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Scattering of light by thermal fluctuations of the director orientation in nematic liquid crystals is discussed. In 
contrast to the traditional formulation of the problem, we calculate the transverse correlation of the polarized 
component in a light wave after passage through the cell in the near zone, right at the exit from the cell. It is 
shown that for planar orientation of the nematic liquid crystal, the strongest correlation decrease occurs for a 
wave of the extraordinary type, obliquely incident on the cell. Explicit expressions for the correlation of the 
fields are obtained in the single-constant approximation. 

PACS numbers: 61.30.Gd. 78.20. - e 

1. INTRODUCTION n(x=O, y, z)=n(x=L,  y ,  z)=n"=e,. (2) 

At present liquid-crystal (LC) cel ls  a r e  widely used 
for  making devices to transform information o r  to 
regulate optical t ransparencies,  and in many other 
devices. The recently discovered gigantic optical non- 
linearity of nematic liquid crys ta ls  (NLC)' enables us 
to count on the realization of a whole s e r i e s  of nonlin- 
e a r  optical effects in NLC. But a s  is well known, the 
LC mesophase gives a quite strong scattering of light, 
and with it a deterioration of the t ransverse  coherence 
of a light wave passing through a cell.  An experimental 
investigation of the t ransverse  incoherence introduced 
by a NLC cell  was made, for  example, in a paper of 
Akopyan and  other^.^ Such investigations in principle 
make it possible t o  obtain valuable information about 
the fluctuational properties of NLC. Unfortunately, the 
theory of light scattering in NLC by fluctuations of the 
director has s o  f a r  been based on the traditional for -  
mulation of the problem,3" in which the differential 
scattering (extinction) coefficient is calculated in the 
far  zone for  an infinite medium (see also Ref. 5). 

The present paper t rea ts  the specific features of 
director fluctuations in thin cel ls  of NLC. Further-  
more,  the formulation of the electrodynamic problem 
of light scattering corresponds to calculation of the 
degree of coherence a t  two points of the c r o s s  section 
for the field of the light wave in the near zone, i.e., 
directly a f te r  the cell. We consider only that polar- 
ized component of the field of the transmitted wave 
which coincides with the incident wave. 

We shall  suppose that t k  fluctuational departures 6n(r) 
of the director  from the unperturbed direction of plan- 
a r  orientation a r e  smal l ,  and that by vir tue of the 
normalization condition, 6n. no 5 0; that i s ,  

In investigation of fluctuations in a cel l  of finite thick- 
ness ,  the expansion usually used for  the quantities 
6n,(r) and 6ny(r) i s  in functions of the form 

P,,., (x ,  p) =sin(mxx/L) e'qP. ( 3 4  

An advantage of these functions i s  that they satisfy the 
boundary conditions (2) a t  the walls of the vessel .  Un- 
fortunately, expansion in such functions does not per-  
mit diagonalization of the expression (1) for  the f ree  
energy if KI I  #Kz2 and qy # O .  The function Ymq of (3a) 
can be represented a s  the two t e rms  

P,,,,(x, p) =1/2i{exp(ik,r) -erp(ik,r) }, 

k,= (mnlL,  q ) ,  k ,=(-mnlL,  q ) .  

For  an infinite medium, the exponential functions 
6n mefk' '  make it possible to diagonalize the expression 
( I ) ,  but when Kl l  #KZ2 the eigenvalues and the co r r e -  
sponding combinations 6n,, 6ny depend explicitly on the 
mutual orientation of the vectors no and k (see  Ref. 3). 
In particular, the combination (6n,,?ny) corresponding 
to one of the two eigenvalues for  kt no longer coincides 
with the combination corresponding to the s ame  eigen- 
value for k2. 

2. FLUCTUATIONS OF THE DIRECTOR IN  A CELL 
For  this reason, in o rde r  to find functions that diag- 

WITH PLANAR ORIENTATION 
onalize the expression (1), it is necessary to solve the 

We take the free energy included in a cel l  of NLC, 
occupying the region 0 6 x c L , in the standard form = t 
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Here n(r) is the unit vector of the NLC director ,  and 
K,,, KZ2, K33 a r e  the Frank constants. We suppose that 

l l i  1 1  
I 1 '  

the normal to the cel l  is directed along the x axis ,  s o  5 1 , 1 ;  
that r= (x ,p )= (x ,y  ,z). 

FIG. 1. Cell containing NLC, uniformly oriented along the z 
We f i r s t  consider a planar orientation and shall  sup- ,is, =e,. The axis is perpendicular to the cell plates; 

pose that the director i s  rigidly pinned a t  the bounda- the y axis i s  in the plane of the plates and perpendicular to 
r i e s  (see Fig. 1): the plane of the figure. 



eigenvalue of the eigenfunctions problem. On setting 

and retaining in (1) only t e r m s  of the second o rde r  in 
6n, we get 

w=J 6n, ( r ) Z t , 6 n , ( r )  d3r, 

The expression (4) for  6 F  has the form of a mean 
value of the operator Yact ing  in the space of the func- 
tions (6n,, 6ny). It i s  easy to verify that this  operator, 
under the boundary conditions (2) ,  i s  self-adjoint. 
Therefore the system of i t s  eigenfunctions ijn(r), 

has the property of completeness and orthogonality. If, 
moreover, we normalize the eigenfunction 15n'~', with 
the eigenvalue A 'O ' ,  by the condition 

then the expression for F takes the form 

In thermodynamic equilibrium, by the equipartition 
theorem, 

s o  that 

(6n,  ( r , )  6n,(rZ)  ) = k B ~ C  6n?" ( r , )  6nY' ( I , )  (A("')  -I. (7) 

An important property of the operator .?of (4) i s  i ts  
invariance to a shift along a l l  t-hree coordinates x ,y , z ;  
this follows from the uniformity of the unperturbed 
state of a nematic. Only the boundary conditions dis- 
tinguish the two fixed planes x = 0 and x = L . There-  
fore we shall  seek an eigenfunction of the operator  .@' 
in the form 

N 

6n(r )  = e ' q p C  (eJl+ellB,) e z w l r .  

1-1 

(8) 

From the expression (4) for .@', i t  follows that the val- 
ues of A,,  B,, and p, satisfy the system of equations 

for  each of the values of j .  Setting the determinant 
of this system equal to zero  gives a biquadratic equa- 
tion for p ;  i t s  roots a r e  conveniently written in the 
form 

Thus the parameter  N of (8) i s  equal to four. The ap- 
pearance of four t e rms  in the sum (8) can be explained 

by the following considerations. When Kl l  =K2,, there 
a r e  two exponential s t ruc tures  of the form (3b) f o r  each 
of the two forms of perturbation, 6n, and €in,. It is 
c lear  that passage to the general ca se  Kll #Kz2 can 
change the specific exponential arguments but not the 
number of exponential s tructures.  Furthermore,  from 
equations (9) the following relations follow: 

Substitation of the expression (8) in the boundary 
conditions (2) gives 

s o  that, altogether, (11) and (12) contain eight linear 
homogeneous equations with eight unknowns. On ~ e t t i n g  
the determinant of this sys tem equal to ze ro ,  we get 
the following equation for the eigenvalues A of the op- 
e r a to r  2': 

we recall  that pl(A) and p2(A) a r e  determined by the 
explicit expressions (10). 

If we write the dissipation function in the form 

then the mode with eigenvalue A decays with retention 
of the spatial s tructure,  according to the exponential 
law 

In writing (14), we have neglected the hydrodynamic 
mechanism of relaxation (for more  details, s e e  ou r  
ear l ie r  paper6). 

The characterist ic  time of hydrodynamic relaxation 
i s  T2 -P/qq2 where p - 1 g/cm3 and q -lo-' P .  The time 
of orientational relaxation is r1 - y / ~ q 2 ,  where K - 
dyn and y - 1 0 ' ~ .  Therefore,  independently of the value 
of q ,  we have the est imate r2/r1 - lo-'; that i s ,  the 
hydrodynamic variables follow the orientation quasi- 
statically. It i s  for  this reason that the influence of 
hydrodynamics can be neglected here.  

In the general case  K l l  #Kz2, the solution of equation 
(13) is quite complicated. When K,, =K2,, it follows 
from (10) that p1  = p 2 ,  SO that equation (13) reduces to 

( q v 2 f  pZ) sin2 pL=O. 

Hence follows 

and the eigenfunctions have the form (3a) separately 
for 6n, and 6ny. 

Thus when Kl l  =K2,, the spatial-temporal correlators 
of the fluctuations of the components of the director 
(no = e , )  in a cel l  of thickness L in the planar orienta- 
tion a r e  

(612, (r , ,  t)fin,(r, ,  t + ~ )  )= (6,,-n,'nk0) 
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F o r  the single-time correlator  (i.e., when T = O), it 
is possible to c a r r y  out an  explicit integration over 
d2q. We give the specific result  for  the case  Kll  =KZ2 
=K,: 

."-I 

where H;" is a Hankel function. 

We note that for  I p1 - p, I - 0 the expression (1 7) di- 
verges.  Furthermore,  there i s  logarithmic divergence 
even of an individual te rm with m = const, s ince 

This divergence is cut off when I pl -p2  I is of the o rde r  
of severa l  molecular dimensions, where the continuum 
theory of LC and the director  concept cease  to operate. 
Actually, however, in our  problem the cutting off of 
this logarithm occurs  a t  s t i l l  l a rger  radii (see below). 
The expression for  K,l = K , ,  f K, differs from (17) by 
the stretching z' - ~ v ( ~ ~ / K ~ ~ ) " ~ .  

Above, we considered a cel l  with planar orientation. 
The case  of homeotropic orientation of the cel l  is 
somewhat simpler  mathematically, s ince here  both 
vectors,  the unperturbed director no and the normal 
ex to the planes that bound the cel l ,  coincide: no =ex;  
a s  a result,  there is an axis  of  symmetry of the prob- 
lem. The eigenfunctions here  have a spatial variation 
of the form (3a); the condition I no + 6nl = 1 gives 6n, 
=O; and in the most general case ,  Kll #K,, f K,,, we 
have 

where i,k run through the values y , z  and where 6:;' is 
the two-dimensional Kronecker symbol. We note that 
when Kll =K,,, any two components of the vector 6n 
orthogonal to each other a r e  uncorrelated for  arbitrary 
Xl,X,,P,7. 

3. PHASE FLUCTUATIONS OF RADIATION 
TRANSMITTED THROUGH A LC CELL 

In the geometric-optics approximation and for not too 
great  optical anisotropy of the nematic, the advance 
of phase of a beam propagated at angle a to the normal 
i s  

0 1 
6v(p0) =e,-- (nne) (eh(p,) ). 

c n. cosa 

The two-dimensional vector h =  (h, ,  h,) (such that h. no 
=O), of dimensions length, describes the integral of 
the director fluctuation Un along the beam: 

Here e is the unit vector of polarization of the wave; 

FIG. 2. Calculation of the phase fluctuation of radiation 
transmitted through a LC cell. A beam with polarization vec- 
tor e is propagated at  angle a! to the normal to the cell plates. 
The two-dimensional vector po lies in the y x  plane and des- 
cribes the position of the beam with respect to the center of 
coordinates. 

E, = &,, -&* is the anisotropy of the  optical polarizability; 
the vector t ,  with components t, and t,, describes the 
inclination of the beam, and It I = t a n a  (see Fig. 2). 

We shall f i r s t  discuss the dependence of the polari- 
zation factor on the angle of inclination a (we measure  
the angle within the medium, i.e., with allowance for 
refraction). Fo r  definiteness, let t =  (t,,t,) = (0, tan a ) ,  
i.e., let the wave vector lie in the xz  plane, formed by 
the director  no = e, and the normal ex to the cell.  Then 
the ordinary wave, with polarization unit vector  e,, 
undergoes no phase fluctuation a t  all.  This assert ion 
is correc t  for  any orientation of the NLC in the cell: 
planar, oblique, homeotropic, and generally inhomo- 
geneous. It was discussed earlier7"; Ref. 7 contains 
a calculation and est imates.  

Fo r  the extraordinary wave, when ca .=, 1 we can se t  
e = e, cos a - ex s in  0 ,  and only the x component of the 
vector h operates in the expression (19); the depen- 
dence of 6 p  on the angle a has the form 

0 
6v (p,) =-E.  - sin ah,(p,). 

en. 
( 2 1 4  

Thus we a r r ive  at  the important conclusion that the 
strong phase fluctuations (21), caused by thermal fluc- 
tuations of the director ,  show up only in a wave of the 
extraordinary type, and furthermore only for  oblique 
incidence, a! # 0. This requirement was found neces - 
s a r y  a lso  for appearance of the gigantic nonlinearity of 
NLC.' This coincidence is not accidental; it i s  due to 
the general  relation between fluctuations and suscepti- 
bility ( a  form of the fluctuation-dissipation theorem). 

What is usually measured experimentally is not an 
exactly local value of the phase, but a value averaged 
over some  a r e a  of the c r o s s  section. If we denote by 
f(p) the normalized weighting function, 

we can write 

Correspondingly, the recorded phase fluctuations a r e  
given by the expression 

In the expression (20), (22) for H(p), we must substi- 
tute 6n, in the form of an expansion in the functions 
(3a). Then the integration over dZp' and over dx gives 
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FIG. 3. Experimental scheme for heterodyne measurement of 
phase, averaged over the cross section: P, semitransparent 
plates; M, mirrors; L, lens; C ,  cell of NLC, oriented ob- 
liquely in relation to the incident light beam: PM,  photomul- 
tiplier. 

a factor of the form 

The correlator  of the fluctuations of the values of 
H(pl) and of H(p2) can be obtained on the basis  of the 
expression (16). In the single-constant approximation 
Kt i  =K,  we get 

We shall further consider severa l  different experimen- 
tal  schemes. 

A. Let the light beam have width a much grea ter  than 
than the cel l  thickness, and let the phase averaged 
over an a r e a  S of the c ros s  section be measured by the 
heterodyne method: s ee  Fig. 3. ~ h e n f ( q )  i s  a very 
narrow function of i ts  agrument [ ( ~ q ) ~  -S-I], and the 
integral over d2q gives 

When a >> L ,  al l  the other factors in (24) a r e  smoother,  
and we may take their  value at  q = 0; furthermore,  we 
may se t  pl =p2. A s  a result  

The principal contribution to this sum comes from the 
mode with q = 0 , m  = 1 (the exact value of the sum in 
(25) is  n4/96= 1.014678). As was to be expected, with 
increase of the averaging a r e a  S, , ,  (i.e., of the trans-  
ve r se  dimensions of the beam) there is an increase of 
the number of independent contributions to the phase 
fluctuation, and therefore 

( (Grp)') u ( ~ ' ) a ~ ; f , .  

B. We now consider phase fluctuations of a narrow 
beam, with transverse dimension a << L .  Then in the 
main region of integration in (24), the value of I f(q) 1 
may be considered to be unity, and furthermore pl 
=p2.  We furthermore consider the case  of compara- 
tively smal l  angles, It 1 << 1.  The value of the function 
G(m,qt=O) is 

4 sinZ (mn/2) 
IG(m, 0) I Z =  

mzpz ' 

and the function G(m ,qt)  itself falls off significantly a t  

It can be shown that here also the main contribution 
comes from the t e rm with m = 1. If we suppose that 
t = 0 ,  then the integral over d2q in the expression (24) 
diverges logarithmically a t  large q,. Therefore we 
shall  suppose that It 1 << 1 and shall  calculate the inte- 
g ra l  over d2q in (24) with logarithmic accuracy, i.e., 
we shall  replace q, ,, by n/L It 1 . Restricting oursel-  
ves to t e rms  with m = 1 ,  we get 

F o r  quite smal l  I tl the bounding of the range of inte- 
gration i s  connected with inaccuracy of the function 
f (p) ( so  that q,,, - AP-l); in part icular ,  because of dif - 
fraction it is known that Ap 2 ( ~ / k ) " ~ ,  where k = 2 n n / ~  
i s  the wave number of the light. 

C .  Finally, we consider the correlation of the phase 
fluctuations of fine beams,  passing a t  a distance I p ( 
>> L 1 t 1 . Furthermore,  we shall  again suppose that It 1 
<< 1. In this case  also,  the principal contribution to 
the correlator  comes from the t e rms  with m = 1. The 
factor G(m = 1,q t )  can again be approximated by i ts  
value at  It 1 - 0, and then the expression fo r  (H(pl)H(pl)) 
i s  conveniently obtained directly from (17): 

where K , , ( z )=$~~H~"(~z )  is a modified Bessel  function. 
  or n Ip l  - p 2 /  2 L  we have 

s o  that the phase-fluctuation correlation falls exponen- 
tially. For  I p ,  -p2 I - 0,  the expression (28) reduces to 
(26) on replacement of I pi - p2 I by L I t I /n. 

4. DISCUSSION OF RESULTS 

The formulas obtained in this paper permit calcula- 
tion of the mean square  fluctuation and also of the spa- 
tial and temporal correlation of the phase of radiation 
transmitted through a LC cell.  Fo r  planar orientation 
of the NLC, the strongest decrease of the correlation 

' occu r s  for  propagation of a wave of the extraordinary 
type obliquely incident on the cell.  If, furthermore,  
the diameter a of the beam is much la rger  than the 
thickness L of the cel l ,  then the mean square phase 
fluctuation ( ( 6 ~ ) ~ )  var ies  with the angle of inclination 
ry (Fig. 2) a s  s in2a  and with the cel l  thickness a s  L ~ .  
F o r  LC parameters characterist ic  of MBBA (K = 5.8 
x 10-I erg/cm, &, = 0.7), cel l  thickness L = cm,  a 
= 5L, S ,, =na2/4, wavelength h =0.4 pm,  and cr =45", at  
7 '300 K, we get from formulas (21) and (25) ( ( ~ ( p ) ~ ) " ~  
= 0.08 rad. 

In the ca se  considered in Sec. B ,  i.e., propagation 
of a fine beam (a << L )  at smal l  angles with respect to 
the normal to the cel l ,  ry  << 1 ,  the variation of ( ( 6 ~ ) ~ )  
with L and a i s  determined by the expression 

For  a = 0.1 and the values taken above for the other 
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tain a linearly independent system of equations), we  get  parameters,  we get 

( (6rp)')'"=0.09. 

This  means that the mean value of the transmitted 
field, measured by interference with the unperturbed 
reference beam, is 

And finally, we get  for the mutual phase correlation 
of two beams,  separated by a distance Ipl -p2  I =L/n 
and propagated at  angle a 0.1 (Case C), 

The degree of correlation of the field is determined by 
the expression 

Here,  as in ca ses  B and C,  we were compelled to re- 
s t r i c t  ourselves to consideration of smal l  angles of in- 
clination a of the beams. For large angles cu ( a  -n/4), 
for  which consideration of the phenomenon has the 
greatest  importance, it i s  necessary to do numerical 
calculations for the specific experiment. 

In conclusion, the authors thank S. M. Arakelyan, 
L. E. Arushanyan, and Yu. S. Chilingaryan for  valu- 
able discussions of the experimental situation, and I. B. 
Levinson, E . I. Kats,  and V.  L. ~ o k r o v s k i i  for  discus- 
sion of the eigenfunction problem in a cel l  of finite 
thickness. 

APPENDIX 

EXPLICIT FORM OF THE EIGENFUNCTIONS FOR A 
CELL WITH PLANAR ORIENTATION, IN A 
NONSINGLECONSTANT APPROXIMATION 

We shall wri te  here  an explicit expression for an 
eigenfunction of the operator 2. For  this purpose, we 
express  al l  the quantities A, and B,  in t e rms  of B, by 
means of equations (11) and (12) and substitute them in 
the equation (8) for the eigenfunction. Eliminating from 
consideration the third equation in (12) (in o rde r  to ob- 

2B,e'qP 
6n(r) = zp,pz . 

(COS pIL-cos p2L) +p1p2 sin pzL+qVz sin ~ I L  

-(gut sin p1L+p1pz sin pzL) (pIpz sin p,x+q; sin pzx) ] 

+e,[ (cos p,L-cos pzL) (q,' sin prx+p,pZ sin pzx) 

- (cos pix - cos k x )  (plpz sin p&+qv2 sin plL) I 1. (A .l) 

The normalization condition (5) determines the value 
of B,. By use of (13) it i s  easy to verify that the ex- 
pression (A.1) sat isf ies the boundary conditions (2). In 
the limit K , ,  - K , , -  0, the expretsion (A.l) reduces to 
the eigenvector of the operator  Y i n  the single-constant 
approximation: 

6n (r) ={6n,, 0), 6n,asin mpx. 
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