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The thermal conductivity (across the layers) of the intermediate state of a superconductor at low temperatures 
( T d )  is calculated. It is shown that the effective thermal resistance of a N S  boundary differs from the 
Andreev resistance for two reasons. F i t ,  because only the quasiparticles with energies E > A  can cross the 
N S  boundary, the energy in a normal-metal layer of thickness equal to the diffusion length for the energy 
relaxation is transported precisely by such quasiparticles, and the thermal conductivity in this layer coincides 
with the thermal conductivity of the superconductor. If the diffusion length exceeds the thickness of the 
normal layer, the entire layer conducts heat like a superconductor. Secondly, because of the state of 
nonequilibrium of the quasiparticle distribution function near the boundary, the boundary thermal resistance 
itself d5ers from the Andreev resistance by a quantity of the order of unity. 

PACS numbers: 74.30.Ek 

1. INTRODUCTION 

The thermal resistance of the intermediate state at 
low temperatures was first investigated by ~ndreev . '  
In doing this, he assumed that the entire temperature 
jump i s  concentrated at the boundary between the nor- 
mal and superconducting phases, and that the distribu- 
tion functions a r e  practically equilibrium distribution 
functions in the entire volume of the sample. In the 
present paper we investigate the problem in i ts  general 
formulation, in which the distribution functions a re  of 
essentially nonequilibrium character. The results for 
certain relations between the domain dimensions and 
the relaxation lengths then differ from the correspond- 
ing results obtained by Andreev. The boundary thermal 
resistance i s  found to consist of two parts. The first 
part is the boundary resistance proper. I ts  magnitude 
differs from the Andreev resistance by a coefficient of 
the order of unity, that depends on the relation between 
the layer thicknesses and the diffusion lengths (the dif- 
fusion lengths L, and Ls for the energy relaxations in 
the normal and superconducting phases, respectively, 
and the diffusion lengthys  for the establishment of the 
equilibrium quasiparticle number in the superconduc- 
tor). This coefficient is connected with the state of 
nonequilibrium, and becomes equal to unity when the 
assumptions made by Andreev' a r e  valid. 

The second part is the resistance of that diffusion- 
length-thick region of the normal domain which is con- 
tiguous to the boundary. This region, in which the heat 
flux is transported by the electrons with energy A, and 
whose thermal conductivity therefore coincides with the 
thermal conductivity of the superconductor, ar ises  be- 
cause of the fact that only the electrons with energy 
higher than A pass through the boundary and the dis- 
tribution function relaxes in t e rms  of energy over a 
diffusion length. Besides the boundary contributions, 
there are ,  naturally, contributions due to  the finite 
thermal conductivities of the normal and superconduct- 
ing domains. 

The final answer has the following form: 

Here xi is the sought thermal conductivity of the in- 
termediate state, 

is the boundary thermal resistance obtained by And- 
reev, 

is the coefficient of transmission of the quasiparticles 
through the N - S boundary, and p is the cosine of the 
angle of incidence at the boundaryi for 0 < E - A << A. 
Further, 

is the electronic thermal conductivity of the supercon- 
ductor, n N  is the thermal conductivity of the normal 
metal, 1 is the mean free path, aNand as are  the thick- 
nesses of the normal and superconducting layers, 

LN'=L, th (aN/2L,) ,  

L,=[DT~(A)]"~ is the diffusion length for the energy 
relaxation, D =lvF/3,  ?:(A) - E @ ~ / A ~ ,  OD is the Debye 
temperature (in energy units), A is the superconducting 
gap, 

Lr =L$ +Ls  is the effective thermalization length, 

hena A 'A 
L..=L. th-, 2Ls L.= (Dr.')", res - T ( F )  

and TS) is the quasiparticle-number relaxation time in 
the s u p e r c o n d u ~ t o r . ~ ~  

The dependence of Qr on L A  i s  shown in Fig. 1 in the 
case in which Lo > L,. For  Lo < L, the LA dependence of Qr 
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FIG. 1. Form of the function @(LA, LT, LQ). 

does not exhibit a plateau. The exact formula is given in 
Sec. 3. It is assumed that the inequality 1<< L,,,<<Y, isful- 
filled. The introduction of the energy-independent re- 
laxation t imes T:, 7:, and 7,' is a crude approximation, 
but all the asymptotic forms of the function Q, do not de- 
pend on this approximation. 

Why does the Andreev boundary thermal resistance 
change when the relaxation lengths change? If the 
transmission coefficient tends to  zero, then the distri-  
bution functions on both sides of the boundary should 
tend to the equilibrium distribution function. The ther- 
mal resistance of the boundary is  then given by the And- 
reev expression. But a s  will be shown below, the cri- 
terion for i ts  validity is the smallness of w not in com- 
parison with unity, but in comparison with some quanti- 
ty that is itself small compared to unity. Indeed, there 
arises near the boundary in the presence of a heat flux 
a region in which the distribution functions a re  non- 
equilibrium distribution functions, and whose contribu- 
tion to the thermal resistance can compete with the 
boundary contribution because of the large dimension of 
the region. Therefore, the distribution function is re- 
adjusted in such a way a s  t o  decrease the total resist- 
ance a s  much a s  possible, a s  is required by the princi- 
ple of minimal entropy-generation rate. Then we may, 
depending on the relation between the relaxation len&hs, 
find it advantageous to  lose out on the boundary thermal 
resistance by sharply decreasing at i ts  expense the con- 
tribution of the boundary regions. This is  precisely the 
situation described by the function Q, when the criterion 
for the existence of a state of nonequilibrium contains, 
besides the transmission coefficient, the relaxation 
lengths, o r  the layer thicknesses if they a re  smaller 
than the relaxation lengths. 

2. KINETIC EQUATION AND THE BOUNDARY 
CONDITIONS 

In the absence of external fields the kinetic equation 
for the quasiparticles has the same form in the S and N 
regions: 

an 
pl sign E - =E-n. a z 

Here we have taken into account only the collisions (de- 
scribed by the mean free path 1 )  with the impurities, 5 
=p2/2m - &=, n is the quasiparticle distribution func- 
tion, p =p,/p, and the bar  denotes averaging over the 
directions of the momenta. 

We find it convenient to represent the distribution 
function in the form: 

an 
n=no+ O(Q+P sign E), a& (3) 

where Q and P are even functions of 5 with a character- 

istic variation scale [-A. Substituting (3) into (21, we 
obtain the system of equations: 

We have taken into account the fact that Q is an even, 
while P is an odd, function of p. 

If the domain thickness is sufficiently large, then the 
inelastic collisions should be taken into account at 
large (larger than 1 )  distances from the boundary, where 
Q =q. In the N region the energy relaxation is describ- 
ed by the diffusion equation 

where T is the mean temperature of the sample. 

The quantity T k) i s  determined from the condition 

This equation describes the fact that the phonons effect- 
ing the energy relaxation do not, a s  a result of their 
low velocity, transport energy in space, but only re- 
distribute it among the quasiparticles at each point, 
striving to establish local equilibrium with the given 
energy. For simplicity, L, is assumed to be energy in- 
dependent. As we shall see below, Eq. (6) describes 
the relaxation of the quasiparticles having energies 
ranging from & - A  near the boundary to E - T  in the in- 
ter ior  of the normal domain (if its thickness turns out 
to be sufficient). Therefore, the phonons participating 
in such a process also have energy K w -  A,  and 7; 
-~W;/A~.  The situation is more complex in supercon- 
ductor. 

As has been d e m o n ~ t r a t e d , ~ ' ~  there a r e  two relaxation 
lengths in a superconductor; the first  one Ls is the dis- 
tance over which there gets established the Fermi func- 
tion (Q:'") with quasiparticle chemical potential given 
(together with the temperature) by the conditions for en- 
ergy and quasiparticle-number conservation: 

where 

and corresponds to the appearance of a local-equilibri- 
um Fermi function with a given quasiparticle chemical 
potential v(x) and temperature T(x). This is due to the 
following: The quasiparticles, being scattered by the 
low-frequency phonons, acquire the distribution function 
exp[-(v-&)/TI. There ar ise  a s  a result of the genera- 
tion and recombination processes high-frequency pho- 
nons that follow the quasiparticles, and have the distri- 
bution function2' exp[- (2v - EU)/T]. Each of such pho- 
nons i s  equivalent to  two quasiparticles, and the number 
of quasiparticles changes only in the processes in which 
such phonons a r e  absorbnd by quasiparticles, which 
then give the obtained energy to the low-frequency pho- 
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nons. The probability for  this  process is proportional aQ - 
w 

t o  the square of the quasiparticle concentration, and is -z 1 iczeL N , s  
= ( Q o s - Q o N )  =go(e) ,  

exponentially small. Therefore, the diffusion length 
e - ~  a/* 3 

connected with the variation of the quasiparticle number z= (T ) j f  P~P. 
is large. o 

There gets established over th is  length 2s >>Ls ad i s -  The relation (15) is one of the boundary conditions for  

tribution function (Q:) with temperature such that Eqs. (5) and (11). Further,  let u s  wri te  down the bound- 
a r y  conditions, obtained in Ref. 2, f o r  the temperature 

Therefore, the diffusion equation in the superconduc- 
t o r  has the form 

To  derive for Eqs. (4), (51, (61, and (1 1)  boundary 
conditions corresponding to  the Andreev reflection, let 
u s  write the condition for  balance of the fluxes a t  the 
N - S boundary: 

nN(v<O)=nN(v>O) (1 -w)  +wn,(u<O), 

n ,  (v>O) =ns (v<O) ( 1 - w )  +wn,  (v>O), 

Here n(v > 0) denotes the number of quasiparticles mov- 
ing from the left t o  the right a t  some angle t o  the N - S 
boundary, while n(v < 0) denotes the number of quasi- 
particles moving from the right t o  the left at  the same 
angle; n(v > 0) and n(v < 0) thus describe quasiparticles 
that differ only in the sign of 5. 

Similarly, at  the S - N  boundary 

Substituting the expression (31, we obtain 

The upper sign corresponds to  the N - S boundary; the 
lower sign, t o  the S -  N boundary. F rom Eq. (4) it fol- 
lows that the quantity J?, ~ ( p ) ~ d p  does not depend on 
the coordinate; from (12) we have the relation 

On the other hand, Eqs. (4) and (5) can be represented 
in the form Q = Qo + 9, where Q vanishes a t  points lying 
a t  distances grea ter  than I from the boundary, while Qo 
behaves in (4) and (5) like a constant, changing only 
over distances LN, >> 1. 

If w << 1 ,  i.e., if T << A ,  we can replace Q by Qo in 
(13). Indeed, since the right-hand side of (13) if the 
only inhomogeneity in the sys tem of equations, Q" w(Q~N 
- Qos)b<< QON - QOS, i.e., Q can be neglected. Then 

Using (E), multiplying by p ,  and integrating over the 
angles, we find that f a r  f rom the boundary 

and the chemical potential in the superconductor: 

where q and J a r e  respectively the energy and quasi- 
particle-number fluxes passing through the boundary: 

go(&) being the yet-to-be-determined unknown energy 
function (1 5). 

3. COMPUTATION OF THE THERMAL CONDUCTIVITY 

T o  find the thermal  conductivity, we must solve Eqs. 
(6) and (11) with the appropriate boundary conditions. 
The solution t o  Eq. (6) with the boundary condition (15) 
in the N region has the form 

aQ.w/ax=gN ( 5 )  =gNT+ (go ( E )  - g ~ ' )  ch ( ~ 1 L . v )  ch-I ( a N / 2 L N ) ,  (20) 

g N T = F = -  e VTN= ex. 
ax T T X N  (21 

The relation (18) guarantees the fulfillment of the en- 
ergy conservation law (7). The solution t o  Eq. (11) in 
the S region i s  

r s  ( x )  =dQs/ax=gsT+ (g:'" I ~ - g s T ) c h ( x / 9 s ) c l ~ - i  ( a , / 2 p s )  

-!-(go ( e )  -g,T.* lb)ch ( ~ / L ~ ) c h - ~ ( a , ~ / 2 L ~ ) ,  (22) 

Let us  now consider half of the period of the struc- 
t u r e  (see Fig. 2). The total  change that occurs in the 
distribution function over this  distance is connected 
with the mean temperature gradient by the relation 

FIG. 2 .  Dependence of the distribution function on the coordin- 
ate. 
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where u, is the sought thermal  conductivity of the in- 
termediate structure:  

a .#/a 

AQ- J giv(+)dx+ J g s ( z ) h + ( Q s - Q ~ ) b .  (26) 
-%"/a 0 

Expressing now (Qs - QN), in t e r m s  of go(&) with the aid 
of (15), and substituting the found gN,, values, we ob- 
tain the following equation: 

(for the definitions of the asterisked quantities, s ee  the 
Introduction). 

Solving Eq. (27) simultaneously with (241, (1 7), (18), 
and (19), we find n,. For th is  purpose, we solve (27) 
for  go(&): 

We used (24), (16), and (1'7). (31) 

Now, substituting (28) into (18) and (19), we obtain 

Solving the sys tem of linear equations (29)-(33) for  
the unknownsA, B, Ao, q ,  and J, we obtain for  xi the 
expression (1) with 

n' lo-2Z,+Z,+La-' 
cD (LA, Lr, La) =-LA-' 

2 ( r j . - r , ~ + ~ . L a - ~  
-.I. (35) 

Using the asymptotic forms of the expression (34), we 
find that for LA >> LT 

and that if, moreover, L A  >> Lo, then @ = 1. For  LA 
<< L,, we have @ = r/2. The function @ 2 1, and de- 
c r eases  with increasing boundary contribution t o  the 
thermal  resistance. F o r  LA >> L,, Lo,  the boundary 
contribution is grea ter  than all. the other contributions, 
and the value of the coefficient @ attached t o  it is mini- 
mal, and equal t o  unity. 

The authors a r e  grateful t o  B.Z. Spivak for usefuldis- 
cussions of the present paper. 
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