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The absorption of longwave sound in a metal single crystal is investigated above the Debye temperature. It is 
shown that absorption in the scattering of electrons by phonons is due mainly to the electron thermal 
conductivity and increases linearly with the temperature. For certain directions of propagation and 
polarization of the sound wave, the thermal conductivity absorption is absent. In such cases the dissipation of 
the sound is much lower, the absorption now being due to the phonon viscosity, and the corresponding 
coefficient is independent of the temperature and has the same form and order of magnitude as in dielectrics. 

PACS numbers: 62.60. + v, 43.35.Gk 

1. INTRODUCTION 

The f i r s t  detailedquantum mechanical investigation of 
sound absorption in metals was car r ied  out in the clas- 
s ica l  work of A. I. Akhiezer in 1938.' However, this 
work contains certain inaccuracies, of which the most  
significant is that the change in the order  of magnitude 
of the right s ide of the "electron" kinetic equation was 
not taken into account in i ts  averaging over the constant 
energy surface (for details s e e  Sec. 2 below). These 
inaccuracies led to a qualitative distortion of the des-  
cription of the sound dissipation in metals above the 
Debye temperature. In particular, it followed from Ref. 
1 that a t  T >> 8, where O is the Debye temperature,  
the contributions made to the sound attenuation by the 
viscosity and by the thermal conductivity turned out to 
be of the s ame  order ,  while the electron viscosity was 
always large in comparison with the phonon viscosity. 
In actuality, this is not the case: it will be shown be- 
low that the thermal conductivity damping is a s  a rule 
large in comparison with the viscous damping and over 
a wide temperature range o<< T << E ~ ( ~ / C ~ ) " ~ ,  where E, 

is the chemical potential of the electron gas," the pho- 
non viscosity is large in comparison with the electron 
viscosity. Such a non-correspondence with the results  
of Ref. 1 is explained by the inaccuracies mentioned 
above; however, in spite  of the more  than forty- 
year history of the problem, no investigation of the 
sound absorption in metals a t  T>> 8, f r ee  of the in- 
adequacies mentioned, has been car r ied  out, s o  f a r  a s  
we know, a fact that accounts for  the present  paper. 

The statement of the problem is completely identical 
with that of Ref. 1: We consider longwave sound (such 
that we can regard the external field a s  quasistationary 
in relation to the electron-phonon system),  that pro- 
pagates in a metal single crystal. The elementary 
excitations in the  crystal  reduce only to electrons and 
phonons, which interact by scat tering from one another; 
the geometric (macroscopic) dimensions of the sample 
a r e  large in comparison with the f r ee  path lengths of the 
electrons and phonons. We can thus eliminate from con- 
sideration in the mechanism of scat tering from impul - 
ities s ize  effects, phenomena that take place on grain 
boundaries of a polycrystalline s t ruc ture ,  and s o  on. 

In the linear approximation, the different mechanisms 
of energy dissipation make additive contributions to the 

sound absorption; therefore, we can introduce for each 
such mechanism its own absorption coefficient. r , ( T )  
after  which the actual absorption coefficient r (T )  is de- 
termined a s  the sum over a l l  r,. In this connection, we 
f i r s t  investigate the ro le  of viscous damping. In Sec. 2, 
we study the properties of the kinetic equations for  the 
nonequilibrium increments to the electron and phonon 
distribution functions. The coefficient of viscous damp- 
ing r ,(T)  is expressed in Sec. 3 in t e rms  of the solu- 
tion of these equations, and is compared with the coef- 
ficient of thermal conductivity damping r,,(T), which is 
connected by a phenomenological formula with the coef- 
ficient of thermal conductivity n a n d  can be determined 
for  known U(T) without solution of the corresponding 
kinetic equations. Section 4 is  devoted to a discussion 
of the results. 

2. THE KINETIC EQUATIONS 

In the setup of the problem under consideration, the 
field of the acoustic wave leads to modulation of the 
energy of the electrons and phonons, s o  that its values 
turn out to be dependent on the s t ra in  tensor of the 
crystal  u,,. In the approximation in linear ui j ,  

where co and w, a r e  the energy of the electron with 
quasimomentum p and the frequency of the phonon with 
quasimomenturn k in the absence of sound, g denotes the 
polarization of the phonon, pi, - cp and Ail -1 a r e  the 
tensors of the electron and phonon deformation poten- 
tials. 

We choose the nonequilibrium increments to the elec- 
t ron and phonon distribution functions n aad N in the 
form 

where 

while the & and w therein refer  to the deformed s ta te  of 
the crystal  and a r e  determined by formulas (1) and (2). 

The kinetic equations for  the distribution functions of 
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the electrons and phonons in the quasistationary field of 
the sound wave do not contain the derivatives acp/(a t, 8 r, 
ap),  aX/(8t , a r ,  ak)  explicitly and have the following 
form in the approximation that is linear in cp and x:' 

aNo i V . 4 ~  - (kii-(htj)) djj, 
aho (6) 

where x=(& - EF)/T, the dot denotes differentiation with 
respect to time, (A,,) is the tensor A,, averaged over k 
and g, (pi,)* is the tensor g,,@) averaged over the 
Fermi  surface: 

In writing (5) and (6), we have taken into account the 
conservation of the number of electrons and of the 
energy, s o  that the conditions 

a r e  satisfied identically. 

The collision operators (3) and (4) have the formZ 
 NO 

f#,M(q, x )  -f!,'A(q)+~.?h(x) =-z J' w(n(-na) 

where the quasimomentaof the electrons and phonons in 
(8)-(10) a r e  connected by the usual conservation laws. 

We note that it follows from the properties of the f i rs t  
Born approximation, in which the collision operators 
(8)-(10) a r e  written, and from the invariance of the 
equations of mechanics relative to the replacement 
t - -t, that 

w(P', kip) =w(plpf ,  k )  =w(-P'. -kl-PI.  

W ( k , ,  kzlk)=W(klki ,  kt)=W(-ki ,  -kzl - k ) ,  
(11) 

where the quantum numbers of the final state a r e  writ- 
ten on the left and the quantum numbers of the initial 
state, on the right. It then follows that the operators 

I.',$(q), f $ : e ( ~ )  Y Iph.Dh(~) 

do not change the parities of the functions 50 relative to 
the variable p and of the function x relative to the vari- 
abie k ,  while the operators 

respectively transform a function of definite parity in 
k into a function of the same parity in p and a function 

of definite parity in p into a function of the same parity 
in k. 

If we now take it into account that the right sides of 
Eqs. (3) and (4) a r e  invariant under the substitutions 
p- -p and k - -k (we emphasize here that the Ei, ,  does 
not depend on k ,  since the quasimomentum k of the 
phonon, is no way connected with the wave number of 
the sound wave described by the tensor u,,), then it 
follows from the above that ( P ~ = ( P - ~ ,  X L = X - ~ .  

We note that the described properties of the collision 
operators follow from the general properties of elec- 
tron-phonon interactions and a r e  universal in this sense 
The conditions cpp = ( P - ~ ,  xk = x - ~ ,  aside from the sym- 
metry of the collision operators, a r e  essentially based 
on the symmetry of the right-hand sides of the kinetic 
equations (3) and (4) and therefore a r e  generally char- 
acterist ic only for the considered problem. 

In the case  of interest to us, 

and the remaining functions that enter into the inte- 
grands in (8) and (9) can be expanded in powers of Rw/T. 
It is not difficult to s e e  that only odd powers of such 
an expansion enter into the expression that determines 
f!;,),(50). Therefore, the term corresponding to the 
elastic electron-phonon collisions will have the form 

a& an, do,. = 2  $ w-- 
aria,,. a~,.  ( V P ,  - TJP) ~~wP-P, 

ep,=e I n .  
In the expression for however, the term 

that is linear in Rw/T enters with a factor (xk - x - ~ )  
that is equal to zero by virtue of the parity of the func- 
tion x noted above, s o  that the f i rs t  nonvanishing term 
will be quadratic in Ew/T. 

In addition to the parity of the operators &,,,(cp, X) 
relative to the substitution p - -p, their parity in the 
variable x is also important. Here x is the deviation, 
introduced above of the energy of the electrons from &,, 

divided by the temperature. Since the probability 
w(pl ,  k l p )  is a slowly changing function of the energy of 
the electrons (with scale of the order  of E,) ,  it is cus- 
tomary to assume, taking the degeneracy of the elec- 
tron gas into account that tu(pl, k I p)=w(pL, kl pp), and 
accordingly the operator fe,p,(cp, X) turns out to be even 
in x, i.e., it does not change the parity of the function 
cp in this variable.' However, we note that in the region 
C3<< T<< cEp there exists, besides the small  parameter 
associated with the Debye temperature and equal to 
0 /T ,  also the parameter T / E ~ .  Although both quantities 
a r e  small  in comparison with unity, the relation be- 
tween them can be arbitrary. Therefore, besides the 
expansion in powers of tiw/T (which actually leads to a 
ser ies  in powers of 8/T),  we must also take into ac- 
count the expansion of the slowly changing functions in 
powers of ( E  - E ~ ) / E ~ ,  which leads to the appearance 
of the factor T / E ~ .  After expansion of the quantity w in 
powers of (E - cF)/bF, the operator fe, ,, breaks up into 
the sum 
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where f,,,,+ corresponds to the usually employed ap- .. 
proximation and I,,,,- reverses  the parity of p(x). The 
factor  T / E ~  is separated in explicit form in o rde r  that 
the kernels of the operators f +  and f- have the s a m e  
order  of magnitude. 

We emphasize that the presence of two comparable 
smal l  parameters connected with the temperature makes 
the considered range of values of T substantially dif- 
ferent  from the case T<< 6, where the corresponding 
sma l l  parameters ~ / 8  and T / E ~  a r e  connected by the 
relation ~/8>> T/&, and no expansion in powers of 
( E  - cp)/&, can be car r ied  out. 

We now average Eq. (3) ove r  the constant-energy sur -  
face c p = &  [the averaging is carried out in a fashion 
s imi lar  to (7) with the replacement of the condition cp 
= cp. by the condition &,=&]. 1; is easy  to s e e  that af ter  
such averaging the operator  I pA,,(x) turns out to be of 
the same order  a s  the non-averaged operator. So f a r  
a s  i!t;,(cp) is concerned, in correspondence with the 
expression (12) we have (f!:,',)(cp)) = O  s o  that the f i r s t  
nonzero te rm will correspond to  the third order  in 
WW/T, i.e., the kernel of the operator  (c,,(p)) will be 
smal ler  by a factor  of (8/T)' than the kernel of the un- 
averaged operator.2) It is important that this averag- 
ing, changes also the order  of right-hand s ide  of Eq. 
(3). The even ri,, and odd ri,- parts  of the right-hand 
side of Eq. (3) a r e  of the order  of 

where - Aljziij, At, is a certain symmetric tensor with 
components of the o rde r  of unity. In the averaging over 
the constant-energy surface,  the difference (pIj)  - (ptj),, 
appears in the right s ide  of (3). But (pij) =(pi,(&)) with 
a characteristic sca le  of change of E of the o rde r  of 
cF. Therefore, the difference (p,,) - ( F ~ ~ ) ~  can be ex- 
panded in powers of (& - &,)/&,, s o  that we obtain the 
following estimate for  the right s ide of the averaged 
equation: 

We now proceed to dis_cuss Eq. (4). We can again 
car ry  out the operator I,-,I,.~ an expansion in powers of 
AW/T. Here we take it into account that the equation 

is valid. In the derivation of (15), we used the trans-  
formation of the quasimomentum P - - ~ ' ,  the condition 
( l l ) ,  the parity of the function rpp in the variable p, and 
the equality 

(see Ref. 2), which means that the emission, by an  
electron, of phonon with quasimomentum k and absorp- 
tion of a phonon with quasimomentum -k, with neglect 
of the energy of the phonon, a r e  equally probable pro- 
cesses. 

I t  follows frpm Eq. (15) that the l inear te rm in the 
expansion of I,, ,, in powers of KW/T vanishes and the 
expansion begins with t e r m s  - ( F i w / ~ ) ~ .  
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3. DISSIPATION OF ENERGY 

At T>> 8 the contribution of the phonon-electron col- 
lisions to the formation of the function xk is negligibly 
smal l ,  s o  that the phonon kinetic equation can be writ- 
ten approximately in the form 

Thus dragging of the phonons by the nonequilibrium el- 
ectrons does not occur: the nonequilibrium increment 
to the phonon distribution function in metals does not 
depend on the electron distribution function and has the 
s ame  form a s  in dielectr ics (at T >> €3). 

However, in spite  of the simplifications that have 
been achieved, it is hardly possible to obtain an  exact 
solution of the kinetic equations in the case  of an arbi-  
t r a ry  dispersion law for the electrons and phonons. 
We therefore limit ourselves to order-of-magnitude 
est imates of the characterist ic  values of the function 
x and p. Here we must take explicitly into account the 
fact  that establishment of equilibrium in the electron 
subsystem only through the most probable elast ic  elec- 
tron-phonon collisions is not possible. Fo r  this purpose 
we consider the equation 

in addition to Eq. (3). Here  x is a solution of Eq. (17). 
A solution of Eq. (3) is simultaneously a solution of 
Eq. (17). The converse is generally not true, s ince 
Eq. (17) has  an infinite s e t  of solutions having different 
dependences on the directions of the vector e =p/l p ( .  
However, in the class of the functions which depend 
only on x, Eq. (17) has a unique solution. Let  p, = pl(x) 
be such a solution. We shall  seek  a solution of Eq. (3) 
in the form p = cp,(x) +cp,(x, e). Then cp, should satisfy 
the equation 

We note that cp,, a s  well a s  any arb i t ra ry  function that 
depends only on the electron energy and not on the di- 
rection of i t s  quasimomentum, reduces the elastic- 
collisionoperator to zero: ~k;$)(cp,(x)) = 0 [see (12)]. 
Therefore, cp,(x), definedas the solutionof Eq. (17), des- 
cribes the deviation of the electron subsystem from equili- 
brium, due to  the inelasticity of the electron-phonon inter- 
action, and the separation of cp into a sum of two terms: 
cp, + cp, corresponds to the separation in explicit form of 
the contributions of the elast ic  and inelastic processes 
t o  the formation of the electron distribution function. 

The solution of the problem (16)-(18) is car r ied  out in 
the following sequence: the function x is determined 
f rom (16) and substituted in (17), af ter  which (17) can be 
solved relative to p,; finally, x and p,, which a r e  now 
known functions, a r e  substituted in (18), a f te r  which cp, 
is obtained from it. 

For  a n  est imate of the characterist ic  values of p,, 
and X ,  we write down Eqs. (16)-(18) in the 7 approxima- 
tion. Here we need not worry about the signs of the 
corresponding expressions, choosing the plus sign 
everywhere, s ince the t e rms  having the form of a dif- 
ference of two identical o r  nearly identical quantities 



have been revealed from the preceding analysis. It is 
simpler to choose the correct  sign a t  the end of the cal- 
culations by starting out from the fact that the quantity 
?S, where S in the entropy of the system, should be 
positive (the positiveness of 2% follows rigorously from 
the properties of collision operators; for more details 
s e e  below). 

We note further that (t),,(cp,)) -f!t;,(rp,), since 
=O. Therefore, with account of what was said 

previously, the right-hand side of (18) can be rewritten 
in the form 

+(~ , ! : (q~ i )  ~ - i . + l , , ~ ~ ( x ) + ( h . ) + ( l ~ ~ ( x )  ) - i . + ~ , ( ~ \ ( x ) ,  

i.e., rp, turns out to be independent of p,. 

The order of magnitude of the collision operators is 
now easily determined by standard methods (see, for 
example, Ref. 2), a s  a result of which we arr ive  a t  the 
expressions 

6 ~ / ~ " ' - T t / 8 ,  (19) 

AMs' her 
y I I I  - - -- A AT' 

8T e T 7  TP"-' "-7' 
T  8 

where M is the mass of the elementary cell and s is 
the speed of sound. In writing down (19)-(21), we have 
transformed from cp and x to 6, and 6, in order that the 
corresponding T have the meaning of the actual relaxa- 
tion time: 

s ince  a t  T>> 8 the dominant role is played by phonons 
with maximal energy: f iw - 8. 

The forms (19)-(21) a r e  conditional in the sense that 
only the order of magnitude of the terms contained in 
the parentheses is correct; that is, each of them sti l l  
contains a factor of the order of unity which is  different 
in the different cases. Therefore, for example, it is 
not possible to cancel 1 + T X / & ~  on the right and left 
sides of Eq. (20). It is not difficult to determine from 
(19)-(21) the orders of magnitude of the quantities 6, 
and bn ,,,, and, consequently of x and cp ,,,. We have 

where p +  is an even and cp- an odd function of x. 

In the factor 1 + 8 s p / p  entering in pi ,  and cp, -, the 
term 8c,/T results from 6N, which is taken into ac- 
count on the right sides of Eqs. (20) and (21), i.e., i t  
describes the effect of the dragging of the electrons by 
the nonequilibrium phonons. In the considered tempera- 
ture range, 8 c , / p  can be either large and small  in 
comparison with unity. Therefore, both terms a r e  re- 
tained in the expressions for v,, and p,-. The contri- 
bution to the scattering by the nonequilibrium phonons 
is always negligibly small, so  that the order of magni- 
tude of p,+ does not depend on the drag effect. 

If we now substitute the values of xp  and cpp in the 
operator f,,,#, i t  turns out that 

This justifies the neglect of the phonon-electron colli- 
sions in the determination of the function X. 

The energy dissipated in a unit volume of the metal 
per unit time is connected with the nonequilibrium in- 
crements to the distribution functions by the expression 

8Q=TS=TS.+TSph 

If we substitute the left sides of the kinetic epuations 
in place of ti and X?, then the expression for 6Q can be 
reduced to some quadratic form, thereby proving the 
positiveness of the expression (23). However, for 
specific estimates it is convenient to substitute not the 
right sides of Eqs. (3) and (4), but the left sides that 
a r e  identically equal to them in solution space. Such 
an approach is especially convenient in those cases in 
which there a r e  several  scattering mechanisms, each 
of which makes its own contribution to the formation 
of the distribution function. When the expression for 
6~ is reduced to a quadratic form the result contains, 
in addition to the terms proportional to the squares of 
the different increments to the distribution function, 
also their bilinear combinations of the form p i p j  (i # j). 
The symmetry of the functions cp, ,, and of the collision 
operators can then be such that the terms containing the 
bilinear combinations become equal to zero. Therefore, 
the question of the contribution of such terms to the 
expression for TS requires special consideration. Upon 
substitution of the right hand sides of the kinetic equa- 
tions in place of ti and N, the result turns out to be a 
linear function of p and X, so  that the question of the 
contribution of the bilinear terms does not a r i se  gen- 
erally. 

Using the expressions (22) for cp and X,  representing 
d3P in the form 

and taking it into account that the integral of the product 
of functions having different parity in x i s  equal to 
z e ~ - o , ~ )  we get for the energy dissipation rates due to 
electron and phonon viscosities, respectively, 

where a is  of the order  of the interatomic distance. 
The three terms in the parentheses in (24) have the 
following physical meaning: the f i rs t  corresponds to 
the contribution q,, of elastic scattering of electrons 
by equilibrium phonons, P/~E , ,  corresponds to the 
effect of dragging of the electrons by nonequilibrium 
phonons in inelastic processes, and p/d &; corres- 
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ponds to the inelastic scat tering of electrons by equilib- 
rium phonons4' (the functions pit make contributions of 
the s ame  order  to the l a s t  two terms). I t  is seen  that 
the role of the dragging effect is almost  always small. 
An exception is the region T - (8~ , ) "~ ,  when a l l  three 
processes (dragging of the electrons, elast ic  and in- 
elast ic  scattering) make comparable contributions to 
the sound dissipation due to electron viscosity. 

Thus, a t  0<< T<< ~ ~ ( 8 / & , ) " ~  the electron viscosity is 
determined by the electron-phonon collisions. The con- 
tribution from inelastic scat tering by equilibrium pho- 
nons turns out to be comparatively small. 

Sound dissipation due to phonon viscosity, a s  has 
already been seen  from Eq. (16), has the s ame  form 
a s  in d i e l e c t r i c ~ , 2 . ~  and does not depend on the tempera- 
ture. It is seen  from a comparison of (24) and (25) that 
in the region 8<< T<< E,(~/E,)"~ the phonon viscosity 
significantly exceeds the electron viscosity. The in- 
c rease  in the electron viscosity with increase in tem- 
perature is explained by the partial lifting of the de- 
generacy of the electron gas; however, the electron 
viscosity begins to play an important role only a t  T 
>> ~,(8/&,)"~,  which corresponds to T >> 104K fo r  good 
metals. For  the problem considered, such high tem- 
peratures can scarcely be of pract ical  interest. Therefore, 
a t  T>> 6 the electron viscosity can always be neglected. 

In a number of dielectr ics,  the dispersion law of the 
phonons is such that collisions of longwave and short-  
wave phonons a r e  forbidden. In this case  the function xk 
contains a singularity a s  w- 0, s o  that the correspond- 
ing path length  diverge^?.^ The coefficients of thermal 
conductivity and sound absorption become infinitely 
large. The resultant divergences a r e  removed by the 
fact that the integrals over w a r e  cut off a t  the lower 
limit a t  the value w = w,, s o  that the path length governed 
by triple phonon-phonon collisions becomes comparable 
with the path length governed by other mechanisms. In 
the case  of dielectr ics,  such mechanisms a r e  four-fold 
collisions, scattering from impurities, and s imi lar  
processes,  which have significantly lower probability 
than the tr iple collisions of shor t  wavelength phonons, 
in correspondence with which w, turns out to be smal l  
in comparison with w, =0/ti, while the quantity r is 
anomalously large.4 

In a s imi lar  situation in metals, the processes com- 
peting with tr iple phonon-phonon collisions a r e  phonon- 
electron collisions, i.e,, a process which has a signifi- 
cantly la rger  probability than the fourfold collisions and 
scattering of phonons by impurities. The quantity w, 
in this case turns out to be comparable with the Debye 
frequency, which eliminates from physical meaning 
the division of phonons into short-  and longwave, and 
obviates the need fo r  special consideration of sound 
absorption in metals in the presence of hindrance 

Completing the consideration of the viscous mechan- 
ism of sound dissipation, we derive an  expression for  
the absorption coefficient (the logarithmic damping 
decrement) corresponding to the expression (25). We 
have 

where 52 is the frequency of the sound wave and w,  is 
the Debye frequency. 

We now determine the contribution of the thermal- 
conductivity damping. The r a t e  of energy dissipation 
per unit volume of the metal, which is governed by the 
thermal conduction process,  is determined for  mono- 
chromatic sound by the expressione 

Here  x,, is the thermal conductivity tensor, q is the 
wave vector of a sound wave of frequency !a, A,,,, is the 
elast ic  modulus tensor (not to be confused with A,, -the 
deformation potential tensor), a,, is the thermal ex- 
pansion tensor, and C is the heat capacity per unit 
volume. 

We est imate now Eq. (27). The quantity n,, is deter- 
mined by the electron thermal conductivity and a t  high 
temperatures is of the order  of 

where m* is the effective mass  of the electron. The 
heat  capacity of the metal a t  T>> 8 is determined by the 
phonon subsystem, s o  that the atomic heat capacity is 
equal to 3 and C = 3 / d .  The quantity A,,,, - p?, where 
p = M / d  is the density of the metal. Finally, we est i-  
mate a,, from the fact  that A V  becomes of the order  
of V fo r  condensed matter  a t  A T  of the order  of the 
binding energy of the atoms. Then a,, - (M?)-' - &il. 
Making use of the expression (27), we get  

The corresponding value of r i s  

Comparing (28) with (24) and (25), we come to the 
conclusion that the thermal conductivity absorption of 
sound in metals a t  T>> 0 i s  always large in comparison 
with the viscous absorption. However, the thermal- 
conduction absorption does not always exist. There 
exist such directions of propagation and polarization of 
the sound wave for  which the expression (27) goes 
str ict ly to zero ,  fo r  example, for  t ransverse  sound 
propagating along a symmetry axis  of the crystal. For 
these isolated directions, the damping of the sound is  
governed by the viscosity. Here the absorption coef- 
ficient is sma l l e r  by a factor  of T / O ,  under typical con- 
ditions, than in the case  of thermal conductivity damp- 
ing [cf. (26) and (29)]. 

Thus, a t  T >> 8, the sound absorption in metals i s  
strongly anisotropic. In the general case,  i t  is de ter -  
mined by the electron thermal conductivity and i s  ~ / 8  
times la rger  than in dielectrics. For  certain isolated 
directions of propagation and sound polarization, the 
thermal conduction mechanism is "turned off." Under 
these conditions, the absorption coefficient i s  greatly 
reduced and becomes of the s ame  order  a s  in dielec- 
t r ics ,  and the sound absorption process itself is deter- 
mined by the phonon viscosity. 
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We emphasize that the indicated anisotropy is not 
connected in any way with the topological features of the 
Fermi  surface of the metal and is governed exclusively 
by the difference between the characteristic contribu- 
tions made to the sound damping by the viscosity and 
the thermal conductivity. The latter distinguishes the 
considered case qualitatively from the sound absorption 
in dielectrics, where, a t  T>> 8, the viscous and the 
thermal conductivity damping turn out to be of the same 
order: s o  that the "turning off" of the thermal conduc- 
tivity mechanism of dissipation does not change the 
order of magnitude of the absorption coefficient. 

4. DISCUSSION OF THE RESULTS 

The results above can be clearly explained from the 
following qualitative considerations. It is well known 
(see, for example, Ref. 2) that a t  T<< 8 two electron 
relaxation times exist in metals: 7,-which describes 
the energy relaxation and Tp-which describes the re- 
laxation in the direction of the quasimomentum. Here 
the relaxation in the directions of p was the character 
of diffusion over the constant-energy surface, s o  that 
r t  and r p  a r e  connected by the relation T , - ( T / ~ ) ~ T ~  
<<rp. The quantity T, enters into the thermal conduc- 
tivity coefficient, while the equation for the nonequili- 
brium increment to the electron distribution functions, 
which is determined by the conductivity of the metal, 
is obtained after averaging of the kinetic equation over 
x; therefore r p  enters into the expression for the 
electrical conductivity. Both the energy relaxation and 
the relaxation over the directions of p a r e  important 
in the sound absorption and both relaxation times enter 
into the expression for the energy dissipated through 
the electron viscosity. In this case, the principal con- 
tribution is made by the process which has the larger 
T ,  i.e., collisions changing the direction of p. 

In the region T>> 0 the energy relaxation is a slow 
process for the electron gas, while the quasimomentum 
of the electron changes in each collision with a phonon 
by a quantity of the order of itself. Therefore T, and T*  

a r e  connected a s  before by the relation T, - ( T / ~ ) ' T ~  
[see (20), (21)], but now ~ / 8 > >  1. It is  important, how- 
ever,  that T, appears only in such processes for the 
description of which it is necessary to carry  out aver- 
aging of the "electron" kinetic equation over the con- 
stant energy surface. Since the right hand side of the 
kinetic equation, which describes the thermal and 
electric conductivities of the metal, is linear in V ~ E ,  
i t  vanishes after such averaging. Therefore, only a 
single relaxation time, T,, enters into the expression 
for the coefficients of thermal and electrical conduc- 
tivities. (But not in the expression for the dissipation 
of the sound energy! This contains again both relaxa- 
tion times.) However, in contrast to the case T << 0, 
now the longer relaxation time (7,) enters with a small  
statistical weight, since the right side of the kinetic 
equation, even if it doesn't vanish upon averaging over 
the surface ~ ( p )  = const, does change in order of mag- 
nitude. Therefore, a t  not too high temperatures, the 
principal contribution to the sound dissipation is made 
by processes not with long but with short relaxation 
times, i.e., elastic electron-phonon collisions. 

As for the relation between the viscous and thermal- 
conduction absorptions, for dielectrics both mech- 
anisms a r e  governed by phonons, i.e., by one and the 
same type of quasiparticle. For  metals a t  T >> 8 the 
viscosity and the heat capacity a r e  determined by the 
phonon subsystem and the thermal conductivity by the 
electron subsystem. Hence the difference in the ratio 
of these two dissipation mechanisms. 

The cri teria of applicability of the considerations just 
given reduce to the conditions v and 1<< Xs, which 
must be satisfied simultaneously. Here v and 1 a r e  the 
effective of collision frequency and the f ree  path length 
of the quasiparticles responsible for  the sound absorp- 
tion relative to the process by which the dissipation is 
determined; X, is the sound wavelength, h, = s / ~ .  

In the case of thermal-conduction absorption, the 
sound dissipation is governed by the electron subsys- 
tem, s o  that v is the frequency of the elastic electron- 
phonon collisions: v, , p,- T ;' - T/E. In this case the 
s t r ic tes t  condition is the condition I<< X,, which leads 
to the limitation 

For the same  directions of propagation and polariza- 
tion of the sound for which the thermal conductivity ab- 
sorption is "turned off," the dissipation is determined 
by the phonon viscosity. In these cases,  v is the fre- 
quency of triple phonon-phonon collisions: v1I1 - 8 T /  
M?E, and the conditions a<<  v and I<< X ,  a r e  equivalent. 
As a result, we again a r r ive  a t  the limitation (30). 

Finally, the formula (27) itself was obtained under 
the assumption of adiabaticity of the deformation of the 
material by the field of the sound wave, which is valid 
under the condition CG! >> n,,,q,q,. This leads to the 
most severe limitation 

We note that the considered longwave approximation 
actually works all  the way up to hypersonic frequencies. 
Thus, for typical metals a t  T - lo3 K we have a<<  10'' Hz 
from (31), which is explained by the large value of the 
frequency of collisions a t  high temperatures. 

In conclusion, the authors consider i t  their pleasant 
duty to express their deep gratitude to I. M. Lifshitz for 
constant attention to the work, and also to Yu. M. Gal'- 
perin, V. L. Gurevich, M. I. Kaganov and L. P. Pitaev- 
s k c  for detailed discussions of the results and useful 
remarks: 

"1n the considered problem, account of Fermi-liquid effects 
does not change the results, since the function which de- 
scribed the Fermi-liquid interaction of the conduction elec- 
trons +(p, p') does not enter in explicit fashion in the equa- 
tions used be10w.~ 

2 ' ~ h e  vanishing of (Zj;A(cp)) leads to the necessity of taking into 
account the inelasticity of the electron-phonon collisions, 
i . e . ,  the next terms in the expansion of I:!; in powers of 
ti w /  T.' 

3'We recall that the range of values of T that we have consider- 
ed i s  limited by the relation T<< &,, so that the finite limits 
can be replaced by infinite ones in the integration with re- 
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spect to x ,  accurate to exponentially small corrections. 
4'~omparing this term with the corresponding expression of 

Ref. 1 we see that the role of inelastic processes i s  over- 
estimated in Ref. 1 by a factor of (&,/T)'. 

5 ' ~ t  was pointed out in Ref. 4 that an additional numerical 
smallness can appear in the problem, and lead to a signifi- 
cant decrease of wo. In such cases, the presence of hin- 
drances leads to a strong increase in the viscous damping, 
with account of what was shown in Refs. 3 and 4, the quanti- 
ty TS, can be estimated in such cases by a method complete- 
ly analogous to  that shown above. 

9Q 1 Sov. Phys. JETP 54(5), Nov. 1981 
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