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The magnetic susceptibility is found for a system which is unstable relative to electron-hole coupling in the 
vicinity of the point of transition to the current state. It is shown that exciton modes may yield a diverging 
paramagnetic contribution to the susceptibility. A functional for the free energy of the system in a magnetic 
field is set up. The structure of the functional is such that the system cannot be described in terms of the 
magnetic moment in a local form. The current state therefore cannot be classified within the framework of 
ordinary magnetic symmetry groups. 

PACS numbers: 75.20. - g, 75.30.Cr 

INTRODUCTION i - 6  + ? A C ~ .  

This is a of an of where A ( d  is the vector potential of the field. T?e form 
with spontaneous currents.12 The behavior of these of the current  operator  j, when the Hamiltonian H is s o  
systems was previously investigated2 in the absence written, is defined in obvious fashion: 
of external magnetic fields, and an  expression satisfy- 
ing the continuity equation was obtained for  the spon- 7=-61f/6~. (2) 
taneous current. Most useful in the derivation of this 
expression were requirements that follow from the 2. GENERAL RESTRICTION ON THE RESPONSE 
gauge-invariance condition. We investigate below the 
behavior of sys tems with spontaneous current  in an  
external magnetic field, obtain the Landau functional 
for  the f r ee  energy in a n  external field, and calculate 
the orbital magnetic response of the system near  a 
phase-transition point. It will be shown that the gauge- 
invariance requirement limits substantially the form of 
the response function, especially that pa r t  of the func- 
tion which is connected with the collective modes of the 
exciton o r  zero-sound type. 

1. THE HAMlLTONlAN 

Jus t  a s  before2 the problem of the orbital response of 
a system with electron-hole instability will be  investiga- 
ted within the framework of a two-band Hamiltonian k 
containing interband transitions: 

Before we proceed to specific model calculations, we 
must  consider the general restr ict ions imposed by the 
gauge-invariance of the Hamiltonian (1) on the s t ruc-  
t u r e  of the orbital magnetic response of the system. 
Fo r  example, from the requirement that there  be no 
reaction of the system to a longitudinal vector-potential 

(when Aql(q)  there follow in tr ivial  manner the known3 
generalized sum rules fo r  the oscillator strengths. 

Further restr ict ions on the form of the response X'(q) 
to a t ransverse  vector potential (A, q )  

can be obtained by analyzing the diagram s e r i e s  for  the 
current  j ,. I t  must  be ascertained f i r s t  of al l  whether 
collective excitations of the zero-sound type (or of an 
exciton in the investigated case)  make a n  anomalous 
pole contribution to the orbital susceptibility, and if 
they do, of what sign? 

Here m,  n = are the band indices, m0 is the mass I t  can be stated4 that a complete irreducible vertex 
the f r e e  electron; ~ , ,=~, , /m, ;  rn,=-(nliV Im) is the of the zero-sound type has in the mean-field approxima- 
interband matrix element of the momentum operator  tion and in the momentum representation the form: 
p= -i V; In) and (m) a r e  the Bloch amplitudes a t  the 
extremum of the n (m) band; 

61 ip) =-ez 6) =p2/2m*+~d2, 

where E, is the width of the forbidden band, and m* is 
the effective mass  of the electron, assumed for  s im-  
plicity to be isotropic and the s ame  in both bands, apar t  
f rcm the sign. In the case of a semiconductor E,> 0, 
and for a semimetal  E,< 0. The electromagnetic field 
is introduced in such a Hamiltonian in a gauge-invariant 
manner by replacing the operator fi by the extended 
derivative 

r(k, k', q) =V(k-k') + C Dm-' (q)pl,,'(k)cp,~ (k'), 

where D, (q)  depends explicitly on the sma l l  momentum 
t ransfer  q and contains al l  the singularities of the zero- 
sound type. In the case  of a semiconductor system 
with Hamiltonian (I) ,  the quantity V(k) is the ba re  inter- 
action potential, and rp,(k) is the wave function of an  ex- 
citon in the n-th excited state. To take Fermi-liquid 
effect into account i t  suffices to replace the ba re  poten- 
t ial  V(k) in a l l  the calculations that follow by a vertex 
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that is irreducible in the electron-hole channel4 
and has no singularities of the zero-sound type. 

The contribution of the Bose branches of the excita- 
tion spectrum of the system to the current jq is obtained 
by varying the diagram ~2 (k, k', q )  with respect to the 
vector potential Aq (see Fig. 1): 

where GA(k,q) is the complete Green's function of the 
system in the magnetic field. By virtue of the gauge- 
invariance of the Hamiltonian (I), the vector potential 
Aq enters in O as q- 0 only in the form 

I e l  
GA (k. q) =G k + -*.) , T A ( ~ ,  kr ,  I) ( c 

l e l  
- r ( ~ + - A . . k ~ + I r l ~ ~  ). 

(6) 

It follows obviously from (6) that Q, makes no contribu- 
tion to the current as A, approaches a constant and 
q -  0. Indeed, in first-order in the vector potential, the 
current connected with r (5) is 

a a a a  
k,kr 

because the total derivative is included under the sum- 
mation sign. 

We consider the pole part  of (5), which contains the 
product p,*d(k)qnq(ld). Such a factorized structure of the 
pole part of the total vertex allows us to make a general 
statement concerning the sign of the singular contribu- 
tion of the excitations of the zero-sound type to the 
response. We note immediately that a singularity re- 
mains in the response only when the vector potential is 
separated from the left and right factors [~~(d,q)cp,*,(k) 
and GA(k ' ,q)cpnq(~)  respectively] simultaneously. Fur- 
thermore, a contribution to the response is made only 
by current terms that a r e  obtained by separating q 
likewise from both factors. In the opposite case, when 
q is separated from only one of the factors, the other 
factor remains a total derivative and vanishes upon 
summation over the momentum, in analogy with (7). 
Thus, ths singular contribution to the current consists 
of factors, the expansion of each of which in powers of 
q begins a t  least from the term linear in q, while the 
expression for the current begins with the term quadra- 
tic in 9. Since the entire product is a squared modulus 

the response function should be positive, i.e., paramag- 
netic. Noting that the momentum transfer enters in the 
expression for n(k, k', Q) only in the form k i  q , kt i q ,  
we can prove the following statement: The singular re- 
sponse to a homogeneous field receives contributions 
only from zero-sound-type modes that a r e  not symme- 
trical with respect to the momentum (exciton excita- 
tions in states with odd n). The principal symmetrical 
mode with n =0, on the other hand, makes no contribu- 
tion to the singular response to a homogeneous field. 

3. ORBITAL RESPONSE OF AN INTRINSIC 
SEMICONDUCTOR NEAR THE EXCITON-INSTABILITY 
POINT 

At the temperature T =0, a semiconductor with E,>O, 
described by the Hamiltonian (1), becomes unstable to 
electron-hole pairing if the width of its forbidden band 
turns out to be less than the exciton binding energy. 
This instability can be described within the framework 
of the approximation of a low-density exciton conden- 
sate.= To make the equations less  cumbersome, it will 
be assumed from now on that the hybridization param- 
e te r  P = P, in (1) is small, s o  that a perturbation 
theory in its terms can be developed, and the only elec- 
tron-electron interaction left is the interband interac- 
tion of the density-density type. 

In the absence of an external vector potential (A=O) 
a dielectric phase transition in such a system is 
described in standard fashion6 and is accompanied by 
the appearance, generally speaking, of an inhomogen- 
eous order  parameter A: 

A (ri, rl) = ZA (k, R) elkr, r-r,-r,, Rc. (ri+rl)/2. 
k 

We separate in ~ ( k ,  R) the symmetrical A, and antisym- 
metrical A, parts: 

A (k, R) =A. (k, R) +A.,(k, R), A,(k, R) =A. (-k, R), 

A.(k, R) =-b( -k ,  R) =donr. 
(8) 

Here R is the coordinate of the exciton center, A(k, R) 
is the Fourier component of the wave function of the 
exciton with respect to the coordinate of the relative 
motion of the electron and hole in the pair, and nk is 
a unit vector in the k direction. 

As shown in Ref. 2 ,  current begins to flow if an in- 
homogeneous symmetrical imaginary o r  an antisym- 
metric real order parameter is produced in the system. 
If A(k, R) depends weakly on k ,  the expression for the 
current becomes 

(R) = e (L Re rot[P grad A.(R) ]+Q Im rot[PA.(R) 1) 
C (9) 

or ,  changing to Fourier components, 

we have 

The coefficients L and Q were determined earlie? and 
take different forms for a semiconductor and a semi- 
metal. The coefficient Q differs from zero only to the 
extent that the Fermi  surfaces of the electrons and 
holes a r e  not congruent, for example a s  a result of 
doping. 

In the nonreconstructed semiconductor phase, owing 
to the presence of P . k hybridization in the Hamiltonian 
(I) ,  the imaginary antisymmetric component A, of the 
order parameter differs from zero, and is determined 
a t  A = O  from the self-consistency equation, which takes 
a t  small  P the form 

A.(kf) -Pk' 
A.(k)= f V(k-k') 

2e (k') 
6 k '  
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Turning on the magnetic field changes the order  param- 
e ter ,  a s  a result of which orbital currents can appear 
in the system. To calculate the orbital response of the 
system to a static vector potential A it is necessary to 
find, in an approximation linear in A, the current j in- 
duced by the vector potential. Tne current terms that 
a r e  linear in the field consist of two groups. The terms 
of group or determine the current component j , which 
is due to the appearance of the field-induced order 
parameter A'"*, and the terms of group p determine 
that part  of the current which would a r i se  only if the 
field would change the expression for  the current (9) 
with the order  parameter remaining unchanged. The 
corresponding analytical expressions a r e  

The equation fo r  the field-induced order parameter in 
the approximation linear in A is 

It is easy to note that the gauge-invariance require- 
ments a r e  satisfied for both (11) and (12). When a 
gauge field A =  const is turned on, i t  follows from (12) 
that 

e aA 
, y n d = - - ~ L ,  

c ak (13) 

where & = A ,  is the value of the order parameter a t  
A = O  [ ~ q .  (lo)]. The result (13) can be obtained a lso  
in a simpler manner by noting that the introduction of 
A =const in the Hamiltonian (1) reduces to the replace- 
ment k- k - eA/c in Eq. (10) for  A,. Then, according 
to (lo), Ao(k ) is replaced by Ao(k - eA/c) and Eq. (13) 
is obtained by simply expanding the quantity ~ , ( k -  eA/c) 
in a ser ies  in A. Substitution of relation (13) in Eq. 
(11) for the current leads now to the equality 

since a total derivative is contained under the summa- 
tion sign. 

With the aid of (11) and (12) we can calculate the orbi- 
tal susceptibility of an undoped semiconductor a t  T = O 
near the dielectric-instability point. Of fundamental in- 
terest  is the singular (possibly diverging) part  of the 
susceptibility It is easy to show that a singularity 
in can be due only to diagrams of group a ,  which 
contain the order  parameter induced by the magnetic 
field B =curl  A The diagrams of group ,¶ together with 
the gauge part (13) of the diagrams of group a a r e  not 
singular and simply lead to a renormalization of the 
Landau diamagnetism. It is therefore convenient to 
represent the induced order parameter alnd in the form 

of a sum of two terms: 

where 6,(k) is the part proportional to the derivatives 
of the vector potential (i.e., to the real  field B), and 
the first term is due to  the gauge requirement (13). 
Obviously, a singular contribution to can be due 
only to 6,(k). Substituting (15) in (12) we can obtain, 
accurate to terms of order q2, the following equation for  
6 ,: 

(k) = ~ ( k - k t )  8q(k') -Dq (k) , 
k. 

er,+q/l+er,-q~a 

The function D, is a source for 6, in Eq. (16). I t  
follows therefore from (16) that an inhomogeneous mag- 
netic field induces in an intrinsic semiconductor only a 
symmetrical [in the sense of (a)] order parameter. I t  
follows from (16) that, in coordinate form, 6 - curlB, 
therefore there is no anomalous response of the system 
to a uniform magnetic field B=const  near the exciton- 
instability point. 

A solution of the equation with the source (16) can be 
obtained in explicit form with the aid of the Green's 
function of the homogeneous equation (16) a t  Dq=O. It 
is convenient to make in (16) the substitution 

It follows then from (16) that 

The Green's function of the homogeneous equation cor- 
responding to (18) can be easily obtained: 

where the functions p, a r e  given by the wave eigenfunc- 
tions of the exciton and a r e  determined from the 
SchrGdinger equation 

k' - va(k) - v (k-k') qn (k') =E%% 
2~ 

(20) 
k' 

As a result of solution of the inhomogeneous equation 
(16), we can write (18) in the form 

It is seen from (21) that a s  the exciton-instability 
point is  approached, the exciton ground-stage energy E, 
approaches the width of the forbidden band, and the 
value of #,(k), and with i t  also the parameter 6,(k ) in- 
duced by the magnetic field tends to infinity. Recalling 
the expression (9) for the current connected with the 
inhomogeneous imaginary order  parameter, and sub- 
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stituting in it the value of 6,(k), we find from (21) that 
the current  jYd induced by the magnetic field B = c u r l A  
is equal to 

Consequently the susceptibility of the system (its singu- 
l a r  part) takes the form 

I t  follows therefore from (23) that, in accordance 
with the general ideas advanced a t  the beginning of the 
present a r t ic le ,  the singular contribution from the col- 
lective modes to the  orbital  susceptibility is paramag- 
netic. It must be emphasized that the pole singularity 
of investigated in th is  a r t ic le  and due to the possible 
instability of the  collective modes En +E, +q2/2M- 0, 
have no bearing whatever on the singular contribution 
made to by the single-particle  excitation^,^ whose 
spectrum c(k) i s  determined essentially by the spin- 
orbit interaction. In a n  undoped semiconductor, accord- 
ing to (23), only the response to an  inhomogeneous 
(curl B 20)  field has  a paramagnetic divergence (i.e., 
Xb-q2). This distinguishes in principle a system with 
a spontaneous current  f rom ordinary magnets. One 
can speak in fact of the divergence of a response of the 
system to a homogeneous current  if the system is  
placed in a superconducting solenoid with a fixed mag- 
netic flux (i.e., what i s  specified is B ra ther  than H). 

4. FREE-ENERGY FUNCTIONAL 

To demonstrate that a system with a spontaneous cur-  
rent differs from ordinary magnetic sys tems i t  is nec- 
essary  to construct the free-energy functional. This 
will be done he re  f o r  a semimetal  model [Eq. (1) a t  
E,< 01, possibly a doped one. The use of the semimetal  
model makes i t  possible to show that the results  ob- 
tained in the preceding section fo r  the semiconductor 
model a r e  not applicable to that model only, a s  well a s  
to investigate the system near the transition tempera- 
ture. 

A free-energy functional for  the semimetal  model 
was obtained earl ie? in the absence of external mag- 
netic fields. A corresponding phase diagram was plot- 
ted in the Tp plane, where p is the chemical potential 
connected with the doping, and the region where an  in- 
homogeneous current  s ta te  exists  was found. The f r ee  
energy of the magnetic field is  incorporated in the usual 
manner in the functional F, accurate to t e rms  linear in 
A, by averaging the operator of the interaction of the 
electrons with the field in (1) over the thermodynamic 
Green's functions that contain an arb i t ra ry  o rde r  
parameter A(Y) [Eq. (8)]. I t  turns out a s  a result  that 

F(A)=F~(A)-  ~ L [ P  grad A I ~ ' ] ~ O ~ A - ~ Q [ P A R : ] ~ O ~ A ,  (24) 
C 

where Fo(A) is the Landau functional of the system in 
the absence of a field. 

In what follows i t  suffices to choose Fo(A) in the form 

Fo(A) =a'(AI,')'+a'(ARe4) a+fi [(Alma)'+ ( A R ~ ) ' ]  

+y[(grad AI~')'+ (div Ama)'] +r, ([div grad Aims] '+ [grad div AReD]z), 
(26) 

where the expressions for  the coefficients a, 8, y,  and 
y, should be taken, f o r  example, from the preceding 
paper.' 

As expected, variation of the functional (24) with 
respect  to the vector potential leads to a co r r ec t  [cf. 
Eq. (9)] expression f o r  the current ,  and variation of 
(24) a t  a specified field B = c u r l A  makes it possible to 
obtain equations for  the o rde r  parameter  A'"* induced 
by it. The result  is that in the semimetal  model 

A:~=D,'/~',  A:"--~,"/a"; 

Dug= - e ~ [ q ' ( ~ ~ , )  - (pq) (qAu) I, 
(27) 

I t  follows from (4), (9), and (27) that a t  T> T, the 
response of the system to the total field B ,with wave 
vector q is 

The f i r s t  t e rm in (28) i s  completely equivalent to the 
result  (23) for  the response obtained in the semiconduc- 
tor  model without doping. The second te rm differs from 
ze ro  only in the case  of doping ( p  # 0), is due to the rea l  
antisymmetrical component A:, induced in this case, 
and is paramagnetic. It should also be noted that this 
l a s t  te rm in X' describes the response of the system to 
a uniform magnetic field B = const. 

When the phase-transition point i s  approached from 
above, depending on the sign of y, ei ther  a homogen- 
eous (y > 0) o r  an  inhomogeneous (yc 0) phase can be 
produced. I t  is easy to verify that if an  inhomogeneous 
phase is produced, the true divergence of the suscep- 
tibility will a r i s e  only for  a magnetic field whose wave 
vector coincides with the wave vector of the produced 
phase. At the transition point itself, i t  is possible to 
obtain for  the denominators in (27) the expression 

where q, is the characterist ic  vector of the order  par- 
ameter  produced a t  the transition point, and q is the 
wave vector of the field. Below the phase-transition 
point the temperature behavior of the susceptibility 
obeys the law characterist ic  of the self-consistent field 
approximation. 

Finally, attention must  be called to the already noted 
difference between a system with spontaneous current, 
where the order  parameter  is the density A of the ex- 
citon condensate, and magnetic sys tems in which the 
order  parameter  is the local magnetization M . The 
point is that owing to the relation (9) between the spon- 
taneous current  and the o rde r  parameter ,  of the form 
j -cur l  curl  A ,  it i s  impossible in the general case  to 
go over in the functional F (24) from the variable A to 
the variable M and retain the local s tructure of the 
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functional. In .this sense, the symmetry classification 
of the current state does not coincide with the classifi- 
cation of magnets. 

CONCLUSION 

I t  has thus been shown in the present paper that the 
collective excitations of the exciton type (or of the zero- 
sound type in a Fermi  liquid) cannot lead to anomalies 
of the diamagnetic sign in the susceptibility near the 
point of their instability, and only a divergence of the 
paramagnetic sign in possible. It has been observed 
that this susceptibility divergence takes place in sys- 
tems that a r e  unstable to a transition into a state with 
spontaneous current. It has been noted that the singular 
part  of the susceptibility corresponds only to the re- 
sponse to an inhomogeneous field B (curl B* 0) .  There- 
fore no divergences of X' should be observed in a homo- 
geneous field. The structure of the free-energy func- 
tional is such that the description of systems with 
spontaneous currents with the aid of the ordinary mag- 
netic order parameter is impossible in the general 
case. 

It should be noted, finally, that the demonstrated 
absence of anomalous diamagnetic contribution from the 
collective modes st i l l  does not mean that anomalies of 
this type a r e  impossible inside the region of the r e -  

constructed phase, since their analysis calls for taking 
into account dynamic effects in the spiri t  of the preced- 
ing paper.' 
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