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A study was made of the influence of relaxation processes on the velocity of ultrasound and the coefficient of 
its absorption in nematic liquid crystals. Allowance is made for the dependence not only of the pressure but 
also of the irreversible (viscous) stress tensor on the relaxing parameter, a particular consequence of which is 
the anisotropy of the velocity of ultrasound. A comparison is made of the calculated results with the 
experimental data on MBBA. Symmetry of the kinetic coefficients is used to obtain an additional constraint 
on the number of independent viscosity coefficients. 

PACS numbers: 62.80. + f, 43.35.Bf 

Extensive experimental data a r e  now available on the 
propagation of ultrasound in liquid crystals .  In some 
cases  the dependences of the velocity of ultrasound and 
i t s  absorption coefficient on the acoustic frequency and 
temperature of a liquid crystal  (see, for  example, the 
reviews in Refs. 1 and 2) have been determined. How- 
ever,  difficulties have been encountered in the inter- 
pretation of these data. An attempt to provide a pheno- 
menological description of the experimental data i s  
made in Ref. 3 on the basis  of Boltzmann-like repre- 
sentations of a "retarded" dependence of the s t r e s ses  
on strains (and other parameters describing the me- 
dium). Such a very general analysis makes i t  possi- 
ble to describe any dispersion law of sound but specific 
information on the mechanism of the retardation in 
question i s  in practice ignored. However, the relaxa- 
tion times typical of liquid crystals  a r e  fairly long.' 
Therefore, it  would be desirable to  interpret the ex- 
perimental data in the sp i r i t  of the relaxation theory of 
Mandel'shtam and Leontovich. This attempt, subject 
to some additional conditions associated with the ani-  
sotropy of liquid crystals ,  i s  made below. The tem- 
perature dependences of the ultrasonic characteristics 
a r e  not discussed. It is assumed that the temperature 
of the system i s  constant and sufficiently f a r  from a 
phase transition point. This justifies the neglect of 
fluctuations. 

In accordance with the relaxation theory we shall as -  
sume that the state of a liquid crystal  is described not 
only by the density p, temperature T, and director n, 
but by an additional parameter. In general, this para- 
meter i s  not a sca lar  but a tensor. The dispersion of 
sound is in fact dependent on i t s  actual structure and the 
changes affect not only the coefficients in the formulas 
but the nature of the functional dependence itself. In 
the case of sufficiently complex processes the relaxa- 
tion approach adopted below and the more general ap- 
proach mentioned above become essentially one and the 
same. However, we shall consider only one sca lar  
relaxing parameter. 

director oscillations in an acoustic wave. Therefore, 
we can write down 

Here, t i ,  is the s t r e s s  tensor, p is the pressure,  and 
ti, is the viscous (we prefer  to call  i t  i rreversible)  
s t r e s s  tensor. Since the velocity of sound in a nematic 
liquid crystal  i s  anisotropic,' i t  i s  natural to assume 
that not only the pressure  but the irreversible s t r e s s  
tensor depend on the relaxing parameter 5. Among 
the many attempts to interpret  acoustic experiments in 
nematic liquid crystals  we can find also the assumption 
that the anisotropy of the velocity of sound is related to 
relaxation processes (see, for example, Ref. 5), but- 
to the best of the author's knowledge-this assumption 
has not been investigated in detail. 

The irreversible corrections to the tensor of the 
moments of the forces M i ,  a r e  usually neglected (see, 
however, Ref. 6). Therefore, we shall assume7 

Here, f is the density of the free energy of a liquid 
crystal; n,,, = ank/3xj  (similar  notation will be used la- 
te r ) ;  z i p ,  is a unit antisymmetric tensor; the repeated 
indices indicate summation. The law of conservation 
of momentum in the presence of internal moments of 
the forces gives8 

The principle of symmetry of the kinetic coefficients 
and the assumption that the irreversible s t r e s s  tensor 
is dependent on 5 yield the relationship between the 
expression for t ik and the law for relaxation of 5. We 
can find this relationship i f ,  in turn, we know the ex- 
pression for the rate of r i s e  of entropy because of ir- 
reversible processes. This expression is obtained in 
Ref. 7 but without allowance for the additional para- 
meters.  In the presence of an additional scalar  para- 
meter, it  becomes 

When a small-amplitude acoustic wave is propagating a/ p ~ u = t ; e , ~ , r , k , + r i ~ i  - Q. 
aE 

(4 1 
in a homogeneously oriented nematic liquid crystal, we 
can ignore the forces associated with distortions of the Here, cr is the entropy per  unit mass;  the point above a 
director field because the corresponding t e rms  in the symbol denotes the total derivative with respect to 
Euler equation a r e  quadratic in the amplitudes of the time; V i s  the velocity vector; the indices in paren- 
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theses imply symmetrization; and 

l"=eip,t,', Q= [nil -I/, curl V. 

We note that Eqs. (2) and (3) give 

We must bear in mind that the free energy f = f (p ,  T, n,, 
n,,,) is a scalar and, consequently, i t  is invariant under 
rotation. 

In addition to the parameter 5, we shall consider i ts  
equilibrium value f = f ( p ,  T, n,, n,,,). The equilibrium 
value of 5 corresponds to a free energy minimum 

Therefore, for low values of L =  5 - 5 we can assume 
approximately that 

We shall now find the expressions for tik and 5'. The 
arguments in these expressions a r e  the quantities 
V,,,,,, Sl , ,  and 6 .  In the application of the principle of 
symmetry of the kinetic coefficients the important fea- 
ture i s  the behavior of these quantities under time re- 
versal: v(,,,, and 52, a r e  multiplied by (-I), whereas 
in the case of the parameter 5 i t  is natural to assume 
that it does not change." Bearing this point in mind, 
we can write down (compare with Ref. 7) 

We can easily show that these equations represent the 
most general linear equations compatible with the ten- 
s o r  structure of the parameters and the principle of 
symmetry of the kinetic coefficients2' and they relate 
the forces and fluxes (see Ref. 9) in the situation under 
discussion. However, the structure of the tensors g,, 
and Bib, can be specified more closely. It follows from 
Eqs. (5) and (7) that 

(y, is a constant). The tensor B,,,, can be written in 
the form 

(p i  a re  constants). Again, it follows from the princi- 
ple of symmetry of the kinetic coefficients that 

BiwP=Bpqt~. (10) 

Hence, we obtain 

pz=p3. 

If we ignore the additional relaxing parameter, we 
find that the coefficients pi a r e  identical with the cor- 
responding viscosity coefficients of Ref. 7. 3' How- 
ever, explicit allowance for the parameter 5 makes i ts  
own contribution to the viscosity coefficients. This 
follows directly from Eqs. (8) and (9), because of low 
frequencies we can ignore the derivative 5 in Eq. (8) 

and express S directly in terms of V,,,,,. Neverthe- 
less,  Eq. (11) st i l l  applies in the case of the true vis- 
cosity coefficients because i ts  derivation is independent 
of whether we a r e  considering o r  ignoring the additional 
relaxing parameter. It follows that the number of inde- 
pendent viscosity coefficients is seven and not eight 
(compare with Ref. 7): 

(one must however bear in mind the renormalization of 
F ,  mentioned above). We shall point out also that Eq. 
(8) describing relaxation of the parameter 5 is more 
complex than that in the simple theory of Mandel'shtam 
and Leontovich. 

We shall now consider the propagation of a small- 
amplitude acoustic wave in a nematic liquid crystal. 
As usual, we shall go over to a linearized version of 
the equations of motion and seek a solution in the form 
of a monochromatic wave. We now have to include Eq. 
(8) among the equations under discussion. Since the 
ser ies  of operations required is relatively simple and 
well known (see Refs. 10 and 4), we can give the results  
directly. However, we must f irst  make the following 
comments. 

As in the usual relaxation theory of isotropic liquids, 
the pressure p should be regarded a s  a function of the 
variables p and 5.  The amplitudes of oscillations of the 
parameter 5, of the density, and of the director com- 
ponents a r e  easily eliminated from the equations of mo- 
tion. This yields for an acoustic wave an equation con- 
taining only the amplitudes of the mechanical vibra- 
tions u,. It represents a linear homogeneous equation 
for ui and, because of the anisotropy of a liquid crystal, 
the acoustic wave is strictly speaking no longer purely 
longitudinal. We shall ignore this aspect and assume 
that the acoustic wave is approximately longitudinal. 

Consequently, the velocity of sound c i s  described 
by the following equation: 

Here, o = 27iv i s  the angular frequency; c = co in the 
limit w -0; 8 is the angle betwesn the director n and 
the acoustic wave vector k; N = f / j5  i s  the ratio of the 
amplitude of oscillations of the equilibrium value of the 
parameter 5 to the amplitude of oscillations of the den- 
sity in an acoustic wave; finally, qi, q,, and q, can be 
expressed in terms of the coefficients pi  exactly a s  in 
the usual allowance for the viscosity of a nematic liquid 
crystal (see Ref. lo),  but we must allow for Eq. (11). 

We shall introduce z = (c/c,)'. The absorption coeffi- 
cient of sound can be described approximately by 

We have made allowance here for the fact that the in- 
equality 1 1 - z ( << 1, usually applies. The absorption 
coefficient describes the intensity and, therefore, 
Im(k) is multiplied by 2. Measurements of the value of 
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Ax= x(0, v ) -  x(90°, v) were made on MBBA in Ref. 11 
for different values of 0 and v. It follows from Eqs. 
(12) and (13) that 

o' r (a, cos' 0+a, cos' 0) 
A X = - [  co ,+,,, + 8 ,  C O S = ~ + ~ ~ C O S ~  e I , 

where a,, aZ, P1, and P, a r e  related by simple expres- 
sions to the coefficients of Eq. (12). These coeffi- 
cients and also the values of r were determined nu- 
merically on a computer to obtain the best fit with the 
experimental data of Ref. 11. This gave r = 18.3 
nsec, crl = 0.506, a, = 0.044, /'j1 = -0.55 nsec, 6 ,  = 0.953 
nsec. The number of decimal points in these constants 
does not represent the true precision. It is difficult 
to estimate the precision because the determination of 
the constants i s  essentially a solution of the inverse 
problem. 

In the case of a, an independent estimate can be ob- 
tained a s  follows. If the coefficient of viscosity p4 (the 
true, i. e. , the renormalized coefficient) i s  governed 
entirely by relaxation of the parameter 5, we can 
readily show that a, = p4/c2,pr. Using the known value 
of p4= 6.4 c P  (Ref. 7), we find that a, = 1. 5 X  lo', 
which is far  outside the limits of e r r o r  of the above 
method for the determination of the constants. In the 
case of the other four quantities the e r r o r  is not a s  
large. In particular, the value of r i s  in satisfactory 
agreement with the available estimates of the acoustic 
relaxation time of MBBA (values of 10-20 nsec a r e  
given in Refs. 1, 4, and 12). 

Figures 1 and 2 show the dependences of Ax on the 
frequency and angle 0 a s  well a s  the experimental r e -  
sults. The attenuation was determined in Ref. 13 in 
units of decibel per second. These quantities were 
converted to reciprocal centimeters by assuming that 
the velocity of sound was 1.55 km/sec (Refs. 1 and 14). 
The absorption coefficients in Refs. 13 and 15 were 
doubled in order to convert them into the intensity ab- 
sorption coefficients. The temperatures of MBBA at  
which measurements were made in Refs. 11, 12, and 
13 were not exactly equal but similar. We can see from 
Figs. 1 and 2 that Eq. (12) provides generally a satis-  
factory description of the experimental data in a fairly 
wide range of frequencies, although some points de- 

u . MHz 

FIG. 1. Frequency dependence of Ax for the propagation of 
sound parallel to the director. The continuous curve is cal- 
culated and the experimental results (denoted by 0, G, and A) 
are taken from Refs. 13, 11, and 15, respectively. 

FIG. 2. Dependences of Axon the angle between the direction 
of propagation of the acoustic wave and the director. The con- 
tinuous curves are  calculated for two frequencies (MHz): 1) 
85; 2) 25. The experimental results (0) a r e  taken from Ref. 
11. 

viate from the calculated curves by amounts exceeding 
the e r r o r s  estimated in the cited papers. 

Knowing the values of r ,  a i  and P i  and also assuming 
that c,= 1. 55 km/sec, we find that 

(here c denotes the real  part of the velocity). This 
quantity was measured in Refs. 5 and 15. Figure 3 
gives the results of calculations and the experimental 
data. l5 The discrepancy from the experimental results 
is now greater and the shapes of the curves a r e  differ- 
ent. The measurements in Ref. 5 were made at lower 
frequencies, precisely in the range where the influence 
of relaxation processes is strong. The results  of mea- 
surements of AC a t  the frequency of 10 MHz (Ref. 5) 
were approximately half those found by calculation, 
but in this case the shapes of the dependences of Ac on 
e were approximated satisfactorily. 

It i s  difficult to say why these discrepancies occur. 
It is possible that the real  relaxation processes a r e  
more complex (for example, the relaxing parameter 
may be a tensor o r  there may be several  relaxing para- 

FIG. 3. Dependence of the relative difference between the 
velocities of sound on the angle between the direction of pro- 
pagation of the acoustic wave and the director a t  200 MHz. 
The continuous curve is calculated. The experimental results 
(A) a re  taken from Ref. 15. 
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meters with similar relaxation times-see Ref. 16). 
However, we must make the following comment. The 
quantity Ac is usually small (in the case of MBBA it  is 
of the order of a tenth of a percent) and i t  is related to 
dispersion. However, i f  dispersion and absorption do 
exist, the very concept of the velocity of sound re-  
quires refinement and the velocity may depend on the 
measurement method (see Ref. 17). This aspect is not 
discussed in Refs. 5 and 15. 

Different points of view a r e  held on the physical na- 
ture of the relaxing parameter 5 .  We prefer to as-  
sume (as is done in Ref. 7) that in the investigated 
range of frequencies the relaxing quantity is the order 
parameter, i. e . ,  a quantity representing the local de- 
gree of order of the mutual orientation of molecules. 
This point of view is suggested by the results of an 
investigation of the temperature dependence of the 
acoustic relaxation. According to Ref. 12, the ab- 
sorption coefficient of sound of the isotropic phase of 
MBBA can be described by the usual relaxation for- 
mula 

(A and B a r e  constants). The coefficientA decreases 
rapidly on increase in temperature and a t  70 "C (ap- 
proximately 30 "C above the transition point) the relax- 
ation is practically undetectable. In this range of tem- 
peratures the relaxation time decreases rapidly on in- 
crease in T, whereas in the nematic phase the value of 
r is practically constant. On the other hand, the pre- 
transition range of temperatures of the isotropic phase 
of nematics is characterized by a strong tendency for 
the ordering of the molecular orientation. This is 
manifested by a large coherence length (orientation- 
correlation radius), by anomalously high values of the 
Kerr  constant, and by other phenomena. A compari- 
son of these results confirms the above hypothesis of 
the physical nature of the relaxing parameter. 

'1 The physical nature of the parameter 5 is discussed in 
greater detail below. 

'1 It should be noted that r is independent of 5. If instead of 

the scalar [ we consider the tensor relaxing parameter 5 
such a dependence is  obtained. The complication of the 
equations due to this dependence gives r ise  to a more com- 
plex dispersion law of sound. 

3, The designations of the coefficients have been altered here. 
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