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If the initial wave is unstable in the upper half plane Im o > 0 and there are no branch points of the quasiwave 
number, or if waves traveling in the same direction coalesce at a branch point, the instability is convective. On 
the other hand, if a branch point k ( o )  does exist in the upper haif-plane Im o > 0, and not all the waves that 
merge at this point travel in the same direction, the instability is absolute. A Green's function that describes 
the evolution of the perturbations of the initial wave in space and in time is constructed. The growth rates of 
the decay instability of the harmonics are determined. The produced waves are richer in harmonics than the 
initial waves. It is shown that the decay instability of an AlfvCn wave is absolute. 

PACS numbers: 52.35.P~ 

1. INTRODUCTION with the decay of an Alfv6n wave of small  amplitude but 

In investigations of decay ins tab i l i t i e~"~  i t  is cus- 
tomarily assumed that a l l  waves a r e  monochromatic 
and have infinitesimal amplitudes of the same order of 
magnitude. (An exception is Ref. 3, dealing with the 
decay of an Alfv6n wave of large amplitude with saw- 
tooth magnetic force lines). Yet the interaction of high- 
e r  harmonics plays an important role in plasma turbu- 
l e n ~ e . ~  In addition, the amplitude of the initial wave is 
frequently considerably higher than that of the pro- 
duced waves. Therefore the produced waves move in an 
inhomogeneous medium and this leads to a change in the 
dispersion equation. In the present article we obtain a 
general dispersion equation that connects the frequency 
and the quasiwave number of the perturbation with the 
monodromy (single-valuedness) matrix. No res t r ic-  
tions whatever a r e  imposed on the amplitude and pro- 
file of the stationary initial wave. 

of arbitrary profile a s  the example. For a wave with 
sinusoidal profile, the results  agree with Ref. 1. The 
growth increment of the harmonics is directly propor- 
tional to the number of the harmonic. It is shown that 
when an Alfv6n wave decays into an Alfve'n and slow 
magnetosonic wave, the instability is absolute. 

2. DISPERSION EQUATION 

The evolution of the perturbation q ( z ,  t) of a station- 
ary  wave is described by a system of linear partial dif- 
ferential equations 

d [ I: +K(z-v t ) -  +Q(z-uf)  q ( z ,  t) =O, a z  I (2.1) 

where cp = (cp,,cpz, . . . . ( P ~ )  is the perturbation vector, K 
and Q a r e  square matrix functions of order N, which 
depend on the coordinate z and on the time only via the 
combination z' = z - vt, v is a constant equal to the 

An important question is that of the character of the propagation velocity of the stationary wave, and I is a - 
instability (whether i t  is absolute o r  convective5). For unit matrix. The matrices K and Q a r e  periodic func- 
the case when the amplitudes of the initial and pro- tions of z': 
duced waves a r e  infinitesimals of the same order, s o  

K(zl+L) = K ( z f ) ,  Q(z f+L)  = Q ( z f ) ,  that all the waves move in a homogeneous medium, the 
character of the decay instability was investigated in where L is the period of the stationary wave. 
Refs. 6-8. If, however, the amplitude of the initial 

In the reference frame (z', t) that moves together with 
wave greatly exceeds the amplitudes of the produced the wave, the coefficients of the system (2.1) do not de- 
waves, the latter a r e  reflected by the inhomogeneities 

pend explicitly on the time, so that the solution can be 
due to  the initial waves, and this can convert the abso- 

sought in the form of a superposition of monochromatic 
lute instability into convective and vice versa. In the 

waves: 
case of a spatially periodic medium that is at  rest ,  this 
question was investigated in Ref. 9. Since the charac- 9  (z', t )  = e - ~ ~ ~ q  (2'. O) . (2.2) 
ter  of the instability changes on going to a moving ref - 

The system of  partial differential equations (2.1) is erence frame, the investigation of the character of de- 
then converted into a system of ordinary differential cay instability calls for an additional analysis, and this 
equations with periodic coefficients: is done in the present article. A Green's function is 

constructed, describing the evolution in space and in { [ K ( Z / ) - U I ] -  d + Q ( z , )  -!"I] 9 ( z f ,  U) =o. 
time of the perturbations of the initial stationary wave. dz 

(2.3) 

It is shown that the instability is absolute if the upper The fundamental system of the solutions w ( " ( z ' ,  w) ( j  
half -plane of the complex frequency contains a t  least = 1,2 , .  . . , N )  of this system is given by'' 
one branch point of the quasiwave number, in which w ( j ~ ( z ~ ,  a )  =elhi,) ~ ~ r ' ~ i j ~  (z ' ,  01, 
waves that do not all travel in the same direction con- 

(2.4) 

verge. The results  pertain not only to decay instabil- where s"' i s  a periodic vector: 
ity, but also to instability of any moving spatially peri- ni7I (z't-L, a )  = x ( ~ '  (z', a ) ,  
odic system, for example at instability of a modulated 
electron beam. The general investigation is illustrated and k'J'(w) is the quasiwave number and is a solution of 
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the equation we obtain 

where M(w) is the monodromy matrix.'' 

This  relation i s  the general  dispersion equation that 
is valid for the perturbation of a stationary wave of any 
amplitude and any profile. I ts  value l i e s  in the fact 
that to obtain the monodromy matr ix  i t  i s  necessary to 
solve the system (2.1) over a finite interval (O,L), s o  
that approximate methods can be used. On the other 
hand, approximate methods cannot be used directly to 
a s s e s s  the stability of the initial wave, since this  cal ls  
for  obtaining the asymptotic form of the solution a s  
t- m. 

The dispersion equation (2.5) is a periodic function of 
the quasiwave number k,  with a period 2a/L. This 
means that the quasiwave number is defined accurate 
to a te rm 2 ? r / ~ ,  i.e., the quasiwave numbers k'" and 
k"', which differ by 2n/L: 

a r e  equivalent. Returning to the laboratory f rame 
(z, t), i t  i s  easy to show that Eq. (2.6) corresponds to 
the relation 

where S2"' , d2 ' ,  and 52 a r e  the frequencies of the pro- 
duced wave end of the initial wave. 

Equations (2.6) and (2.7) mean that the decay condi- 
t i o n ~ " ~  correspond to second-order branch points k(w). 
Coupled three-plasma processes4 correspond to branch 
points of third o r  higher order.  

3. THE GREEN'S FUNCTION 

Actually, small  perturbations do not take the form of 
individual monochromatic waves (2.2), but constitute 
wave packets, i.e., superpositions of monochromatic 
waves. 

If the perturbation in a wave packet u(z, t) remains  
bounded a t  constant z and as t- 00 (usually i t  tends to 
zero in this  case) ,  despite the presence of components 
with Im w> 0, the instability i s  convective. On the 
other hand if the wave packet u(z, t) increases  without 
limit a t  fixed z and a s  t- 03, the instability i s  absolute. 

The simplest wave packet in t e r m s  of which al l  the 
remaining wave packets a r e  expressed i s  the Green's 
function G(z , t ,  t )  which i s  the solution of the simpler  
equation 

and sat isf ies the initial condition 

~ ( z ,  5,  t ) = ~  for K O  (3.2) 

with boundary conditions 

To determine the Green's function G(z, 5,  t)  we change 
over to the reference f rame (z', t). Putting 

d 
( [ K ( Z ' ) - V I I - + Q ( Z ~ ) - ~ W I  dz' (3.5) 

- 
g. (z', 5 )  = g(zr ,  5 ,  t)ei"'dt. 

0 

The function g,(z', 6) can be expressed in t e r m s  of 
the solutions ~ ' ~ ' ( z ' ,  w) of the homogeneous equation 

To th is  end, we subdivide a l l  the solutions w'" into 
waves traveling to the right and waves traveling to  the 
left in the laboratory f rame (2, t). Substituting z '  = z 
-u t  in (2.4), we obtain 

w'" (z', w)  =exp [ik'"~-iQ"'t]n'~' (z-vt, w)  , (3.8) 

where 0''' i s  the frequency in the laboratory frame: 

If the inequality 

holds a t  Im df '  - + m ,  the jth wave travels  t o  the right,5 
but if 

Im k("(0, (3.11) 

the wave travels  t o  the left. We assume that r waves 
t rave l  t o  the right and N - r waves travel  to the left. 

At z # 6, the function g,(zf, 6) sat isf ies the homogene- 
ous  equation (3.7). Taking the boundary conditions (3.3) 
into account, we see  that the function g,(z', 6) is a lin- 
e a r  superposition of waves traveling to the right a t  
z > 6 and traveling to  the left a t  z < 5. This means that 

where W(z ' ,  w) is the matr ix  of the solutions w'*'(zf, o), 
whose f i r s t  r columns constitute waves traveling to the 
right, and the remaining N -r  columns waves traveling 
to the left. P, and P, a r e  the projection operators on 
the subspaces of the waves traveling to the right and 
left, respectively (they a r e  multiplied by the solution 
matr ix  from the right). These a r e  diagonal matrices,  
with the f i r s t  r diagonal elements of P, equal to unity, 
and the remainder equal to zero,  with the converse for 
the matrix P,; A is a matrix whose elements do not 
depend on z '  and which we shall now determine. 

At z = 5 the Green's function sat isf ies the matching 
condition that is obtained from (3.5) by integration with 
respect  to z over an infinitesimal interval 5 - & < z  < 6+ E :  

From (3.12) and (3.13), taking into account the re la-  
tion P, +P, = I ,  i t  follows that 

Thus, according to (3.4) and (3.6) the Green's function 
in the laboratory f rame i s  equal to 
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where the contour B is located in the complex w plane 
above a l l  the singularities of the integrand (the Brom- 
wich contour). 

4. ASYMPTOTIC FORM OF WAVE PACKET 

As already indicated, the Green's function is the 
simplest wave packet to which a l l  other wave packets 
reduce. 

To calculate the asymptotic form of the Green's 
function (3.15) we deform the Bromwich contour B by 
shifting it on the real  axis Im w = 0. With this, loops 
appear and circle all  the singular points of the inte- 
grand. The integral over the r ea l  axis tends to  zero a s  
t- m. The contribution from the singular point w, is of 
the form em(-iw,t) (apart from the pre-exponential fac- 
tor). Thus, the character of the instability depends on 
whether the function g,(z -vt, 5) is analytic in the upper 
half -plane Im w > 0. 

According to (3.14) and (2.4)) the singular points of 
the integrand (3.15) regarded as a function of w a r e  the 
following: 1) the singular points kC5'(w); 2) the singular 
points n5(z', w ) ;  and 3) the zeros of det W(S, w). It can 
be shown that these three types of singular points a l -  
ways coincide: s o  that i t  sufficies to consider only the 
singular points k( j) ( a ) .  

It is known13 that the solutions of a system of ordinary 
differential equations having coefficients analytic in the 
parameter w a r e  also analytic in w. By virtue of (2.3), 
the coefficients of the dispersion equation (2.5) a r e  
analytic at al l  finite values of w. As for the quasiwave 
numbers k'j'(w), they have branch points where the dis- 
persion equation (2.5) has multipole roots. 

However, not all the branch points of a quasiwave 
number a r e  branch points of the function gW(z1, b). If 
several waves traveling in the same direction coalesce 
at w = w,, this point i s  not a branch point of the function 
g,(zl, 5). 

In fact, the function gW(z1, 5) is defined in a unique 
manner that does not depend on the choice of the funda- 
mental solution matrix W(zl, w), i.e., it does not change 
on going to another basis. In particular, the function 
g,(zl, b) remains invariant when the waves traveling in 
the same direction a re  renumbered. In other words, 
it is a symmetrical function of the quasiwave numbers 
of waves traveling in the same direction. On the other 
hand, symmetrical functions of the roots of a polynomi- 
a l  a r e  single-valued functions of i t s  ~oefficients,8"~ in 
the present case of the coefficients of the dispersion 
equation (2.5). Therefore the Green's function is an 
analytic function of w a t  the point w,. 

Since the contribution from the singular point w, to 
the integral (3.15) is of the form exp(-iw,t), the in- 
stability is absolute if a t  least one branch point of the 
quasiwave number k(w), a t  which a t  least two waves 
traveling in opposite directions coalesce, is located in 
the upper half -plane Im w> 0. The instability i s  convec- 
tive in the opposite case. 

We use now the theory developed to investigate the 
character of the decay of an Alfv6n wave. 

We shall use the equations of ideal magnetohydrody- 
namics. In the zeroth approximation, the density of the 
medium p"', the pressure P'", and the magnetic field 
B'O' a r e  constant, while the velocity v''' of the medium 
is zero. We choose the coordinate axes to make B ~ O '  

= 0. 

In the principal approximation there moves in the di- 
rection of the z axis, to the right, an initial stationary 
Alfv6n wave of small amplitude, in which 

(0 
u, (z, t )  =B:' ( 2 ,  t)l(4np'0')"s 

(n a r e  integers), with v, = I~!O)j/(4np(~))"~. The pres- 
ence of an infinite number of harmonics B:') makes i t  
possible to take into account an arbitrary profile of the 
wave (sinusoidal, rectangular, sawtooth, and others). 
The initial wave profile is periodic with a period L. 

In the second approximation, perturbations of the 
magnetohydrodynamic quantities in the Alfv6n wave ap- 
pear. The dependence of these perturbations on the 
time if of the form exp(-iwt). These perturbations a r e  
described by the vector 

By a suitable change of the variables, the operator 
(2.1) can be made self-adjoint." ~ u t t i n ~ B L " < < ~ ( O )  
and [B'o']' >:p"' and using perturbation theory,15 we ob- 
tain the increment y corresponding to the decay of an 
Alfv6n wave into an Alfv6n wave (A) and a magnetosonic 
wave (S): 

where V = ~ ' ~ ' / ( 4 n p ( ~ ' ) ' ~ ,  a is the speed of sound, V,, 
= ~ ~ ~ ) / ( 4 n ~ ( ~ ) ) " ~  , TJ,,~ = 1 for  waves traveling in the 
opposite z directions, and q ~ , s  = -1 for waves traveling 
in the opposite direction. For the first  harmonic (n = I ) ,  
the instability growth ra te  y coincides with the results  
of Refs. 1, 11, and 16. As for the higher harmonics 
( I n l > 1),  according to (5.3) the growth ra te  of the decay 
instability increases with increasing In I. Therefore 
the produced waves a r e  "enriched" with harmonics. 

The rate of the decrease of the Fourier coefficients 
B,!,') a s  n-m is determined by the smoothness of the 
profile of the wave BY'@, t ) .  If this function is con- 
tinuous, but i ts  derivaiives a r e  discontinuous, then 
B;l) - l/n2. A discontinuous profile of the B:)(z, t )  
corresponds to B!,')- l/n. On the other hands if 
limBL1) = const as n-.o, the function B(,')(z ,  t )  has 6- 
like singularities. 

It is seen from (5.3) that decay instability makes the 
wave profile less  smooth: decay of a continuous pro- 
file with discontinuous derivatives results  in a discon- 
tinuous profile, and decay of a discontinuous profile 
results  in a 6-like profile. 
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We determine now the character  of the instability. 
Since the initial Alfven wave according t o  (5.1) moves 
in the negative direction of the z axis ,  i t  follows that 
17, = 1 and according to  (5.3) instability s e t s  in a t  qs 
= -1. The decay conditions (2.6) and (2.7) correspond 
to the branch point o + iy of the quasiwave number k. 
Inasmuch as a t  y >  0 th i s  point i s  located in the upper 
complex w plane, and two waves moving in opposite di- 
rection coalesce a t  this  point, the instability is abso- 
lute. 
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