

and find AS by substituting (18) into (19) and expanding 
the resulting expression in powers of ( up to second or- 
der. Then 

According to  (9), AS is equal to zero  in the first-order 
approximation. 

The formula (20) differs from the normal Gaussian 
formula a s  a result of the presence of the second 
term, which indicates that the most probable distribu- 
tion of the charged donors for a given configuration of 
the impurities is not the uniform (i. e. , ( = 0) distribu- 
tion, but the distribution that preserves the mean frac- 
tion of charged donors [ ~ ( r )  = ~ ~ ( r ) ] .  

5. To compute the functional integral ( l2),  we must 
go over to the Fourier transforms with the aid of the 
formula 

and separate the real  and imaginary parts: 

I N Similarly, we introduce the quantities $,, $:, $:, TJ,, ?7,, 8,. 

Using ( l l ) ,  (16), and (20), we obtain 

where 

the reciprocal screening length q ,  is given by the for- 
mulas (3) and (4), 

4xeZ$, 11 X q = - + A  X,' = Re X, ,  X[ = Im X,. (2 5) xTqZ ND(l-K) ' 

The symbol Z' indicates that the summation is per- 
formed only over the vectors lying in one half-space 
(e.g. ,  in the q, >O half-space). 

The functional integral (12) reduces, after the sub- 
stitution of (23) into it, to Gaussian quadratures. As a 
result we obtain 

- 
t/=X//an, fT=x[/a,, (26) 

The averaging over the configurations i s  performed 
with the aid of the formulas ( lo) ,  which a re  written in 
the form 

We find with the aid of (27) and (28) that 
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Similarly, 

Using (l5) ,  (29), and (30), we find 

Replacing the sum by an integral, we obtain the for- 
mula (2) with 

( I + K ) K  
a ( K )  = ------ + K .  

4 

6. The first  te rm in (32) describes the interaction 
between the charged donors; the second term, the in- 
teraction between the charged donors and acceptors. 
Let us f i r s t  consider the K << 1 case, in which almost 
al l  the donors a r e  neutral. A unit volume contains N, 
charged acceptors and a s  many stationary holes (ionized 
donors), which effect the screening. According to (2), 
(3), (4), and (32), 

This i s  the solution to the problem for a plasma with 
stationary ions. The second term in (33) is the sum of 
the potentials produced by the screening atmosphere on 
each ion (acceptor). The f i r s t  term describes the in- 
teraction between the mobile c a r r i e r s  (holes). If we 
replace the' stationary ions by a background, then the 
second term in the square brackets will be absent, and 
the f irst  will be equal to $ instead of $. Thus, the 
potential produced by the stationary ions reduces (in 
absolute value) the energy of interaction between the 
mobile ca r r i e r s  by a factor of two. 

If the ions were mobile, then the square brackets in 
(33) should be replaced by unity, but then the screening 
length should be reduced by a factor of a. Thus, the 
correlation energy for a plasma with stationary ions i s  

in absolute value smaller  that of a plasma with mobile 
ions. The term proportional to K 2  in the formula (32) 
describes the effect of the donor-concentration fluctua- 
tions on the energy of interaction between the charged 
donors. 

Let u s  now consider the case 1-K << 1. In this case 
the condition of applicability of the high-temperature 
expansion does not reduce to the condition e 2 ~ i J 3 / n  
<< T. It is necessary that the correlation energy per 
electron be smal l  compared to T, i. e . ,  that 

The low-temperature impurity-band theory was de- 
veloped by Shklovskii and ~ f r o s .  It was shown that the 
characteristic screening length in this case is of the 
order  of R , = ~ v ~ ' ~ ( ~ - K ) * / ~ ,  while the range of the im- 
purity potential i s  of the order  of y.  The condition (34) 
can be written in the form 9;' >>R,. When T is of the 
order  of y ,  the results  of the high- and low-tempera- 
ture theories coincide. 
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