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Kinetic equations, in which the orientational states of the angular momenta J of the levels are described 
classically, are obtained for the density, matrix. The equations make it possible to solve the problem of the 
interaction between arbitrarily polarized high-intensity radiation and systems characterized by a large 
quantum number J. The level population distributions with respect to the directions of J are analyzed and it 
is noted that in an intense field these distributions acquire strongly selective angular structures. The dynamics 
of the polarization of intense radiation as it propagates in amplifying or absorbing media is considered. 

PACS numbers: 32.80. - t, 33.80. - b, 42.50. + q 

1. INTRODUCTION was added was a parametr ic  dependence on the orienta- 

A feature of modern l a s e r s  i s  high intensity of the 
generated radiation. At any rate,  it is such that the 
interaction of l a se r  radiation with mat te r  cannot be 
described within the framework of the method of suc- 
cessive approximations in intensity, and i t  i s  neces- 
s a ry  to seek  methods that impose no restr ict ions on 
the radiation intensity. It i s  well known that these r e -  
s tr ict ions can be lifted in the model with two nondegen- 
e r a t e  s tates .  Real s ta tes  of atoms and mokcules ,  
however, a r e  degenerate in the direct ions of the angu- 
l a r  momentum J. F o r  these systems,  the problem of 
interaction with radiation of a rb i t ra ry  intensity can be 
solved if the radiation has  l inear  o r  circular  polariza- 
tion. This  possibility is due to the effective subdivision 

tion angles of J. The solution of the resultant equations 
ha s  a lucid geometric interpretation. 

The derived equations can be used to solve an entire  
c l a s s  of new problems. We confine ourselves here,  
however, t o  an analysis  of the distribution of the level 
populations with respect  to the angular-momentum di- 
rect ions,  to  a calculation of the polarization of the 
medium under the influence of intense elliptically po- 
lar ized radiation, and to an analysis of the dynamics 
of the polarization of the radiation in the course of the 
propagation of the lat ter .  

2. CLASSICAL EQUATIONS FOR THE DENSITY 
MATR I X 

of the real,&ultilevel sys tem into a set  of simple two- In the initial (quantum) equations for the density ma- 
level subsystems (see,  e.g., Ref. 1). tr ix,  we shall focus our  attention on the dynamic part 

The situation becomes radically more  complicated 
when the radiation has  an a rb i t ra ry  (elliptic) polariza- 
tion and a high intensity. In a r igorous quantum-me- 
chanical approach, the problem of absorption (ampli- 
fication) and propagation of such radiation in a resonant 
medium has not lent itself to a solution to  this  day. As 
a resul t ,  no attention has been paid to a large c lass  of 
interesting polarization phenomena. 

It i s  shown in the present paper that the foregoing 
difficulties can be overcome in the case of t ransi t ions 
with large quantum numbers J, when the orientational 
s ta tes  of the vector J can be described classically. 
The representation in which the density matr ix ele- 
ments a r e  identical to the classical  distribution func- 
tions of the vector J with respect  to the direction 
turned out to  be productive. The transition to quantum 
mechanics i s  effected in this  representation with the 
aid of a transformation s imi la r  to that used by Wigner 
for  translational degrees  of freedom (see,  e.g., Ref. 
2).  

In the new representation, the equations for the den- 
sity matrix have assumed the form of the usual equa- 
tions of the model of two nondegenerate s tates .  All that 

resdonsible for  the interaction with the radiation. A s  
for  the relaxation processes,  we shall simplify a s  
much a s  possible and s t a r t  f r om the model of the re-  
laxation constants. In this  model the interaction of a 
quantum system with radiation that is at  resonance 
with the m-n transition with angular momenta J, and 
J, is described by the following equations for  the den- 
sity matr ix in the M representation: 

+ix [pm.  ( M I M , )  V n m ( M i  IMO -Vmn (MIMl)pnm(MIIM')  I ,  
x,  

( 2 + 2) p,,.( ( M I M . ) = Q ~ ~ ~ ~  

+iz [p , ,m(MIMc)  Vmm(M+lMr)-Vnm(MlM)pmn(M*lM1) 1, 
x. 

(2.1) 

r + -  ~ , , ( M I M ' !  ( ,4) 
= i  [pmm(MIMI)  Vm.(M,IM')-Vmrn(MIM,)p,.(M~IM') I ,  

XI 

pnm(M 181') = p m n ' ( ~ l f r 1 J f ) ,  V.,,,,(Ml M I )  =Irn,,,'(Mt I M ) .  

Here rm and r, a r e  the decay constants of the states  m 
and n; r i s  the impact half-width of the line; Q, and 
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Q, characterize the ra tes  of excitation of the levels rn 
and n. The excitation i s  assumed to be isotropic. 

We assume next satisfaction of the condition 

I,, I " M ,  (2.2) 

which permits a classical description of the orienta- 
tional states of the angular momenta Jm and J,. 

In place of the density matrix elements p,,(M IMt) we 
introduce 

pi i (M,  p )  = p e ( 5 f + p / 2 ( ~ - g 2 ) ,  p=M-M', B = ' / , ( M + M ' ) .  

The reasoning continues as follows. In classical 
physics there is no place for the state interference de- 
scribed in the quantum case by the off-diagonal ele- 
ments of the density matrix. In other words, in the 
classical limits the correlation of states with different 
values of the corresponding quantum number should be 
weak. In particular, for a classical description of the 
orientational states of the angular momentum it i s  ne- 
cessary to stipulate a weak correlation of states with 
different values of the angular-momentuni projection. 

For the quantities p) this requirement means 
that the effective internal perf of the variable p (the in- 
terval in which the values of pij differ substantially 
from zero) should be much less  than the characteristic 
scale 6 of the change of pij relative to the variable 
% (F.,, C< 6 ) .  We assume that this condition is satis- 
fied. 

We introduce the following representation for the 
density- matrix elements: 

@(Bcp) = Z e - ' ~ p , ,  (B, p ) ,  cos @ = @ / I .  J= l / , (Jm+Jn) .  (2.4) 
C 

Under the conditions pd,<< G, the summation over p 
can certainly be extended to infinite limits, after which 
the transformation (2.4) acquires the meaning of a full- 
fledged Fourier transformation. The inverse transfor- 
mation is of the form 

Relations similar to (2.4) and (2.5) hold also for the 
interaction matrix element V,,(M IM,). We note that 
the transformation (2.4) is perfectly analogous to a 
transition to the Wigner representation in the case of 
translational degrees of freedom (see, e.g., Ref. 2). 
The angles 9 and cp characterize the direction of the 
vector J. 

Since the density matrix i s  Hermitian, the following 
relation is valid 

The density-matrix elements diagonal in the energy in- 
dices turn out to be real  and describe the distribution 
of the populations over the angular-momentum orien- 
tations. 

We change over to the 9cp representation in Eqs. 
(2.1). With the first  equation of (2.1) is the example, 
we have 

5 f I = ' / 2  ( M + M I ) ,  Mz='12 ( M I + M r ) ,  p I = M - M I ,  

pr=M,-M', R = ' / , ( M + M ' )  , cos 6=5flJ. 
(2.7) 

The values of M, and i??, differ from fi by not more 
than p,, and can be replaced by a, in view of the 
smooth dependences of p,, and Vmn on Ml (or on M,)  in 
the pa, scale. As a result, the sum over p1 and pz is 
transformed into a product of sums, each of which ef- 
fects a transition to the 9cp representation. 

Thus, when the conditions for the classical descrip- 
tion of the orientational states of the angular momenta 
a r e  satisfied, the equations for the density matrix in 
the 9cp representation a r e  diagonalized and take the 
form1) 

plnm(Op) =Qm+2 R e [ i V m , ' ( 6 q ) p m .  (6CP) I ,  

These equations differ greatly from the known equa- 
tions of the nondegenerate-state model in that the den- 
sity-matrix elements have an additional (parametric) 
dependence on the angles that characterize the direc- 
tion of the angular momentum. Just  a s  in the nonde- 
generate-state model, they can be solved without a re- 
striction on the radiation intensity, and what i s  par- 
ticularly important, at an arbitrary polarization of the 
radiation. 

3. POPULATION DISTRIBUTION IN THE ANGULAR- 
MOMENTUM DIRECTIONS 

We consider an interaction with monochromatic radi- 
ation having a frequency w close to the transition fre- 
quency wmn, and separate the time dependence in the 
interaction matrix element 

where an excitation that i s  constant in time, Eqs. (2.8) 
reduce to the following algebraic equations: 

r m p m ,  ( 6 ~ )  =Qm+2Re [iVmn' ( 6 ~ )  pm. ( 6 ~ )  I ,  
r ,p, .  ( 6 v )  =Q,-2Re [iVm.' ( 0 ~ )  13," ( 6 9 )  I ,  

(r- is21 p,. ( 0 ~ )  =iVmn ( 8 0 )  [pmm(dcp) - p . . ( e )  I ,  (3.2) 

pmn(6cp) = p m n ( 8 v )  eXp ( - i Q t ) .  

The solution of these equations can be easily obtained 

The quantity No has the meaning of the difference be- 
tween the level populations in the absence of radiation. 

878 Sov. Phys. JETP 54(5), Nov. 1981 K. A. Nasyrov and A. M. Shalagin 878 



The dependence on the angles 9 -and cp in (3.3) is due 
to the interaction matrix element Vmn(9cp). We shall 
hereafter consider electric dipole interaction, for  
which we have in the M representation 

Here dm, i s  the reduced matrix element of the dipole 
moment, E, a r e  the circular components of the com- 
plex amplitude of the radiation electric vector, 
( a  I . *) i s  the vector-addition coefficient. 

Using the asymptotic form (J,, J,>> 1) of the vector- 
addition coefficients3 and changing over in (3.4) to the 
9cp representation, we obtain 

where the dependence on 9 and cp is concentrated in the 
Wigner D-functions Dtz(cp 0). 

Even simpler i s  the form of ?,,(8cp) at A =  0 (J-J 
transition): 

where the vector G i s  proportional to the complex 
amplitude of the electric-field vector, and n i s  a unit 
vector along the J direction. 

For elliptically polarized radiation, we introduce the 
vectors GI, and G, directed along the major and minor 
axes of the polarization ellipse, respectively. Then 

The vectors G,, and G, can be regarded a s  real  without 
loss of generality. We choose a coordinate system with 
z axis along the wave vector, and direct the x and y 
axis along Ell and EL respectively. 

In the case of the J-J ( A =  0) transition we obtain the 
following dependence on the angles for  the population 
difference N($cp), in t e rms  of which the solution (3.3) of 
Eqs. (3.2) is expressed: 

The quantity c characterizes the degree of ellipticity. 
The value E = 0 corresponds to linear polarization and 
E = 1 to circular polarization. The quantity x,,,, will be 
called the saturation parameter, in analogy with the 
nondegenerate-state model. With increasing radiation 
intensity, the saturation parameter increases and the 
population difference decreases correspondingly. 
There exist, however, J directions for which there is 
no interaction with the field at all. For a polarization 
different from linear, these are  the directions collinear 
with the wave vector. For  linear polarization (E = 0) 
there i s  no interaction if the vector J l ies in a plane 
perpendicular to the electric vector of the wave. 

At a large saturation parameter (n,,,,>> 1) the popula- 
tions become equalized for all  the orientation angles of 
J, with the exception of a narrow interval in the vicinity 
of the J directions indicated above. Figure 1 shows 

examples of the distributions of the populations of the 
lower state (n) in the J directions in the case of radia- 
tion absorption (No > 0). A spherical coordinate system 
is used with origin at the center of the marked square 
(the symmetry plane). The twofold structure of the 
distribution can be easily traced. Highly selective 
angular structures stand out against the background of 
the isotropic part corresponding to the term (Qm+ Q,,)/ 
(r ,+ r> in expression (3.3) for p,,(acp). In the case of 
circular polarizations these a re  "peaks" at angles 0 = 0 
and n, and for linear polarizations-a narrow disk in 
the yz plane. It is obvious that the selective parts in 
the pmm(9cp) distribution should be "negative," l.e., 
have the form of "dips" for circular polarization and of 
an annular "valley" for linear polarization. 

The characteristic angular dimension of the selective 
par ts  of the distribution at u,,>> 1 can be easily esti- 
mated with the aid of (3.8). At E = 1 we have 

For  linear polarization, the angular dimension of the 
disk can be estimated from the same formula, a s  can 
be verified by putting cp = 0 in (3.8). 

Outwardly, the selective par ts  in the distributions 
pmm(9cp) and pm(9cp) recall the known Bennett dips and 
peaks in the velocity distributions for a large dipole 
broadening (see, e.g., Refs. 1 and 4). They have also 
a farther reaching similarity: both a r e  due to selec- 
tivity (in one case with respect to velocity, and in the 

FIG. 1. Distribution of the population of the level n with re- 
spect to the directions of the angular momentum in the ab- 
sorption regime (J-J transition); a-circular polarization of 
the radiation, b-linear polarization. n=80 throughout. 
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FIG. 2. The same as Fig. 1, but for the transition J , - J , + ~ ;  
a-circular polarization, x = 8000; b-linear polarization, 
x = 80; c-elliptic polarization, (E= 0.5, x = 80). 

other with respect to angles) of the interaction with the 
radiation. There is also a radical difference. The se- 
lectivity in velocity decreases with increasing radiation 
intensity, whereas those parts of the distributions 
pmm(9q) and pnn(9q) that a re  selective in the angle be- 
come narrower with increasing intensity. The narrow- 
ing is limited only by the quantum uncertainty of the 
orientation angles of the angular momentum J. 

For the J,= J n +  1 transition we obtain on the basis 
of expressions (3.3) and (3.5) the following dependence 
of the population difference on the angles of the orien- 
tation of J (the coordinate system is the same a s  be- 
fore): 

(3.10) 
-1 

N(h)=N.  I + -((coad-a)zsina p + ( r c o ~ 6 - f ) ~ u s ~ p )  ] . [ ; 

In this case there likewise exist directions of J at which 
the particle does not interact with the field. If the ra- 
diation i s  circularly polarized (c = I), this direction 
coincides with the direction of the wave vector ( 9  = 0). 
For  linear polarization there a r e  two such directions, 
q = 0 and n = *n/2. At large saturation parameters, the 
population distributions in the directions of J also re- 
veal strongly selective parts. Typical examples of such 
distributions for the population of the lower state 
p,,(9+~) a r e  shown in Fig. 2 (case of absorption). If the 
polarization differs noticeably from circular the se- 
lective parts of the distribution, at the same saturation 
parameters, have approximately the same angular di- 
mension a s  for the J-J transition see (3.9) . For  cir- 
cular polarization, the interaction selectivity with re- 
spect to the orientations of J in the case of the Jm = J, 
+ 1 transition decreases sharply. Indeed, putting c = 1 
in (3.10), we obtain for the angular dimension of the 
selective part at w,, >> 1 

Aft- ( ~ I x , , ) ~ .  (3.11) 

This circumstance i s  well illustrated in Fig. 2(a). To 
obtain just a s  narrow a selective increment a s  in the 
preceding cases, it i s  necessary to increase substan- 
tially the saturation parameter. 

4. DYNAMICS OF POLARIZATION OF INTENSE 
RADIATION I N  THE PROPAGATION PROCESS 

For optical and spectroscopic problems, and in par- 
ticular for the analysis of the effects of radiation pro- 
pagation, it i s  necessary to know the radiation-induced 
polarization of the medium. The circular components 
P,  of the complex polarization vector P a re  expressed 
in the following manner in terms of the off-ctiagonal 
element of the density matrix (see, e.g., Ref. 5) 

We change over in this equation to the g q  representation 
and use the connection, given by (3.3), between pm,,(9q) 
and the population difference N(9q): 

a" (4.2) 1 id,. " p"=--j 
4n r-iQ 

slnft d* j d r q z  G.~~db(cp~tt))~,,~(rpft0)~(8rq). 
0 0' 

In what follows we shall need to specify the type of 
transition. We consider first  the J-J transition ( A =  0). 
Using expression (3.8) for N ( 9 q )  and the explicit form 
of the D-matrices,= we obtain after integrating in (4.2) 
with respect to the angle cp: 

where an electric field with radiation of the type (3.7) 
with real  GI, and G,, circular components of the vector 
G a re  also real: 

It is possible to integrate in (4.3) with respect to the 
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angle 9 and to reduce the result  to tabulated func- 
tions-elliptic integrals. However, the integral repre-  
sentation i s  also perfectly convenient both f rom the 
point of view of numerical calculations and for  the 
analysis of limiting cases .  In particular, if the radia- 
tion polarization i s  close to c i rcular  (e.g., w-, <c l), 
then we obtain on the bas is  of (4.3) 

The imaginary and r ea l  pa r t s  of the factors preceding 
G, and G,, in (4.5) and (4.6) a r e  proportional respec- 
tively to the absorption (amplification) and refraction 
coefficients. It i s  easy to verify, by comparing (4.6) 
with (4.5), that the absorption (amplification) coeffi- 
cient for a weak circular  component of the radiation is 
smal ler  than f o r a  strong one a t  a l l  values of x,. It 
follows therefore that if the radiation has a polariza- 
tion that d i f fers  somewhat from circular  and propa- 
gates in an amplifying medium (No< 0),  then with fur- 
ther  propagation i t s  polarization tends to become cir-  
cular. In other words, c i rcular  polarization i s  stable 
for  the J-J transition in the amplification regime. On 
the contrary, in an absorbing medium the deviation 
from circular  polarization accumulates a s  the radiation 
propagates, i.e., the circular  polarization i s  unstable. 

Let us  clarify the question of the stability of the lin- 
e a r  polarization. To this  end we calculate the Car-  
tesian components of the polarization vector of the 
medium. Using the connection between the circular  
and Cartesian components 

we obtain on the bas is  of (4.2) 

id,,N, GI, ' ( I +  xll sinZ 6) '"-  (I+ x, sin2 6 ) ' "  
P~~=---~- sin 6 d 6 .  (4.8) 

r-i8 2 , (I+%, sine 6 ) "  

The expression fo r  P, i s  obtained from (4.8) by making 
the substitutions G,, -G, and n I I  - x L .  We assume that 
nL<< n I I ,  1 and after  integrating with respect  to the 
angle 9 we a r r ive  a t  the relations 

idm.No 1 PA=--- arctg %,," 

I'-iQ 2xl, 

Comparison of these equations shows that the absorp- 
tion (amplification) coefficient of the weak component 
(GL) i s  la rger  at  all n,,  than that for  the strong one (G,,). 
Consequently, the l inear polarization is unstable in an 
amplifying medium and stable in an  absorbing medium. 

It follows from the foregoing analysis that in the gen- 
e r a l  case when intense radiation propagates in a resn- 
nant medium i t s  polarization state changes. F o r  the 
resonant J-J transition the polarization tends to be 
circular  in an amplifying medium and linear in an ab- 
sorbing medium. At exact resonance (51 = 0) the phase 
relations between the components of the electr ic  vec- 

t o r  of the wave (both c i rcular  and Cartesian) a r e  pre- 
served.  Consequently, the orientation of the polar- 
ization-ellipse axis  remains unchanged, only the de- 
g ree  of ellipticity changes. On the other hand if 51 # 0, 
the refract ive indices for  the different wave compo- 
nents a r e  different and the change of the degree of el- 
lipticity is simultaneously accompanied by a rotation 
of the polarization-ellipse axis. 

The question of the change of the polarization of radi- 
ation propagating in a resonant medium was  already 
discussed in the l i terature relatively long ago, prin- 
cipally in connection with an investigation of the polar- 
ization of l a se r  r a d i a t i ~ n . ~ "  However, only the f irst-  
order  l inear correct ions were  taken into account in the 
analysis. Using our equations (3.2) for  the density ma- 
tr ix,  we can lift the restr ict ion on the intensity of the 
radiation and t race  completely the dynamics of i t s  po- 
larization in the course of propagation. 

The compact Maxwell's equations can be transformed 
to  the following equations for  the intensities of the cir-  
cular  components of the radiation: 

These equations do not describe the change of the phase 
between the circular  components, and a complete de- 
scription of the state of polarization can be obtained on 
their  basis  only a t  !2 = 0, a fact that we shall bear in 
mind. 

Equations (4.11) were  solved numerically with a 
computer, using Eq. (4.3) for  P,. The amplification re-  
gime was considered. The resul t s  for  the total intensi- 
ty and the ellipticity parameter  a r e  shown in Fig. 3. 
Up to a certain distance, the intensity increases  ex- 
ponentially, a f te r  which the increase becomes linear. 
With respect  to the polarization of the radiation we 
have the following result.  Regardless of the initial 
s tate,  the polarization tends in the course of propaga- 
tion to  become circular  (R - 1). The more  the initial 
polarization differs  from the unstable (linear) one, the 
fas ter  i t s  change. If the initial polarization i s  not too 
close to unstable, then the spatial scale of the variation 
i s  a distance of the order of the reciprocal gain. 

We consider now a transition with a change of J ,  as-  
suming for  the sake of argument J ,  = J,+ 1. After in- 
tegrating in (4.2) with respect  to the angle cp,  we obtain 
(rJ= f l )  

FIG. 3. Change of the polarization (curves 1-3) and of the 
intensity (curve 4) of the radiation in the case of propagation 
in an amplifying medium (,J-J transition); R = (H_~-x~) /H;  
x = xi + H CY i s  the l inear amplification coefficient ; 1) Ro 
= 0.143; 2) 0.026; 3) 0.003; RO=R,. , .  
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FIG. 4. ,The same a s  in Fig. 3, but for the transition Jm= J, 
+ 1; 1) Ro = 0.995; 2) 0.951; 3) 0.778. 

In the limiting case u-, << n,, 1 (close to circular po- 
larization) we obtain therefore 

We note the similarity of these expressions to Eqs. 
(4.9) and (4.10): in the approximation employed, the 
circular components P, depend in the case of a A z 0 
transition in exactly the same manner on the radiation 
intensity a s  the Cartesian components for the A =  0 
transition. From this it follows in particular that for 
the transition A =  i l  the circular polarization of the ra- 
diation in an amplifying medium turns out to be unsta- 
ble. Obviously, the linear polarization i s  stable in the 
amplification regime and the circular polarization in 
the absorption regime. Thus, with respect to stability 
of the radiation polarization we have for a transition in 
which the quantum number J changes a situation that i s  
the converse of the situation in the case of the J-J 
transition. 

The numerical calculation of the dynamics of the ra-  
diation polarization in an amplifying medium for the 
A =  1 transition was carried out on the basis of Eqs. 
(4.11) and (4.12). I ts  results  a r e  shown in Fig. 4. The 
character of the change of the polarization in the 
course of propagation i s  practically the same a s  for 
the J-J transition, the only difference being that the 
polarization tends in the upshot not to circular but to 
linear. The characteristic spatial scale of the change 
of the polarization is ,  a s  before, the reciprocal gain. 

5. LIMITS OF APPLICABILITY OF THE "CLASSICAL" 
EQUATIONS 

We discuss in greater detail the limits of applicabil- 
ity of Eqs. (3.2). We consider for the sake of argument 
the transition J-J and change over to the M represen- 
tation in expression (3.8) for the population difference: 

- 

/ ( +  p=M-M',  cos 6=W/J 

Here p takes on only even values. From the obtained 
equation it is seen that the coherence of the magnetic 
sublevels M and M' decreases exponentially with in- 
creasing p, since the base of the exponential function 
in (5.1) i s  always smaller than unity. The effective 
correlation interval is 

As already noted, for the transformations carried out 
in Sec. 2 to be valid, the condition pefI<< 6 must be 
satisfied. The most unfavorable situation is realized at 
gzn /2 ,  H,-0, and ul ,>>1, when 

Under the same conditions it i s  possible to obtain from 
(5.1) 

The requirement peff << fi is satisfied under the condi- 
tion 

which is in fact the criterion for the validity of Eqs. 
(3.2). The physical meaning of this criterion can be 
easily understood by comparing it with relation (3.9). 
From (3.9), with allowance for (5.5) follows A 9  >> 1/ 
5'12. This means that the characteristic angle scale of 
the population distribution in the directions of J should 
exceed the quantum uncertainty of the direction of J. 
Such a condition i s  perfectly natural in the classical 
description of the orientation of the angular momentum. 

The criterion (5.5) is obtained in natural fashion also 
from an analysis of the angular distribution of the in- 
duced dipole moment; it remains in force also for 
transitions with change of the quantum number J. 

We note that despite the restriction imposed by the 
condition (5.5), the radiation intensity can still be large 
enough to give r i se  to nonlinear effects. In particular, 
effective equalization of the populations takes place al- 
ready at n - l. 

In experiments on nonlinear spectroscopy and non- 
linear optics, the distribution~ of any quantity with re- 
spect to the directions i s  not measured directly, and 
certain properties averaged over the angles a r e  regis- 
tered. For example, the absorption (emission) prob- 
ability w i s  given according to (3.2) and (3.5) by 

As shown above, the strongest dependence on b and cp 
in N(9cp) is observed in the vicinity of angles that cause 
the quantity Vm,(9cp) to vanish, and it i s  precisely in 
this vicinity that N(9q) i s  least accurately described by 
Eqs. (3.2). In (5.6), however, this angle region i s  dis- 
criminated by the factor I V,,(3q)  1 2 ,  and the e r r o r s  in 
N(9cp) influence the value of w to a much lesser  degree. 
In particular, for linear o r  circular polarization of the 
radiation, the exact quantum-mechanical solution for w 
(see Ref. 1) goes over into the solution obtained from 
Eqs. (3.2) merely under the condition J>> 1, without the 
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additional requirement (5 .5 ) .  For  other polarizations, 
the condition should obviously remain the same. We 
note also that the population difference integrated over 
the angles which i s  connected with w by the relation 

is seen to be calculated with the same accuracy a s  w.  
In other words, the integrated values of the selective 
angle structures discussed in Sec. 3 have a smaller 
e r ro r  than the angular distributions themselves. 

All this gives grounds for hoping that when solving 
nonlinear- spectroscopy or  nonlinear optics problems, 
equations of the type (3.2) with a classical description 
of the orientation of the angular momentum are  valid 
under a condition less  stringent than (5.5).  Namely, it 
sufficies to assume the only condition, which i s  natural 
for the classical approximation, J>> 1. 

It i s  easy to verify that processes of exchange of 
angular momentum between the radiation and the reso- 
nant particles a re  excluded from Eqs. (2.8) and (3.2).  
The action of the radiation reduces to transitions be- 
tween energy levels without change in the direction of 
the angular momentum. Such an approximation i s  justi- 
fied for many systems, and the condition of i t s  appli- 
cability is a sufficiently rapid relaxation of the angular 
momentum with respect to the directions. It i s  possi- 
ble, however, to include in the consideration the trans- 
fer of the angular momentum, and remain nevertheless 
within the framework of the classical description. To 
this end it i s  necessary to take into account in equa- 
tions of the type (2.7) the small deviations of the quan- 
tities M, and G, from M. In the upshot we obtain in 
place of (2.8) the following equations for the density 
matrix: 

Compared with (2 .8) ,  we have added here t e rms  of dif- 
ferential type to the dynamic parts of the equations. 
They describe the change of the direction of the angular 
momentum under the influence of the radiation. It can 
be verified that when condition (5.5) i s  satisfied their 
contribution remains small. 

We note that the differential t e rms  in Eqs. (5.8) are  
reminiscent in form of the classical Poisson brackets. 
This similarity is not accidental. Assume that the in- 
teraction operator causes transitions only between 
magnetic sublevels of one energy state. For this pur- 
pose it is necessary to put formally r n =  n in Eqs. (5.8).  
By virtue of the property in (2 .6) ,  the only dynamic 
t e rms  that remain in these equations a re  those of the 
differential type. The equations themselves take the 
form of the known Liouville equations with classical 
Poisson brackets, a s  they should. The canonical con- 
jugate variables a re  COS9 and cp. 

 h he range of validity of the equations derived is  additionally 
discussed in Sec. 5. 
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