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The spectrum and damping of volume plasma waves in a randomly inhomogeneous metal are investigated by 
a method based on the theory of random functions. The inhomogeneity is introduced as a small correction to 
the periodic lattice potential and is described by a random function with an arbitrary correlation radius l /k , ,  
which depends on the characteristic size of the inhomogeneities and is assumed to exceed considerably the 
lattice constant. The inhomogeneous potential can interact with the plasma wave either directly or indirectly 
by modifying the equilibrium distribution function of the conduction electrons. The modification of the 
plasma-excitation dispersion law is most significant for small wave numbers k .  The dispersion curve w ' ( k )  has 
an inflection in the vicinity of k -k , .  At the same value of k ,  the plasma wave damping due to the 
inhomogeneities is a maximum. The theory is compared with experiment. 

PACS numbers: 72.30. + q 

INTRODUCTION waves in an inhomogeneous metal in the case when the 

The similarities of the excitation spectra in an in- inhomogeneity can be simulated by a random electric 

homogeneous medium, in the case when the inhomo- potential much smaller than the periodic potential of 
geneities localized noninteracting defects in the crystal lattice. The investigation is carried out 

an ideal lattice, have by now been well investigated by the phenomenological method developed in Refs. 9 

theoretically (see, e.g., the monographs1*' for phonons, and 10. 

Ref. 3 for magnons, and Refs. 4-6 for plasma waves). 
An increase in the defect density leads to a correlation 

1. HAMI LTONIAN AND EQUATIONS OF MOTION 

between them, and this complicates the problem The deviation of the metal crystal lattice from ideal 
greatly. causes the conduction electrons to be in a nonperiodic 

In the limiting case of a high defect density, however, 
the approximation of the random-inhomogeneity medium 
becomes valid. The parameters of this medium a r e  
described by stationary random functions of the spatial 
coordinates. The presence of a strong interaction be- 
tween the defects leads of an increase of the correla- 
tion radii of such random functions, i.e ., to their 
smoothing. If the correlation radii become much 
larger than the lattice constant a ,  the main singulari- 
ties of the inhomogeneous medium manifest themselves 
in the region of long waves (ka << 1, where k i s  the 
wave vector of the plasma wave), the excitation spec- 
trum in such a medium can be investigated using the 
mathematical formalism of the theory of random 
functions, which has been well developed by now. 
This approach was used in an investigation of magnetic 
resonanceg and spin waves in an inhomogeneous ferro- 
magnet'' and in an antiferromagnet." The methods of 
the theory of random functions were used also to 
study surface plasma waves in a semiconductor film 
of nonuniform thickness,'' and in metals with rough 
surfaces. 13*14 

A number of recent experimental papers15~16 report 

potential U(r), which can be represented a s  a s u m  of a 
periodic potential Uo(r) = U,(r +a) and a nonperiodic 
potential V(r). In the approximation in which the elec- 
trons do not interact with one another, the single- 
electron Hamiltonian is of the form 

~ = p 2 / 2 m , + ~ ,  (r) + v ( r ) ,  (1.1) 

where i s  the momentum operator and m, is the elec- 
tron mass. 

If V(r) i s  a slowly varying function compared with 
the lattice period a and 1 vI<< 1 Uo 1 ,  then for long waves 
( k a c  1) we can go over from the quantum Hamiltonian 
(I .  1 )  to the c l a ~ s i c a l ' ~ * ' ~  

where c (p) is the dispersion law of the conduction 
electrons in an ideal crystal lattice. In this quasiclas- 
sical approximation, the equation of motion is the 
classical Liouville equation, which reduces in the case 
of noninteracting electrons to an equation for the 
single -particle distribution function F( r ,  p, t ) :  

investigations of plasma waves in polycrystalline and The stationary solution of this equation, satisfying 
amorphous metals and semiconductors. In the long- the electron statistics, is the Fermi-Dirac distribution 
wave part of the spectrum of the plasma excitations, function, which depends in our case both on the mo- 
deviations were observed from the spectral curves of 

menta and on the spatial coordinates: a single crystal, and have s o  far found no explanations. 
There a re  grounds for assuming that these singulari- 

[ 
( e - h + v ( r )  ) + i I-' 

P, (I, p) = A exp ksT 
(1.4) 

ties are  connected with the inhomogeneity of the in- 
vestigated samples. where A i s  the normalization constant and E, is  the 

In the present paper we consider volume plasma Fermi energy. 
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The function ~ , ( r , p )  describes the equilibrium dis- 
tribution of the electrons in an inhomogeneous metal. 
The quantity c, - V(r) can be isterpreted a s  the chemi- 
cal potential of the electrons, which varies continuous- 
ly from point to point in an inhomogeneous crystal. 
The normalization constant A is determined in the 
usual fashion from the condition of the electron-number 
conservation. We assume the electron gas to be 
single -band with an isotropic quadratic dispersion law, 
and approximate the derivative aFo/a& with the aid of 
the Dirac 6 function: 

where m is the effective mass of the electron. Then 

where V, i s  the volume of the metal. 

We shall regard the plasma wave a s  small deviations 
from the inhomogeneous equilibrium state (1.4). It is 
necessary to add to the Hamiltonian (1.2) the energy of 
the interaction of the electron with the alternating elec- 
tr ic fields, both intrinsic and external, and represent 
the distribution function F( r ,  p, t)  in the form 

Substitution of this expression in (1.3) leads to the 
following equation for the function cp : 

where v i s  the electron velocity and E is the sum of 
the intrinsic electric fields and the fields from the ex- 
ternal sources. This equation was written in an ap- 
proximation linear in the function cp (and correspond- 
ingly in the electric fields E), but the influence of the 
small inhomogeneous potential V(r) is taken formally 
into account in i t  exactly. It is seen that V(r) acts on 
the plasma wave both directly (the last  term in the 
left hand side of the equation) and indirectly, by chang 
ing the ground state, against the background of which 
the plasma wave propagates. A similar situation was 
encountered earlier in the analysis of magnetic 
resonanceg and of spin wavesL0 in a magnetic crystal 
with inhomogeneous orientation of the anisotropy axis. 

Equation (1.8) describes a plasma wave in the pres- 
ence of the inhomogeneous potential V(r), regardless 
of whether this inhomogeneity of the electric field was 
produced by external or  internal factors (in a particu- 
lar  case the potential V(r) can also be periodic, but 
with a period much larger than the lattice period). We 
confine ourselves hereafter to the rather general case 
when V(r) is a stationary random function with finite 
(nonzero) correlation radius. It is then convenient 
to represent V(r) in the form 

where w is the mean squared spatial fluctuation of the 
potential, p(r)  i s  a normalized stationary random 
function with zero expectation value and with unity 
variance: 

(p)=O, (p2)=1. (1.10) 

For a stationary random function, integration over 

space is equivalent to averaging over the ensemble, s o  
that the normalization constant A is now determined by 
the expression 

where y = w/2 z p  << 1. 

Substituting (1.9) and (I .  11) in (1.8), we obtain an 
equation in which the functions q ( r ,  p, t )  and E(r ,  t ) ,  
which describe the plasma wave, a re  now random 
functions. Adding Maxwell's equations, the continuity 
equation, and the expression for the current density 
we obtain a closed system of equations for the plasma 
wave in a randomly inhomogeneous metal. This sys-  
tem describes both the natural and the forced oscilla- 
tions. In the present paper we confine ourselves to 
investigation of the natural oscillations. 

2. DISPERSION RELATIONS FOR PLASMA WAVES 

To investigate the obtained system of equations by 
the methods of correlation theory of random functions, 
i t  is convenient to represent the expressions with 
complicated dependence on the random function p(r) in 
the form of a Taylor ser ies  in powers of p(r). In our 
case this pertains to the expression for the distribution 
function F,(&, p(r))  in the right-hand side of Eq. (1.8). 
To find the solution in the first  nonvanishing approxi- 
mation of perturbation theory, i t  suffices to terminate 
the expansion with the terms quadratic in w. lo Taking 
next in (1.8) the Fourier transforms with respect to r 
and t ,  we obtain 

Here cp, E, and p now denote the Fourier transforms 
of the corresponding functions; fo=fo(a) is the Fermi- 
Dirac distribution function in a uniform metal (fo= Fo 
a t  w = 0); the primes denote the corresponding deriva- 
tives of this function with respect to the energy E ; 1; 
= k -kl, and the curly brackets denote convolutions of 
the type 

{a ,  b ) = { a ( k ' ) ,  b ( k ) ) =  j a ( k l )  b(k-k')dkr, 

(2.2) 
{ ( a ,  b ) , c ) =  j J a ( k " )  b (k l -kU)c(k-k ' )dkf  dk". 

The remaining equations of the system, taking into 
account the longitudinal character of the plasma waves, 
can be written after taking the Fourier transform in 
the form 

The oscillations of a homogeneous (w = 0) plasma 
have been theoretically well investigated. We describe 
now briefly a procedure for obtaining the dispersion 
relation for the system (2. I ) ,  (2.3) in this case. This 
will enable us subsequently to point out more distinctly 
those singularities which ar ise  in the derivation of the 
dispersion equation for an inhomogeneous plasma (w 
# 0). 

Substituting the second equation of (2.3) in the first, 
and the first  in (2. I ) ,  we obtain a closed equation for 
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the function cp(w,k,p), but i t  turns out to be integral 
even for a uniform plasma. An algebraic equation can 
be obtained only for the characteristics that a re  integral 
in p and depend only on w and k, namely, either for the 
current density j (more accurately, i ts  projection on 
the vector k), o r  to the field intensity E which is pro- 
portional to this density. To this end we write down 
(2.1) with w = O  in the form 

Substituting here E from (2.3), we multiply both sides 
of the equation by v and by a corresponding coefficient, 
and integrate with respect to the momentum p. The 
result is an equation for the current density: 

Multiplying this equation by k, we obtain an algebraic 
equation for the scalar function g= k j, and multiplying 
the latter by a suitable coefficient, we obtain a perfect- 
ly similar equation for E ;  from the condition E # 0 (or 
g+ 0) we obtain the general form of the dispersion 
equation in a homogeneous plasma: 

The presence in the integrand of a pole on the real  
axis causes the dispersion relation to be complex-the 
damping first  investigated by ~ a n d a u ' ~  appears. This 
means that the oscillations cannot be exactly repre- 
sented in the form of sums of independent plane wave 
with definite dispersion law, since such a representa- 
tion i s  valid only approximately in cases when the 
damping i s  small enough. 

~ a n d a u l ~  considered a hot plasma, when fo can be ap- 
proximated by a Maxwellian distribution function. In 
our cold-plasma case, however, when 

there is no such damping in a homogeneous plasma. 
Indeed, upon integration the values u a r e  determined 
by a 6 function. For the values of the wave vectors 
satisfying the equation q = kv,/w << 1 (at the parameters 
typical of metals, this inequality follows from the re -  
striction ka<< I ) ,  the integral in (2.6) has no poles on 
the real axis in the integration- region. Consequently, 
in our case the waves in a homogeneous plasma can be 
represented (with the accuracy a t  which the approxi- 
mation off; by a 6 function i s  valid) a s  a sum of plane 
waves with a real dispersion law that follows from 
(2.6) (see, e.g., Ref. 20): 

where w, i s  the plasma frequency; for q<< 1 we have 

We turn now to the case w # 0. The inhomogeneities 
of the potential lead to the appearance in Eq. (2.1) of 
integral terms in the form of convolutions in kt and k" 
of the form (2.2). These integral terms correspond 
to wave scattering by inhomogeneities. Now the plas- 

ma oscillations cannot be exactly represented, even a t  
T = 0, by a sum of noninteracting plane waves of the 
form E (k, w). Approximately, however, it i s  possible 
to consider, in the form of a plane wave, the mathe- 
matical expectation value (E(k, w)) of the random func- 
tion E(k, w), to the same degree of accuracy with 
which the correlators that a re  formed upon averaging 
of (2.1) a re  split up. The scattering of the wave by 
the inhomogeneities causes E to decrease with time at  
the expense of the increase of the incoherent compo- 
nents with different values of k. At small w (the in- 
equalities will be written out a t  the end of the paper), 
however, such plane waves exist for sufficiently long 
times and determine the thermodynamic and kinetic 
properties of the plasma. Therefore the principal 
characteristics of the inhomogeneous plasma is the 
dispersion relation for the mathematical expectation 
value (E). We derive i t  now. 

We transform first  the integro-differential convolu- 
tion in the left-hand side of (2.1). We express formal- 
ly cp of the first  term of the equation in terms of the 
remaining ones and substitute in this convolution. Re- 
taining then the terms with w raised to a power not 
higher than the second, we obtain now in place of (2.4) 
the following expression for cp in terms of E:  

where Go and Fo stand for the convolutions 

Go=(vE, p}, R0={vEIL, v). 

Performing with these expressions the same opera- 
tions a s  in (2.4) above, we obtain an integral equation 
for the scalar function g= k j in the form 

where P i s  the expression in the square brackets of 
(2.91, in which Go and Ro a r e  replaced respectively by 
~ = { ( g k ' . v / k ' ~ ) , ~ }  and ~ = { ( k '  . v g / k r 2 ~ ) ,  v}. 

This equation contains, besides the terms quadratic 
in w, two terms linear in w, which also make a con- 
tribution ccwZ when (2.10) is averaged. It is conven- 
ient to change them directly into a form quadratic in 
w. We determine formally g from Eq. (2.10) and sub- 
stitute i t  in the first  two terms of the right-hand side 
of the same equation. Retaining a t  the same time 
terms of degree not higher than the second in w, we 
obtain the final form of the integral equation for the 
random function g(k, w): 

(11,+3/,yZo,\,) g(k, o )  = wZ4ne'oI [4ne20  ( { p D , - ' P ~ ,  - {ID,-'1 0, v)) 

- l / Z j D ' r ' ( G ,  p } + V p f O ~ ~ { G L - l , ~ } - V p ( L - ~ V p f o ' R , ~ ) ] ;  (2. 11) 

and i i s  the operator of integration, with respect to 
the momentum, of the function multiplied by kSv/L: 
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Now all the terms in the right-hand side of (2.11) a re  
proportional to w2 and have the general structure of 
double convolutions. We average (2.11 ) over the en - 
semble of realizations of the random functions. The 
procedure of approximate splitting of the correlations 
will follow the scheme 

Here a, b ,  c, and h a re  arbitrary functions of k. Here, 
as earlier?" i t  was assumed that 

and the known7 property of stationary random functions 
was used, namely 

( p ( k )  p (-k') )=S(k)G (k-k') ,  (2.16) 

where S(k) is the spectral density of the correlation 
function. 

It is seen from (2.14) that we obtain for the mathe- 
matical expectation value of the function g(k, w) an 
algebraic equation of the form 

from the requirement (g)# 0 we obtain the dispersion 
relation for the plasma waves in a randomly inhomo- 
geneous metal: 

where 

dk'S (k-k') 
Is=u2 j (k'-k)?[p'?l-l'?l~+l'? (k ' -k ) l ] ,  

Do(k') 

E r  k-k' 
1,=2u-J d k ' ~ ( k - k f ) i v P -  

L(k')  
[p- ( k ' - k ) l l :  

61 P 

u=-8neZe,, pf -p  ( k t ) ,  l ( k ' )  f ' f r f  ( k ' )  f .  

At y= 0 this leads to the dispersion law for plasma 
waves in a homogeneous metal (2.7). The modification 
of the dispersion law in inhomogeneous metal is ex- 
pressed in (2.17) in terms of the characteristics of 
the inhomogeneous potential V(r),  namely the relative 
mean squared fluctuation y and the normalized spectral 
density S(k) of the random function p(r). The disper- 
sion law turns out to be complex: the integrals Jl and 
J,, which have a pole Do= 0 on the real  axis, cause, 
besides modification of the real  part of the dispersion 
law, also the appearance of an imaginary increment to 
the frequency. We recall that in (2.17) the modifica- 
tion of the dispersion law is due to two physical mech- 
anisms. The integrals J, and J, a re  connected with 
the change of the ground state and a r e  determined by 
the right-hand side of Eq. (1.8). The integral J, is 
due to direct interaction of the plasma wave with a 
random potential [third term in the left-hand side of 
(1.8)]. The integral J, is connected with the action of 
both these mechanisms. 

For estimates, we specify the correlation function 
and the spectral density connected with i t  by a Fourier 
transformation in the 

where k, is the characteristic wave number [b = 2/k0 
is the characteristic dimension of the inhomogeneity, 

- k - l -  ,- , is the correlation radius of the random function 
p(r)]. This form of S(k) describes a sufficiently large 
class of inhomogeneities [at k c  k, this is white noise, 
and a t  k > k, the function S(k) i s  cut off quite abruptly]. 

The integrals with respect to p in J, a re  easily eval- 
uated. We shall integrate with respect to k' by residue 
theory, confining ourselves to the case 

but retaining, naturally, the arbitrary relation between 
q and q,. F'unctions of q' [with the exception of S(ql)] 
can then be expanded in powers of q', since the inte- 
grands a re  cut off a t  qt>>qo by the function S(q). 

As a result, the modified dispersion relation w'(k) 
and the damping wn(k) a r e  obtained in the form 

The contribution made to w' by the f i rs t  and second 
terms in curly brackets is proportional here to y2/q2, 
and is connected with J,; contributions to the terms 
-y a re  made not only by J, but also by J, and J,. The 
terms of higher order in w' were neglected. This left 
in wt only the terms determined by the integrals J,, J,, 
and J,, which a r e  due, a s  noted above, to the change of 
the ground state. In the expression for the damping w" 
we have neglected the terms -4q3/q: compared with 
y2q/q:; the damping is then entirely due to the integral 

J1- 

In the limiting cases we have: 

The dependences of o' and w" on k a re  shown sche- 
matically in the figure. It is seen that the dispersion 
curve has an inflection at k = m / 2 ,  and the attenua- 
tion has a maximum at  the same value of k. The 
largest influence of the inhomogeneity on o' turns out 
to occur a t  small k: in this region, the plasma fre- 
quency turned out to be smaller than i ts  value in a 
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equivalent to the inequality &a << 1.  

The  exper iments  known to us1= r e v e a l  a tendency of 

FIG. 1. Dispersion o' and damping w" of plasma waves in 
a randomly inhomogeneous metal. The dashed curve shows the 
plasma-wave dispersion in a homogeneous medium. The bar 
on the abscissa axis marks the point k=Gko/2 .  

homogeneous metal.  W e  note that  the frequency at 
the local  levels  in the p l a s m a  spec t rum is a l s o  lower 
than w,.~''  

CONCLUSION 

Thus, the action of a randomly inhomogeneous po- 
tential l eads  to a complex modification of the d i s p e r -  
sion relat ion f o r  a p l a s m a  wave. A correlat ion wave 
number appears  in  the modified relation and c o r r e -  
sponds to the charac te r i s t i c  dimension of the inhomo- 
geneity. We note that  the complex modification of the 
dispersion relat ion f o r  the p l a s m a  waves is close i n  
charac te r  to  the modification of the dispersion relat ion 
for  spin waves i n  the case of anisotropy f l u c t ~ a t i o n ' ~  
(and differs  f r o m  the modification corresponding, f o r  
example, to the exchange or magnetization fluctuation, 
see the s a m e  reference). 

We d i scuss  now the inequalities within the framework 
of which the problem w a s  solved: 

The f i r s t  inequality is the usual condition for  introduc-  
ing the long-wave approximation. The second inequal- 
ity requ i res  that the pr incipal  ro le  be  played not by the 
thermal  noise but by the spat ial  noise connected with 
p(r) ;  the problem is solved actually at T = 0. The third 
inequality e x p r e s s e s  the s m a l l n e s s  of the random po- 
tential compared with the lattice potential, and was 
used f o r  a n  approximate splitting of the correlat ions.  

The fourth follows f r o m  the final result-from the re- 
quirement  that the cor rec t ions  (both real and imagin- 
a r y )  to the plasma-wave frequency by much s m a l l e r  
than the frequency itself.  Th is  inequality thus entered 
implicitly together with y<c 1 in the splitting of the c o r -  
relations. With these  four  inequalities satisfied, the 
general  dispersion (2.17) was obtained, i n  which the 
frequency of the p lasma wave w a s  expressed  in t e r m s  
of the spec t ra l  density of the random function p( r )  in  
integral  form. 

The next two inequalities were needed to c a r r y  out 
the approximate integration i n  (2.17) with the model 
spec t ra l  function and to obtain analytic express ions  fo r  
the modified dispersion equation. The inequality go 
<< 1 led to  the r e s u l t  that the s t ronger  of the two p r e -  
ceding inequalities turned out to  be y /qo<<l;  the in -  
equality q<< 1 at p a r a m e t e r s  typical fo r  meta l s  is 

the p lasma frequency in a polycrystalline meta l  to be 
lower than in s ingle  c rys ta l s ,  and also an increase  of 
the slope of the dispersion c m v e  at s m a l l  k. This  is 
i n  qualitative agreement  with the r e s u l t s  of the theory 
proposed here .  For a correct comparison of the theory 
with experiment ,  however, a thorough experimental  
investigation of the long-wave region of the p lasma-  
wave spec t rum is necessary .  T h i s  investigation would 
help observe  the charac te r i s t i c  influction on the d i s -  
pers ion  curve  and make it possible  to obtain informa- 
tion on the correlat ion rad ius  (charac te r i s t i c  dimen- 
s ion)  of the inhomogeneity and on its value y .  

P a r t i c u l a r  in te res t  a t t aches  to the performance ,of 
such experiments  with amorphous meta l s .  It is possi-  
ble that observation of p l a s m a  waves might turn out to  
be  one of the important  methods of investigating these 
unique substances.  
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