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The terms of the two-Coulomb-center problem are calculated in the complex plane of the internuclear 
distance R. The calculations reveal term intersection (branch) points of a new type: the adiabatic terms 
ENLM(R) and EN+,,,,(R) successively intersect in pairs for all values of N (N, L ,  and M are the spherical 
quantum numbers of the united atom). At small values of M, the branch points are close to the real axis of R . 
This leads to the formation of infinite series of quasi-intersections than can be considered to be the result of 
the interaction of the diabatic term that goes over into the continuous spectrum with the Rydberg states of the 
quasimolecule. The cross section for ionization due to the evolution of the system along this diabatic term is 
obtained. The discovered branch points also play an important role in the united-atom approximation: the 
distance to them is the radius of convergence of the asymptotic expansions for R 4. 

PACS numbers: 34.10. + x, 34.50.H~ 

1. INTRODUCTION uous spectrum a s  the nuclei approach each other with 

The process of ionization of a hydrogen-like atom by 
slow ions does not a t  present have a validated mechan- 
ism within the framework of the adiabatic approxima- 
tion. In the simpler case of negative-ion ionization the 
problem of the determination of the adiabatic term that 
goes over into the continuous spectrum a s  the nuclei 
approach each other; it is  evolution of the system along 
this term that leads to the ionization. But such terms 
do not exist when the particles participating in the reac- 
tion a r e  a neutral atom and a positively charged ion. 
The going-over of the term into the continuous spec- 
trum prevents the Rydberg crowding of the levels below 
the boundary of the continuous spectrum. The ioniza- 
tion process could be explained by going over a diabatic 
term into the continuous spectrum, but such terms have 
thus far not been detected in real  systems. 

the infinite ser ies  of ~ ~ d b e r ~ s t a t e s .  Such diabatic 
terms,  which cause the ionization of the atom, have 
been successfully detected for the first  time for real  
systems. Questions connected with the reason why the 
diabatic term goes over into the continuous spectrum 
a r e  discussed in Sec. 4. In Sec. 5 we carry out quan- 
titative estimates for the ionization cross  section on the 
basis of the mechanism that attributes the ionization to 
the evolution of the system along this diabatic term. 
Another consequence of the going over of the diabatic 
term into the continuous spectrum is the possession of 
a minimum by the adiabatic terms with small values of 
M. The discovered intersection points play an import- 
ant role in the united-atom approximation a s  well: the 
distance to these points i s  the radius of convergence of 
the asymptotic expansions for R - 0 in the two-Coulomb- 
center problem. These questions a r e  discussed in Sec. 

Among real  systems, the term picture has been best 3. In conclusion, we consider further possible applica- 
studied for the two-Coulomb-center problem, which tions of the results obtained in the present paper, and 
plays in the theory of collisions the same fundamental also discuss the applicability of these results to many- 
role played by the hydrogen-atom problem in the theory electron systems. 
of the atom. There exists for this system a relatively 
simple algorithm allowing the exact computation of the 2. FORMULATION OF THE PROBLEM 
adiabatic terms and the wave functions. The present The steady-state SchrGdinger equation for the two- 
paper is devoted to the of the terms of the Coulomb-center problem admits, as is well known, the 
two-Coulomb-center problem in the complex plane of separation of the variables in the prolate spheroidal 
the internuclear distance R. As far a s  we know, these 

coordinates 
computations have not been carried out before, al- 
though, a s  a rule,  the characteristics of the terms in e= (ri+r2)lR, q= (r,-r,)lR, cp=arctg(zly), 

precisely the complex R plane a r e  required in applica- f<g<m, - l ~ q ~ l ,  0 4 q t Z n .  
tions involving the computation of inelastic processes Here R i s  the distance between the Coulomb centers 
(e. g . ,  the transitions between the terms that undergo and r, and r, a r e  the distances from the electron to the 
quasi-intersection). f i rs t  and second centers. If we represent the electron 

The computations reveal term-intersection points of wave function in the form 
a new type: the adiabatic terms EN,, ( R )  and EN +,,,, ( R )  Y ( r )  =F(e)O(q)e 'm,  
successively intersect in pairs for all values of N 2 L 
+ 1 (N, L ,  and M a r e  the spherical quantum numbers of then we obtain the following equations1 for the functions 
the united atom). When M is small, the points of inter- F ( [ )  and ~ ( 7 7 )  (h = m = e = 1): 
section a r e  close to the real  axis of R .  As a result ,  d m2 

[ ; ( E Z - ~ ) - - ~ ~ ( E ~ - ~ ) + ~ E - A  -- 
there ar ise  on this axis previously-unnoticed infinite dE r-1 ] F ( L ) = O .  (1) 

series of quasi -intersections. These quasi-intersec- d d - ( I - q Z ) - -  p Z ( l - q 2 )  +bq+h -- 
tions can be considered to be the result of the interac- I ,  d? 

m2 ] Q (n )=o .  l -q2  (2 

tion of the diabatic term that goes over into the contin- p= (-2E) '"R/2, a= (Z,f  Z,)R,  b=(Z,-2,) R, 

893 Sov. Phys. JETP 54(5), Nov. 1981 0038-5646181 11 10893-06$02.40 O 1982 American Institute of Physics 893 



where E is  the electron energy in the field of two Coul- 
omb centers with charges Z1 and Z2 and A i s  the separa- 
tion constant. In the energy region E <  0, the discrete 
energy levels (the adiabatic terms) E(R) and the separa- 
tion constant A(R) a r e  determined from the boundary 
conditions 

The standard expansions of the functions F(F) and @(q):  

allow us to obtain in place of the differential equations 
(1) and (2) the following relatively simple three-term 
recursion formulas1 for the coefficients g, and c,: 

In order to get the expansions (4) and (5) to terminate on 
the side of negative s values, we must set 

At high s values the solutions to the recursion formulas 
(6) and (7) have the asymptotic forms 

The boundary conditions (3) a r e  satisfied for the solu- 
tions with the asymptotic forms c; and g;. The pro- 
cedure for finding the eigenvalues E(R) and h(R) is  sig- 
nificantly simpler because of the relation between the 
three-term recursion formulas and infinite continued 
fractions. Let us,  using the recursion formula (6), 
express the ratio g,/g, in terms of g,+,/g, in the form 
of a finite continued fraction: 

If the solution satisfies the boundary conditions, then 
for s - the ratio g,+,/g, in the expression (9) can be 
neglected. This allows us to express g,/g,, in terms of 
an infinite continued fraction: 

g-~lg~-Dt (E,  A) - lim Dt' (E,  L, gS+,/g,). 
S-r 

A similar expression is obtained for the ratio c,/c, 
connected with the angular Eq. (2). With allowance for 
(a), the problem of finding the eigenvalues E(R) and 
x(R) now reduces to the problem of finding the common 
roots of the two infinite continued fractions: 

Dp (E, h)=O, D,(E, L)=O. (10) 

For the coefficients, g, and c,, having the asymptotic 
forms gi and c:, the finite continued fractions DI and 
D,S do not go over into the infinite continued fractions 
D, and D, a s  s - a. 

The solution to the spectral problem is described in 

such a detailed manner here because the connection of 
the infinite continued fractions with the boundary condi- 
tion (3) through the asymptotic forms of the recursion 
formulas i s  sometimes overlooked, and this leads to 
errors .  Thus, in Ref. 1 the use of the expansions of 
the wave functions (2.41) and (2.44) is  proposed, but 
the continued fractions of these expansions a r e  connect- 
ed with spectral problems corresponding to other bound- 
ary conditions; for example, the expansion of (2.41) i s  
connected with the spectral problem whose solutions a r e  
required to be regular in the interval -1 s 5 1, and not 
on the semiaxes 1 G 5 < a. 

3. DISCUSSION OF THE RESULTS OF THE 
COMPUTATION OF THE TERMS IN  THE COMPLEX 
PLANE OF THE INTERNUCLEAR DISTANCE 

The E(R) terms in the complex plane were numerically 
computed by solving the system of transcendental Eq. 
(10) with the aid of an algorithm similar to the one de- 
scribed in Truskova's2 paper.'' Eelow, to classify the 
terms, we shall use either the spherical quantum num- 
bers,  N, L ,  and M, of the united atom, into whose en- 
ergy levels the terms of the two-Coulomb-center prob- 
lem go over a s  R - 0, o r  the numbers, k ,  q ,  and m,  of 
zeros the wave function has in the variables 5 ,  7, and 
cp respectively. These two sets of quantum numbers 
a r e  connected with each other by the relations1 

Of greatest interest in the computation of the terms 
a r e  the quasi-intersections. The quasi-intersection of 
two terms on the real  axis of R is ,  a s  i s  well known, 
due to the exact intersection of these terms a t  some 
complex value R,, in whose neighborhood the difference 
between the terms has the form 

AE (R) =const (R-R.) ". (12) 

In going around the branch point R,, we go over from 
one term to the other, since the two terms a r e  differ- 
ent branches of the same analytic function. Thus f a r ,  
in the two-Coulomb-center problem only those quasi- 
intersections of the pair of terms Ek,,(R) and Ek*q*m,(R) 
have been considered for which 

These quasi-intersections a r e  due to the resonance sub- 
barrier interaction between the states localized in the 
various potential wells in the angular Eq. (2). 

In the present paper we find quasi-intersections of a 
new type, namely, quasi-intersections for which 

They occur for all  values of the charges Z, and Z,, in- 
cluding the case of the molecular hydrogen ion H:, in 
which the quasi-intersections (13) do not occur. For- 
mally, the quasi-intersections (14) can be considered to 
be quasi-intersections in the radial Eq. (I) ,  since the 
states participating in them a r e  those whose wave func- 
tions have different numbers of zeros in the variable 
5 .  But there i s  only one well in the radial equation, and 
therefore they cannot be a s  simply explained from the 
standpoint of a one-dimensional equation a s  the quasi- 
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TABLE I. The coordinates of points of intersection of the Npa 
terms for Hz*. 

intersections (13). 

The points of intersection of the t e rms  (14) in the com- 
plex R plane were found directly in the computation. 
The terms E , , (R)  and E, +,/,,(R) were found to inter- 
sect successively in pairs for all values of N > L + 1 
[the transition to the spherical quantum numbers N, L ,  
and M in (14) is accomplished in accordance with (l l)] .  
The computed intersection points R,,, 

with different N values and a fixed LM set form an in- 
finite series of branch points localized in a small r e -  
gion 9,  and condensing toward some accumulation point 

Table I illustrates this situation in the particular case 
of the Npo-term ser ies  (L = 1, M = 0) for the Hi system. 
All t h e  terms of the LM ser ies  in question a r e  differ- 
ent branches of the same analytic function EN, ,(R), and 
the points RN,, a r e  the branch points of this function 
[see (12 ) ] .  In the vicinity of the region 52, the terms 
of the series in question a r e  described with a high de- 
gree of accuracy by the formula (Z=  2, + 2,) 

FIG. 2. Positions of the series of branch points in the com- 
plex R plane for H.+: 0) the branch points RhILM; X )  the branch 
points R2L+LM. 

point R,,, which leads to the effective replacement of 
the principal quantum number N by N* 1 in the Ryd- 
berg series.  Figure 1 shows the results of the com- 
putation for the energy surface ReE,,(R). On the 
chosen scale, all the branch points merge, and the sur- 
face has the form of a corkscrew (part of which i s  
shown in the figure) with a pitch that decreases with 
increasing N like the Rydberg-level spacing, i. e . ,  like 
N-', which agrees with the formula (15). Figure 2 
shows the disposition in the complex R plane of series 
with different L and M values and the locations of the 
f i rs t  two branch points R, +,,,, and R, in each ser-  
ies. The following approximate relationships a r e  evi- 
dent from the figure. Inside a series,  the points a r e  
located along a radius, and a r e  crowded on the R = 0 
side; the ser ies  themselves form a regular structure: 
ser ies  with the same L value and different M values a r e  
evenly disposed on circles,  and the greater L is,  the 
greater a r e  the radii of the circles. The main effect 
of the charges Z, and Z, on the above-described picture 
i s  to change the characteristic scale in the R plane. As 
the total charge Z increases, all the distances decrease 
in proportion to 2". The dependence on the charge ra -  
tio Z,/Z, is  a weak one. Figure 3 shows the locations 
of the points R,,, of intersection of the terms 2pU and 
3pufor the charges Z , = l ,  Z2=1-10,20,40 in the ZR 
plane. It i s  worth noting that, to within the accuracy 
with which the computations were carried out (hR = 10-7, 
all  the points lie on one straight line in this plane. 

in which the expression in the square brackets play the 
role of the principal quantum number in the hydrogen- 
ic spectrum. A s  the computation shows, in going 
around the region 9 once, we go over from the given 
term EN,, (R) to the neighboring term EN,, ,,(R) (the 
sign is determined by the circling direction). This 
agrees with the formula (15), in which the logarithm 
acquires an increment of *2ni when we go around the 

The results allow u s  to take a new look a t  the struc- 

FIG. 1. Surface of the real part of the energy in the complex 
plane of the internuclear distance for H;. 

FIG. 3. Positions of the branch points RL+LM for different 
values of the charge Z2 in the complex ZR plane. 
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ture  of the terms of the two-Coulomb-center problem. 
First ,  they clarify a number of questions connected with 
the expansion of the terms for small distances R (the 
unified-atom approximation). These expansions a r e  
often used in applications, but it has thus far not been 
understood why in certain cases they describe well the 
actual behavior of the terms a t  fairly great distances, 
while in other cases the region of their applicability i s  
extremely small. As i s  well known, the region of ap- 
plicability of the expansions i s  determined by the dis- 
tance to the nearest singular point. In the united-atom 
approximation, such singular points a r e  precisely the 
discovered branch points R,, , the distance to which 
depends strongly on L and weakly on N and M (the rea-  
sons why the dependence on the quantum numbers has 
such a character a r e  discussed in Sec. 4). Thus, it 
turns out that the united-atom expansion i s  applicable, 
for example, in the case of Hi, to the s state (L = O )  up 
t o R = 0 . 4 a . u .  andthehstate(L=5)uptoR=17a.u.  
(see Fig. 2). 

Other singular points occur as a result of the posses- 
sion of minima by the terms whose quantum numbers 
satisfy the condition1 

It has not become clear through the computation of the 
energy surface in the complex R plane that these mini- 
ma ar ise  as a result of the presence near the real  axis 
of an infinite ser ies  of singular points. Further, the 
larger M, the greater the distance of the series from 
the real  axis (Fig. 2) and the less  pronounced is the 
minimum of the term on the rea l  axis of R, becoming 
more and more so a s  M increases until it entirely dis- 
appears a t  M > (L(L + 1)/3)11'. Figure 1 illustrates 
the formation of the minimum of the terms 3pu and 4pU 
under the influence of such a series,  which imparts a 
helical character to the energy surface. It can also be 
seen from the figure that the position of the minimum 
should always be shifted to the right of the real  coor- 
dinate of the ser ies  in question. 

4. MECHANISM UNDERLYING THE FORMATION 
OF QUASI-INTERSECTIONS 

Quasi-intersections are ,  from the standpoint of the 
application of these results in the theory of atomic col- 
lisions, the most interesting manifestation of singular 
points. At low M values the branch points RNLM a r e  
close to the real  axis of R, and there ar ise  on the real  
axis infinite ser ies  of quasi-intersections that were not 
noticed before in the background of the minima. These 
quasi-intersections can be considered to be the result 
of the interaction of the diabatic term that goes over in- 
to  the continuous spectrum a s  the nuclei approach each 
other with the infinite series of Rydberg states. 

The diabatic t e rms  a r e  obtained from the adiabatic 
ones by replacing the quasi-intersections by exact in- 
tersections: which we define a s  follows: 

where Rd,, is the position of the point of intersection 
of the diabatic terms and EL. i s  their value at this 

FIG. 4. Adiabatic (continuous curves) and diabatic (dashed 
curves) terms f o r  H t .  

point. Joining successively the intersection points (16) 
in a given series,  we obtain the diabatic term, which 
goes over into the continuous spectrum abruptly and, a t  
R >d, +,,., into the lower adiabatic term of the given 
series.  The remaining diabatic terms decrease mono- 
tonically with decreasing distance; the diabatic term 
coinciding a t  large distances with the adiabatic term 
E,, (R) (N 2 L + 2) goes over a t  R = 0 into the adiabatic 
term E,,,,(R). Figure 4 shows the adiabatic (contin- 
uous curves) and the diabatic (dashed curves) terms for  
H: . 

It is  not entirely clear what makes a diabatic term 
go over into the continuous spectrum. To elucidate the 
mechanism underlying this phenomenon, we must sep- 
arate in the Hamiltonian H(R) of the system the Hamil- 
tonian Ho(R) for which the diabatic terms a r e  exact 
eigenvalues and the interaction, V(R) = H(R) ,- H,(R), a s  
a result of which the intersections a r e  transformed into 
quasi-intersections. We cannot separate out Ho(R) in 
a sufficiently simple and natural fashion. But we can 
adduce some qualitative arguments that show that these 
quasi-intersections a r e  due to the reconstruction of the 
two-center geometry of the problem for R - into a 
single-center geometry for R = 0. 

Let us  first  discuss the case in which M=O. The 
united atom's effective potential determining the state 
of the electron a t  small distances R is the sum of the 
Coulomb interaction and a centrifugal core: 

At large distances R the potential consists of two poten- 
tial wells, and, a s  the distance decreases, the total po- 
tential well at f irst  deepens. The deepening of the po- 
tential well leads to the lowering of the energy levels, 
and this occurs until the centrifugal core of the united 
atom begins to form. For an electron with energy E 
< 0 the width of the centrifugal core is determined from 
the condition 

and is equal to 

For R < D, the nuclei a r e  screened off by the centrifugal 
core, and they act a s  a single Coulomb center. For R 
> D, however, both nuclei a r e  in the region of classical- 
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ly allowed electron motion, and they manifest them- 
selves individually. The changeover from a two-center 
electron wave function to a single-center one occurs a t  
RnD,  the changeover first  occurring for the lowest en- 
ergy level, since, according to (19), the lower the elec- 
tron energy is ,  the wider is  the centrifugal core. The 
appearance of the centrifugal core makes the effective 
potential well shallower; therefore, the adiabatic terms 
curve upward a s  R decreases, and a r e  then successive- 
ly reflected from the higher-lying adiabatic term for 
all values of N > L + 1, producing an infinite chain of 
quasi-intersections in the process. This chain of quasi- 
intersections was considered above to be the trace of 
the diabatic term WL(R) that goes over into the contin- 
uous spectrum. It follows from the mechanism pro- 
posed here for the formation of the quasi-intersections 
that the term WL(R) in the neighborhood of the point 
where it goes over into the continuous spectrum slides 
over the interior of the potential well (I?'), and should 
be approximately described in this region by the expres- 
sion 

which is connected with the condition (18), and is ob- 
tained with allowance for the relation R = D = 2r,. 
Equating the energy WL in the expression (20) to zero,  
we find the distance RL at  which the diabatic term goes 
over into the continuous spectrum: 

In Table I1 we present for comparison the R, values 
given by the formula (21) and the corresponding values 
extracted from the results of the numerical computa- 
tion. There i s  good agreement in all the cases, which 
i s  surprising, considering the qualitative character of 
the above-performed investigation. Roughly the same 
agreement is  obtained when the values for the slope of 
the diabatic term at the point where the term goes over 
into the continuous spectrum a r e  compared. The cen- 
trifugal core does not ar ise  in the L = O  case. This ex- 
plains why the terms of this ser ies  do not undergo 
quasi-intersections and do not possess minima. 

In the M # 0 case there exists at all internuclear dis- 
tances an axially symmetric centrifugal core,  which 
weakens the effect of the formation of the spherical core 
of the united atom. As a result, the distance between 
the series of singular points and the real  axis increases 
with increasing M (see Fig. 2),  and the quasi-inter- 
sections become less  and less effective. 

TABLE E. Approximate R:, (2 I), 
and the exact Re values for the 
points at which the M=O diabatic 
terms of Hi go over into the con- 
tinuous spectrum. 

5. IONIZATION 

The obtained results allow u s  to consider within the 
framework of the adiabatic approximation the ioniza- 
tion process, to which the evolution of the system along 
the diabatic term that goes over into the continuous 
spectrum leads. The probability for ionization from the 
term ENoL,on account of the inelastic crossing of the 
quasi-intersections is  equal to4 

where 

is the Massey parameter for the N-th quasi-intersec- 
tion. As the computation shows, for M = 0 the distance 
from the series of singular points to the real  axis is  
given to within 10% by the expression 

and the splitting of the terms can be considered with the 
same degree of accuracy to be constant and equal to 

EN+,,x ( R )  -EN,, ( R )  =Z2/2N'-Z2/2(N+l) (24) 

right up to the point of intersection (the terms depend 
weakly on R because of the existence of the points 
R, +,,, and R,-, ,,close to the intersection point R,,, 
and sharply approach each other only in a small neigh- 
borhood of the point of intersection, i. e. ,  in a neighbor- 
hood of dimension smaller than the distances to these 
points). With allowance for (21), (23), and (24), the 
Massey parameter in the straight-line-flight approxi- 
mation (R2 = p2 + u2t2) i s  equal to 

In deriving (25), we also used the inequality p < IRLM I .  
Substituting (25) into (22), and then integrating over the 
impact parameter p, we obtain the ionization cross sec- 
tion 

Experimental data on the ionization of the hydrogen 
atom by protons a t  ionic energies higher than 5 keV 
a r e  given in Ref. 5. The ionization cross  sections ob- 
tained in that investigation exceed by a considerable fac- 
tor the ionization cross  section given by (26). This i s  
due to the existence in the present case of another ion- 
ization channel. Resonance charge transfer occurs with 
a large cross  section in slow hydrogen atom-proton col- 
lisions. Some of the electrons participating in the 
charge-transfer process break away in the course of the 
transition from one nucleus to the other, and get into the 
continuous spectrum. Although the fraction of such 
electrons in the charge-transfer process i s  not high, 
owing to the large magnitude of the charge-transfer 
cross  section, the cross  section for ionization through 
this channel turns out to be considerable. This two- 
stage ionization mechanism cannot be described within 
the framework of only the adiabatic approximation even 
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a t  very low collision energies. This approximation is 
applicable only to the first  stage, i. e. , to the charge 
transfer. To describe the second stage-the dynamical 
electron stripping-we must use an approximation simi- 
lar to the approximation of instantaneous switching on 
of perturbation, in which the sudden switching on of 
the nuclear velocities is considered. Such an approxi- 
mation has been used by Migda16 to compute the inelas- 
tic transitions induced in an atom by the neutron decay 
of the nucleus. Using the two-stage mechanism, we 
can obtain for the ionization cross  section estimates that 
agree well with the experimental data given in Ref. 5. 
The comparison of the ionization cross  section (26) with 
the experimental data should be carried out for those 
collisions in which resonance charge transfer does not 
occur, e. g., the collision of a hydrogen atom with an 
a particle. But there a r e  no such data in the literature. 

6. CONCLUSION 

In the present paper we have far from exhausted the 
consequences of the existence of the adiabatic-term-re- 
lated infinite ser ies  of branch points in the complex 
plane of the internuclear distance. Among further pos- 
sible approximations, we can indicate, for example, the 
problem of the construction of approximate analytic ex- 
pressions for the adiabatic terms of the two-Coulomb- 
center problem. There a r e  at  present asymptotic ex- 
pansions for the terms for large and small internuclear 
distances.' The results obtained here pertain to the 
most complex transition region, in which an approximate 
analytical description that takes the fundamental fea- 
tures of the real  terms into account is  also possible (as 
an example, we can cite the expression (15)]. The join- 
ing of these results would allow us to obtain approxi- 
mate expressions that a r e  valid for all internuclear dis- 
tances. All the terms of a given LM ser ies  should then 
be described by a single analytic function E,.(R). A 
similar analytic energy-surface structure has been pre- 
dicted on the basis of general arguments by Demkov. 

Another problem i s  connected with the fact that the 
going over of a diabatic term into the continuous spec- 
trum should be accompanied by the appearance of a 
quasi-stationary state when R < R,. We do not have at 
present a theory that would predict, even qualitatively, 
the dependence of the width of the quasi-stationary 
states on R in the vicinity of the point where the diabat- 
ic term goes over into the continuous spectrum. In 
view of this, the computation of the poles of the S ma- 
trix of the two-Coulomb-center problem in the complex 
energy (E) plaqe is  of interest. Such a calculation will 
allow us to find the trajectory of the S-matrix poles 
corresponding to the quasi-stationary states and, there- 
by, the dependence of the width on R. This problem is 
apparently the simplest problem in which quasi-sta- 
tionary states and the long-range Coulomb attraction 
occur at the same time. Knowledge of the width as  a 
function of R is  necessary for the computation of the 

electron distribution in the continuous spectrum. Dem- 
kov and Komarov4 have carried out such a computation 
of the energy distribution of the electrons for the Dem- 
kov-Osherov model, but it i s  a s  yet not clear to what 
extent this model is applicable to real  systems, since 
it i s  virtually assumed in it that the diabatic term goes 
over into the continuous spectrum vertically, a s  a re -  
sult of which the width of the quasi-stationary state is 
infinite. 

The results obtained in the present paper pertain to 
the two-Coulomb-center problem, but they in fact have 
a more general character. The qualitative explana- 
tion, given in Sec. 4, of the mechanism underlying the 
formation of quasi-intersections can be applied on the 
same grounds to many-electron systems. These quasi- 
intersections were not discovered earlier apparently 
because of the fact that the splitting of the terms at a 
quasi-intersection point is large. But the probability 
for inelastic traversal of a quasi-intersection is de- 
termined not only by the splitting of the terms, but also 
by the strength of their interaction. The values ob- 
tained for the Massey parameter indicate that the inter- 
action should be strong in the region of a quasi-inter- 
section. The off-diagonal matrix elements for Hi that 
describe the interaction between the terms of the NpU 
series in the adiabatic approximation a r e  given in Ref. 
8. Each of them has a sharp peak in the region of a 
quasi-intersection (R -- 1 a.u.  ), in accordance with the 
results of the present paper. 
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