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A generalized Cauchy relation that connects the pressure in the system with the high-frequency elastic moduli 
is obtained for liquid metals. It is shown that the presence of an electron subsystem in the metal leads to 
violation of the Cauchy relation. This violation is characteristic of systems with central paired interaction. 
Explicit expressions are obtained for the corrections to the high-frequency elastic moduli and to the Cauchy 
relation on account of multiparticle interaction between the ions. 

PACS numbers: 62.20.Dc, 03.40.D~ 

1. INTRODUCTION 

In connection with advances in neutron experimental 
techniques, the question of the role of multiparticle in- 
teractions in liquids i s  new being intensively 
An estimate of the influence of the multiparticle forces 
on the properties of simple liquids such a s  argon is 
made difficult by the lack of reliable data on the poten- 
tials of the multiparticle interactions and multiparticle 
distribution functions. The situation i s  more favorable 
fo r  liquid metals, where the potentials of the interpar- 
ticle interactions can be calculated "from first  prin- 
ciples" and multiparticle effects can be correspondingly 
separated. A multiparticle theory of metals in the 
crystalline phase was developed by Brovman and Kagan 
(see the review5) and has found numerous experimental 
 confirmation^.^'^ For liquid metals it i s  customary to 
confine oneself in the theory to the pair- interaction ap- 
proximation,? and no direct experiments aimed at ob- 
serving multiparticle effects a r e  known. It i s  known, 
however, that multiparticle effects, first, can substan- 
tially renormalize the paired interaction,' and second, 
irreducible three-, four-, . . . particle interactions 
can turn out to be of the same order a s  the paired.5 It 
has therefore become necessary to take simultaneous 
account of paired and multiparticle interactions. One 
can indicate in this connection metal properties that, 
on the one hand, a re  sensitive to multiparticle forces, 
and on the other can be calculated (to a certain approxi- 
mation) knowing only the paired static structure factor, 
which has been well investigated in experiment. We 
have in mind the elastic constants of liquid metals. It is  
known that under fast external action a liquid reveals 
elastic properties, that can be characterized by appro- 
priate elastic  constant^.^"^ A connection between the 
high-frequency elastic constants and moduli, on the one 
h a d ,  and the structure of a liquid and the interparticle 
potential, on the other, has been established in Refs. 
10-12 under the assumption that the interparticle inter- 
action is paired and central. It was found that this calls 
for satisfaction of the so-called generalized Cauchy re- 
lation, which connects the pressure P in the system with 
the elastic moduli 

where K and G a re  the high-frequency hydrostatic com- 
pression and shear moduli, respectively, T i s  the tem- 

perature, n i s  the particle-number-density, and kB is 
the Boltzmann constant. The principal assumptions that 
lead to (1) a re  incorrect for metals, so  that the Cauchy 
relation in the form (1) need not be satisfied. In the 
present paper we obtain a generalization of relation (1) 
to include the case of liquid metals. An essential fea- 
ture of the generalization is that account i s  taken of 
three- and four-particle interactions in addition to two- 
particle, and it i s  shown that Eq. (1) i s  violated by 
multiparticle interactions. The new Cauchy relation 
contains only a two-particle .structure factor a d  does 
not depend on the multiparticle distribution functions; 
this facilitates i t s  experimental verification. 

2. FREE ENERGY AND EQUATION OF STATE OF 
LIQUID METALS 

We use the results of Refs. 5 and 7, according to 
which the thermodynamic potential SZ of a metal, a s  an 
aggregate of interacting ions and electrons, i s  replaced 
in the adiabatic approximation by the thermodynamic 
potential of a single-component system of ions with ef- 
fective interaction determines by the polarization prop- 
ert ies of the electrons: 

P=-kBT In Sp exp 

Here Hi ,  Ni, and p i  a r e  respectively the Hamiltonian, 
the number of ions, and their chemical potential, a, 
was obtained by averaging over the electron variables, 
and the trace means the operation of averaging over the 
ion variables. Under the assumption that the coupling 
between the electron and ion subsystems is effected by 
a weak pseudopotential (PP), a, can be represented a s  
a series in powers of PP: 

where a(,") corresponds to the n-th order in the PP. 
a:) corresponds in this case to the contribution made 
to C2 by the homogeneous electron gas (against the back- 
ground of the compensating charge), and a(,') is deter- 
mined by the non-Coulomb part of the PP. The terms 
with n32 contribute to the effective Hamiltonian of the 
ions. Using quantum field theory methods,13 we can ob- 
tain for them the following  expression^^'^: 
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Here 

wo(r) is the PP of the electron-ion interaction (assumed 
to be local), n k )  and ~ 4 )  are  the static polarization op- 
perator and the dielectric constant of the electron gas, 

wo(ki) wo(%.) A" k t . .  . , k "  A k , .  . . . , k - . . . - 
e ( k , )  e (k , )  ' 

where A, are  the multiples introduced in Ref. 5 and a re  
in fact the n-th order polarization functions of the elec- 
tron gas, R, are  the coordinates of the ions, vo= V/N, is 
the specific volume of the ion, and A&) i s  the Kronecker 
symbol. (In the multipoles used by us, in contrast to 
Ref. 5, the factor l /n i s  separated explicitly.) 

In what follows it i s  convenient to change over from 
the S1-potential to the Helmholtz free energy F. It is 
known that for this purpose it i s  necessary to write14 

where pe is the chemical potential (CP) of the electrons. 
We thus obtain 

Here u;) i s  a structureless term of n-th order in the 
P P  and H* is the effective Hamiltonian of the ions, 

where U(,D3 i s  the potential energy of the indirect ion- 
ion interaction of n-th order in the PP, and describes 
the irreducible m-particle interaction. 

Simultaneously with the change from bZ to F it i s  nec- 
essary to carry out in all terms of (8) a renormaliza- 
tion of the CP. We use for this purpose the expansion 
(2) and write 

where the angle brackets denote the statistical-averag- 
ing operation. On the other hand, pe i s  determined 
from the relation 

where p(ZJ i s  the CP of the electrons in the absence of 
ions, given T, V, and Ne. From the last two equations 
we obtain the renormalized CP. In second order in the 
PP, which we shall need hereafter, we obtain the CP 
shift 

where S Q )  is the static structure factor of the ions. 

We obtain now the equation of state of a liquid metal, 
accurate to terms quadratic in PP. To this end, we dif- 
ferentiate the free energy (8) with respect to volume. 
The derivative of the first term yields the electronic 
contribution to the pressure, which can be expressed in 
terms of the polarization operator (see Ref. 5). The 
derivative of the second term i s  obtained directly. 
When finding the derivatives of the last two terms it is 
necessary to take into account also the implicit volume 
dependence, which can be obtained with the aid of a 
similarity t r ans fo rma t i~n .~ '~  We obtain thus 

acp a9 I "' a I 
+k.- + n.- -- n - - 

a i .  an. I 2 ! an. [ n(O)  I dG 

where n, i s  the electron density and z i s  the valence of 
the metal. Here cp&)  i s  the Fourier transform of the 
paired ion-ion potential in the approximation quadratic 
in the PP: 

4nzaea n ( k )  1 w, ( k )  1' 
cp(k)=-- 

kz e ( k )  ' 

Not counting the kinetic contribution (k,T/uo), expres- 
sion (10) i s  equivalent to the equation of state of the 
metal in the crystalline phase,5 the only difference being 
that summation over the reciprocal-lattice vectors is 
replaced by integration with respect to k, with a statis- 
tical weight S & )  that takes into account the presence of 
short-range order in the system. 

We shall use Eq. (10) later to obtain the Cauchy rela- 
tion. 

3. MICROSCOPIC DETERMINATION OF THE 
STRESS TENSOR 

It can be shown1= that the high-frequency elastic 
moduli and constants of liquids are  expressed in terms 
of equal-time correlation functions of the Fourier trans- 
forms of the components of the microscopic stress ten- 
sor  u aa(q). In standard notation15 

1 
c,,  = - l im(oX(-q)  o" ( q )  >, 

VkBT q-o 

For isotropic media, such as  liquids, only two of the 
constants corresponding to the two possible types of de- 
formation, compression (tension) and shear, a re  inde- 
pendent. To find the components uaB(q) we write down 
the microscopic expression for the momentum flux den- 
sity vector in the Fourier representation 

(m i s  the particle mass, vp i s  the a-th component of the 
velocity of the i-th particle) and obtain the time depen- 
dence of ja(q): 
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Here U=U(q,  . . . , RM) i s  the potential energy of the 
system. Representing Eq. (15) in the form 

we obtain the microscopic definition of the s t ress  ten- 
sor. For systems with paired central interaction, the 
problem of finding uOLB (inthe coordinate representation) 
was solved in Ref. 16. For  liquid metals, we take into 
account besides the paired interactions also the multi- 
particle interactions and carry  out the analysis in the 
Fourier representation, inasmuch a s  in this represen- 
tation5 one can obtain the explicit form of U ( q ,  . . . , R,,). 
According to (4) and (51, the potential energy (with the 
constant term excluded) i s  represented by a sum of ir- 
reducible paired, triple, etc. interactions: 

where U, describes the energy of the n-particle ion-ion 
interactions. Confining ourselves hereafter, in the cal- 
culation of the elastic constants, to the approximation 
quadratic in PP, we can easily establish that, with the 
required accuracy, it suffices to retain in (17) the t e rms  
U,, U,, and U,. With the aid of (4) and (5) we obtain 

1 ' 
x exp[-ik, (Rl,-R,,)-ik2(Rl,-Rl,) -ik3(Rl,-Rl,) I =  -z @,(R,,. . ., R,,). 

4! 1 ,  , I, (20) 
The succeeding transformations consist of successive- 

ly substituting expressions (18)- (20) in (15) and separat- 
ing uas(q) in accord with (16). Carrying out this sub- 
stitution and recognizing that we a r e  interested in the 
limit of small q, we obtain after changing from summa- 
tion to integration the contributions made to uaB(q) by 
the n-particle interactions in the form 

where +,(k,, . . . , k,-,) i s  the Fourier transform of the 
potential of the n-particle interaction. 

4. ELASTIC MODULI AND GENERALIZED 
CAUCHY RE LATION 

The elastic constants for liquids a re  defined a s  the 
coupling coefficients between the rate of change of the 
microscopic s t ress  tensor and the microscopic strain- 
rate tensor A ~ ~ ( ~ )  (Ref. 12): 

The macroscopic constants a re  obtained from ca6yd(q) 
by taking the limit a s  q-0. Multiplying (22) by nU(-q) 
and averaging over phase space, we obtain 

(Ai&(-q)uafi(q) )=caBra(q) (Aip(-q)Ald(q) ). (23) 

The correlator in the right-hand side of (23) i s  calculat- 
ed directly, and the left-hand side can be determined by 
substituting in it (21). To average over the ion coordin- 
ates, we introduce the multiparticle distribution func - 
tions.1° With their aid, the left-hand side of (23) is  ex- 
pressed in terms of the Fourier transform of the two-, 
three-, and four-particle distribution functions. Sep- 
arating the irreducible parts of the latter, we easily 
verify that after taking the limit a s  q-0 there remain, 
in the approximation quadratic in the PP, only the con- 
tributions from the irreducible second-order distribu- 
tion function. Adding the kinetic contribution to the 
s t ress  tensor [the second term of (15)], we obtain ulti- 
mately for the elastic constants 

where Ac i s  the correction to the elastic constants to 
account for the multiparticle forces: 

1 
Ac=- 

(2nlJv0 
n s ( a  [ 4 l ,  ck, -k. o) 

+2k, 
L'o 

It i s  easy to verify that the following relation holds 

a s  should be the case for isotropic media. 

If Eqs. (24)-(26) a re  compared with the corresponding 
expressions for metals in the crystalline phase, then it 
turns out that, just as  in the case (lo), for solid metals 
the integration with respect to k with the weight function 
%) i s  replaced by summation over the reciprocal-lat- 
tice vectors. The relation (281, however, does not hold 
for  crystals. 

Equations (24)-(26) make it possible to obtain the con- 
tribution of multiparticle interactions to the high-fre- 
quency elastic moduli. The moduli K and G a re  con- 
nected with the elastic constants by the relations 

Substituting (24)-(26) in (29) and comparing with (10) 
we obtain the generalized Cauchy relation 

929  Sov. Phys. JETP 54(5), Nov. 1981 N. P. Kovalenko 929 



To obtain (30) we used identities for multipoles A, for 
the case when some of the arguments vanish, and took 
into account also the renormalization (9) of the CP. 

5. DISCUSSION OF RESULTS 

Comparison of (30) and (1) shows that there are two 
causes of the violation of the Cauchy relation (1) in 
liquid metals: the first is connected with the presence 
in the metal of an electron subsystem (the integral with 
respect to density in (30), and the second i s  connected 
with the dependence of the effective ion-ion interaction 
on the density. 

The analysis of expressions (24)- (26) for the elastic 
constants (and for the corresponding moduli) is similar 
to the analysis in the case of solid  metal^,^ and we shall 
not repeat it here. We note only circumstances that are  
typical of liquid metals. 

The estimate of the contribution of the metal particle 
interactions to the Cauchy relation depends on the pos- 
sibility of independently determining the left- and right- 
side of (30). The existing electron-gas models allow a 
sufficiently accurate calculation of the integrals in (30), 
and the static structure factor S$) can be taken from 
data on neutron scattering by liquid metals. The elastic 
moduli, in principle, can also be obtained from neutron 
experiments, in which the dynamic structure factor of 
the metal S$, w) is determined, since it is known that K 
and G are  defined in terms of the long-wave limits of 
the frequency moments S(k ,  o).17 The numerical calcu- 
lations are  made difficult, however, by the fact that the 
results of experiments aimed at determining S$, o) are  
usually represented not in tabulated but in graphic form, 
and the accuracy of the latter i s  low. Another possibil- 
ity of estimating K and G i s  to use the results of com- 
puter experiments-the molecular dynamics (MD) meth- 
od. Many calculations of the properties of liquids have 
by now been calculated by the MD method. They show 
that in liquids there can propagate short-wave pertur- 
bations (including shear waves), i.e., collective excita- 
tions similar to phonons in  crystal^.'^'^^ However, all 
the calculations for liquid metals were carried out in 
the paired-interaction approximation. It appears that 
MD experiments with allowance for multiparticle inter- 
actions would be advisable. We note that for noncon- 
ducting liquids such as  argon, such calculations are 
available, although the three-particle potential for ar- 
gon is known only in asymptotic form (at large dis- 
tances), whereas for metals it can be calculated with 
high accuracy. 

As already ind'icated, the elastic moduli are  deter- 
mined in terms of the second and fourth frequency mo- 
ments S$, w) .  The renormalization of K and G on ac- 
count of multiparticle interactions means renormaliza- 
tion of the corresponding moments S(k, w). At the pres- 
ent time one of the principal methods of studying the 
microdynamics of liquids i s  the reconstruction of the 
dynamic structure factor from its moments. A renor- 
malization of the moments S(k, o) means that in princi- 
ple it is possible to find the contribution of multiparticle 
interactions to all types of collective motions in liquids, 
and also to the kinetic coefficients (viscosity, self-dif- 
fusion), which a r e  defined in terms of S(k, o). This 
question will be considered in a separate paper. 

The author is grateful to V. M. Adamyan, Yu. P. 
~ r a s n ~ i ,  and I. Z. Fisher for helpful discussions. 
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