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Near an incommensurat~rnmensurate phase transition, all impurities that interact with a one-dimensional 
incommensurate system must be regarded as strong. This makes it possible to obtain the low-frequency 
conductivity u(o). If o, < o  <w ,, where o,<o, and w ,-a as the phase transition is approached, then 
o(o) q a I , / <  where I, is the soliton width and I is the average between the impurities. On the other 
hand, i f o  < o ,  the conductivity is proportional to exp ( - ?re/&). 

PACS numbers: 72.10.Fk, 72.60. + g 

1. INTRODUCTION 

The conductivity of one-dimensional systems, such 
a s  of a charge-density wave, has been the subject of a 
large number of studies. It i s  known1 that in the ab- 
sence of impurities o r  of friction, a one-dimensional 
charge-density wave that i s  incommensurate with the 
lattice can be displayed without changing i ts  energy. 
This means that the dc conductivity due to the charge- 
density wave in infinite. It was shown2s3 that in the 
absence of a periodic potential the influence of the im- 
purities makes the conductivity tend to zero like 
exp(-const/@) a s  the frequency w - 0. The conductivity 
o(w) at finite temperature was obtained earl ier4 for a 
charge-density wave, both commensurate and incom- 
mensurate with the lattice, in the absence of impurities. 
The joint action of the periodic substrate potential and 
of friction was considered in Ref. 6. Feigelman5 ob- 
tained the conductnvity of a charge-density wave inter- 
acting with weak impurities. In the present paper, the 
low-frequency conductivity a t  zero temperature is ob- 
tained near the point of an incommensurate-commen- 
surate phase transition. 

means that a t  6 < bc al l  the atoms a r e  located a t  the 
minima of the substrate potential. 

On the other hand, if 6 > 6,, thefavoredsituationis the. . 

production of solitons, which a r e  sections having a 
width -1, that does not depend on 6, on which dq/dx i s  
relative large. The distance between the solitons 

9 - 1 ,  ln [6,/(6-6,) ] 

is large near the commensurate-incommensurate phase 
transition (C-I transition), which takes place at 6=  6,. 
In the commensurate phase, a l l  the atoms a r e  located 
at the minima of the substrate potential. It is  therefore 
impossible to displace them without changing the ener- 
gy, and the conductivity is  o(w = 0) = 0. In the incom- 
mensurate phase, the soliton structure can be displaced 
without changing i ts  energy. Therefore the conductivity 
a t  zero frequency i s  limited only by the impurities. 

We shall assume that the impurities a r e  pinned to the 
lattice, i. e .  , a r e  located, say, a t  minima of the sub- 
strate potential. We shall also assume that their action 
is  such that they make these minima even deeper. 
Thus, it i s  more advantageous for the atoms to be lo- 

By an appropriate choice of the measurement units of cated where the impurities a r e  located. This interac- 
the time t and of the coordinate x, the Hamiltonian of a tion with the impurities can be described, for example, 
charge-density wave interacting with a periodic poten- by the Hamiltonian 
tial can be reduced to the form4*"*' 

2n 
1 a c p a  l a 9  a 

(1) 
%,=-v, JdZ z6 (Z-Zm)COST V(X), 

s- j [? (=) +T ( x - 6 )  + v ( ~ ) I & .  
(3) 

m 

where p i s  the phase of the charge-density wave, V(q) 
is  a periodic potential with period b, and 8 is  the dif- 
ference between the initial periods of the charge-den- 
sity wave and of the potential V(q). Exactly the same 
Hamiltonian describes the behavior of a commensurate 
system of atoms interconnected by springs and located 
on an aperiodic substrate having a period b. In this 
case 6 is equal to the difference between the equilib- 
rium length of the spring and the substrate period. 
The ground state of a system having a Hamiltonian (1) 
depends essentially on the value of the parameter 6. If 
6 is less  than a certain critical value 6,, 

it i s  more advantageous for the system to be in a com- 
mensurate state in which cp does not depend on x and 
assumes a value such that V(cp) is  a minimum. This 

where m is the number of the impurity. 

It is  known that the interaction between solitons is  . 
proportional to exp(-2/1,), w h e r e 2  is  the distance be- 
tween them. g In this case there is a simple connection 
between I ,  and the second derivative of the potential 
V(p) a t  its minimum point: 

We shall assume that V(q) has a minimum at  the point 
q=O. Near the C-I transition, when the distance be- 
tween the solitons increases to infinity, the interac- 
tion between them becomes arbitrarily weak. At the 
same time, the energy of the interaction with the im- 
purities is  independent of the proximity to the C-I tran- 
sition point. Consequently, near the C-I transition all 
the impurities should be regarded a s  strong, i. e. , such 
that they fix uniquely p(x) a t  their location. To find the 
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ground state and the conductivity of an incommensurate 
system it suffices therefore to consider a section of 
length I between two neighboring impurities, and then 
average over the length of this section with weight 
-exp(-l/n, where r i s  the average distance between the 
impurities. 

2. GROUND STATE 

If 1 < 1, ln[cy b/l,(6 - 6,)], then there is  not even one 
soliton between the impurities. The length over which 
the formation of precisely N solitons i s  profitable satis- 
fies at  N<< ln[cyb/2,(6 - 6,) the condition 

On the other hand, if N>> ln[ab/l,(b - b , ) ] ,  then the lim- 
its of the variation of 1 at  a given N a r e  determined from 
the equation We obtain the ground state on a section of length I be- 

tween impurities. The energy of this section is ab i l  1 

l a c p  %=I[-(-4) 2 ax + ~ ( p ) ] d x .  (5) ab (13) ' I  ). 
From the condition that the energy be a minimum we 
obtain the balance equation for cp(x): 

3. LOW-FREQUENCY CONDUCTIVITY 

In the absence of a periodic potential V(cp), the low- 
frequency conductivity was obtained by G o r ' k o ~ . ~  I 
shall follow hereafter his paper for the most part. The 
equation of motion of cp(x, t )  in the presence of a homo- 
geneous time-dependent external force F follows from 
the Hamiltonian (1): 

which has a simple first integral 

where I is the integration constant. Near the C-I tran- 
sition the value of $ is close to -V,,. 

The p(x) dependence that follows from (7) and con- 
stitutes a sequence of solitons separated by a distance 

The conductivity i s  proportional to the average velocity 
(acp(w)/ at) that the particles acquire under the influence 
of the force F(w). Since only an effect linear in F(t)  i s  
taken into account in the calculation of the conductivity, 
cp can be represented in the form 

is  shown in Fig. 1. The parameter is determined 
from the boundary conditions. The boundary conditions 
satisfied by cp(x) a r e  

where cp,(x) is  given by the solution of Eq. (7) and de- 
scribes N solitons located on a segment of length I ,  
while J,(x,t) i s  small. Since we a r e  seeking the con- 
ductivity at  low frequencies that do not exceed (as will 
be shown later) 

These conditions follow from the fact that the phase cp 
i s  fixed at the impurities, and the impurities a r e  locat- 
ed at minima of the substrate potential. 

Near the C-I transition it i s  possible, using (7)-(9) 
a s  well a s  the proximity of 8 to -V,,,,, to represent X' 
in the form 

it follows that the impurities must be regarded strong 
a s  before. Therefore J ,  satisfies the following bound- 
ary conditions 

where a is  a certain numerical constant that depends on 
the concrete form of the potential V(q). The first  term 
in the square brackets of (10) is  the self-energy of one 
soliton, which is  negative at 6 >6,. The second term 
describes exponentially weak repulsion of the solitons. 

The equation satisfied by J ,  follows directly from (14): 

At a given length 1, it i s  necessary to find a value of N 
such that %(N) i s  a minimum. The distance between the 
solitions L? i s  in this case 

The particle velocity aJ,(w)/at i s  obtained from the 
equation 

where G(x,xl) is  the Green's function of the operator in 
the left-hand side of (17): 

where J,, a r e  the eigenfunctions of the operator in the 
left-hand side of (17), w2(k) a r e  the corresponding 
eigenvalues, and k numbers the eigenfunctions. FIG. 1. 
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I shall calculate only the real  part of the conductivity, 
which after averaging over x turns out to be proportion- 
a l  to 

The function & satisfy a linear differential equation 
similar to the Schrodinger equation 

In this equation, the potential energy d2v(p,)d& depends 
essentially on x only in regions of length I, near the sol- 
iton centers. Therefore #, and w2(k) can be sought by 
the strong-coupling method. Then $Jk(x) ,  which satis- 
fies the boundary condition #,(x= 0) = 0, is  given by 

x erp cq n4+- -exp -iq n9+- r r . c  I I ( 3 1 1  
Here A is a normalization constant, q is  the wave vec- 
tor,  and T ( X )  i s  a function defined by the equations 

. If q satisfies the condition 

where k is  an integer, then &(x) of (22) satisfies also 
the second boundary condition $,(x = I) = 0. The inte- 
gral of #,, which enter in o(w), is  equal to 

if k i s  an odd integer. On the other hand if k is  even, 
this integral i s  zero. The normalization constant A 
turns out to be 

A= (2Nb6.)-" (27) 

a t  k # N  and 

The frequency of the natural oscillation with wave 
vector q i s  given by 

qp n k ms(k, 9 )  = r o a ( P )  sins- = r : ( P )  sins (--) , 
2 2 N  

(29) 

where w ~ W )  is equal to 
4a b 

m o t ( P )  ---exp 
1.' 1.6. 

Substituting (26)-(29) in (201, and averaging over the 
distance 1 between the impurities, we obtain 

Here rn i s  an integer, Z,,,(N) and Z,,(N) a r e  determined 
from the condition (12) at N<< ln[ab/l,(6 - 6,)] and from 
the condition (13) at N>> ln[cub/l,(6 - 6,)]. 

The contribution made to the conductivity a(w) from 
segments with N solitons will differ from zero only if 
natural oscillations with frequency w(k) = w exist on 
these segments. From the restrictions (12) it follows 
that a t  N<< ln[cub/2,(6 - b , ) ]  the natural frequencies of 
system consisting of N solitons lie in the range 

4 6-6 - ( 6 6 )  ] S I N  (~+1)-"+"" a i n ' A < r 2  < 7 (y) [ 2b 2N 

(32) 
The character of the dependences of w:,,(N) and W:,~(LV) 
i s  shown for all in Fig. 2. 

It follows from (32) and Fig. 2 that the highest pos- 
sible oscillation frequency, namely 

i s  possessed by a system containing only one soliton. 
The contribution of this system to o(w) vanishes only a t  
w < w,, where w2 is given by 

If w < w,, contributions to the conductivity o(w) a r e  made 
only by states with very large N. The conductivity is  
then proportional to 

o ( o < o J  -exp (-ncllo), (3 5) 

where c i s  the speed of sound in the soliton system and 
varies near the C-I transition approximately like (6 
- 6,)lJ2. Inasmuch as w < w," (6 - 6,) in (35), the argu- 
ment of the exponential i s  2 (6 - b,)-'I2 and i s  large. 

An equation of the type (35) was obtained by Gor'kov.' 
In his paper, however, in view of the absence of a 
periodic potential V(p), the speed of sound c was in- 
dependent of the proximity to the transition point. 

We show now that a t  w, < w < w, the state with a single 
soliton makes the largest contribution to o(w). In fact, 

FIG. 2 .  

1003 Sov. Phys. JETP 54(5), Nov. 1981 

FIG. 3. 

A. L. Talapov 1003 



when the number of solitons is increased by unity, it is 
necessary to increase the length I by approximate 
l,ln[ab/l,(6 - b , ) ] .  Therefore at l,ln[b/l,(6 - be)]>> r 
the contribution to the conductivity from the states with 
more than one soliton i s  exponentially small compared 
with the contribution from states with one soliton. And 
since7 does not depend on the proximity to the C-I 
transition, it is always possible to satisfy in a suf- 
ficiently close proximity to this transition, when 6 
- 6, - 0, the condition 

We obtain now the contribution made to the conduc- 
tivity by states with N =  1. Integration with respect to 
I in (31) is  elementary and yields 

where I is connected with w by the condition 

1=1, In[ (4aIl.') (b/l,6.) o-'1. 

It follows from (37) and (38) that 

where q = 21,/i. Thus, if the soliton width 1, is much 
less than average distance 7 between the impurities, 
~ ( w )  increases with decreasing w from w, to w,. If, 

however, l,>>i, then u(w) decreases when odecreases 
from w, to o,. At w w, the conductivity do) is zero. 
At w < w, the conductivity is exponentially small and is 
given by (35). The variation of the conductifity U(W) 
with frequency at l,<<T is shown in Fig. 3. 

In conclusion, I wish to thank V.L. ~ o k r o v s k s  for 
helpful discussions. 
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