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It is known that upon intraresonator optical excitation of a quantum-particle medium the dynamic Stark 
s h i i  of the resonance levels lead to novel effects under conditions of a relatively short single-mode resonator, 
viz., to optical multistabiity and self-oscillations in the "particle + field" system. The effects are due to the 
nonmonotonic dependence of the real and imaginary parts of the resonant polarizability of the medium on the 
intensity amplitude of the intraresonator field. They aiise in single-resonance excitation of the two-level 
particles, in contrast to the cases considered by the author with V. A. Kovarskii and I. Sh. Averbukh [JETP 
Lett. 32, 255 (1980); Sov. Phys. JETP 53, 39 (1981)], in which similar effects appeared in double optical 
resonance excitation of three-level quantum systems. 

PACS numbers: 42.50. + q, 42.65.C. 

The study of cooperative processes in optical reso- 
nators filled with a medium that is  nonlinearly polar- 
ized, the investigation of the ensuing optical bistabili- 
ties, hysteresis, and other phenomena, a s  well a s  
various aspects of practical applications of the latter, 
have been the subject of a considerable number of 
studies during the last decade (see, e.g., the reviews 
1 and 2). The most investigated, both theoretically and 
experimentally, i s  the situation when there i s  placed in 
the resonator a system of quantum particles (a gas of 
atoms of molecules, a system of impurity atoms or of 
other elementary excitations in solids), one of the ex- 
citation frequencies of which i s  close to the frequency 
of one of the longitudinal modes of the resonator, a s  
well a s  to the frequency of the exciting laser radiation 
that enters the resonator through a slightly transparent 
mirror. Such resonance conditions made it possible, 
when account was taken of the nonlinear polarizability 
of the medium, to confine oneself to a two-level ap- 
proximation (model of two-level absorbers3). The real 
and imaginary parts of the polarizability of the medium, 
calculated in the two-level approximation, a r e  non- 
linear monotonic functions of the intensity of the laser 
radiation, and it i s  this which ensured the appearance 
of bistability and hysteresis when such media were 
placed in not too long single-mode resonators excited 
by external laser 

bility of the medium was due in this case to the Autler- 
Townes optical effect7 (linear high-frequency Stark ef- 
fect in double optical resonance). In the present com- 
munication we call attention to the fact that the self- 
oscillations and multistability can be attained also in 
the simpler case of excitation of two-level particles by 
one laser beam (at a single resonance). For this pur- 
pose i t  i s  necessary only to take into account the Stark 
shift of the resonance levels, which a r e  quadratic in 
the amplitude of the field intensity of the exciting laser 
and a re  connected with the dynamic polarizability. If 
the calculation of the polarizability of the medium is 
carried out in a model of only two dipole-coupled levels, 
such a shift (called in this case the Bloch-Siegert shift7) 
is due to the nonresonant part of the field mixing of the 
levels. It is small in terms of the parameter I d,,F/ 
(E, - &,)I << 1 ( E ~  i s  the energy of the i-th level, F i s  the 
intensity of the laser field, d,, i s  the matrix element of 
the dipole mixing of levels 1 and 2), and can be dis- 
regarded in practice. However, in the case of real 
(multilevel) quantum systems, nonresonant shifts of 
two levels singled out by the single-resonance condition 
can become appreciable (compared with the perturba- 
tion due to resonant mixing of these levels). Con- 
tributing to this can be the smallness of I dl,/ (weakly 
allowed resonant transition). Indeed, the nonresonant 
shift 

We have shown earlier5s6 that if the real and imaginary 
1 ) ( i = * , 2 )  

parts of the polarizability of the medium a r e  nonmono- L+ I,a (1 

tonic functions of the laser intensity, then threshold can be comparable with the value of the resonant per- 
phenomena appear that a r e  new for the described condi- turbation I d,,FI, inasmuch a s  the sum over k always 
tions (short single-mode resonators). These phenomena contains allowed t ran~i t ions  (with large I dl,( ). In ad- 
can be both stationary (multistability) or nonstationar y dition, there can take place the additional quasireso- 
(self-oscillations in the "particles in resonator + field" nant conditions I E, - E (  I -Ew [but I c, - ct  -Awl> rl ,  rk, 
system, self-modulation of the light emerging from the where r{,k, is the width of the i-th (k-th) level, so that 
resonator). In Refs. 5 and 6 we considered a more i t  i s  possible to r ztain the quadratic approximation (1) 
complicated system, in which the medium, consisting and disregard the population of the k-th level by the 
of three-level quantum particles, was excited by two laser radiation]. 
laser fields whose frequencies were close to the fre- 
quencies of adjacent quantum transitions. The already Taking into account the shifts b ~ , ,  the polarizability 
mentioned nonmonotonic dependence of the polariza- of the particles X =  XI + i X N  in a single resonance i s  of 
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the form8 

Here w, = (E, - E, ) / R  is the particle excitation frequency, 
w i s  the laser frequency, I= I F I  ; y'l and r-l are  the 
transverse and longitudinal relaxation times (for sim- 
plicity we confine ourselves to the case of homogeneous 
broadening), and a is the difference between the non- 
resonant dynamic polarizabilities of the particle in the 
states 1 and 2. We place the system of particles in a 
ring resonator of length 3 with a mirror transmission 
coefficient T. We assume that the lifetime of the photon 
in the resonator YICT (c is  the speed of light) exceeds 
considerab1.y the characteristic times of the longitudinal 
processes ( ~ / c T  >> y-l, r-l), and that the change of the 
internal field F as  a result of a single pass through the 
resonator i s  small, so that the mean-field approxima- 
tion can be Under these assumptions, by 
adiabatically eliminating the variables that describe the 
medium from the system of material equations and 
Maxwell's equations, we can obtain (for details see Ref. 
6) 

Here F = Qei< K - w/c, N i s  the particle density, F, 
is the amplitude of the field intensity of the external 
laser radiation, L i s  the length of the working arm of 
the resonator filled with the nonlinearly polarized 
medium, @ = O/T, 6 is the measure of the detuning of 
the frequency w relative to the natural frequency of the 
resonator mode (KY= 0 + 2nm, where m i s  an integer 
and O << 1). With the aid of (2) and (3), (4) we obtain an 
equation for the stationary values of the field in the 
resonator: 

Obviously, Eq. (5) can have more than one solution. The 
stability of the stationary solutions of Eqs. (3) and (41, 
obtained from (5), i s  determined by the standard linear 
analysis using the Routh-Hurwitz criterion.'' This 
analysis yields the following stability conditions: 

Here Q(x) is the right-hand side of Eq. (5), and 

In its physical meaning, P(x) is the power dissipated by 
the internal field on account of the penetrability of the 
resonator mirrors and the absorption in the medium. 
Owing to the presence of the dynamic Stark shift (-PA?), 
the quantity P(x) i s  generally speaking a nonmonotonic 
function of the intensity (-2) of the external field (it 
contains decreasing sections). On these decreasing 

sections, the second condition of (6) i s  violated, and 
this can lead to instability of the solutions of Eq. (5), 
including those solutions which correspond to sections 
of increasing function Q(x). We note that p=  0 and P(x) 
i s  a monotonic function of x for the ordinary two-level 
absorbers previously investigated in the literature in 
connection with the problem of optical bi~tability.'-~ 
This in turn leads to stability of the solutions (5) cor- 
responding to growing sections of the function Q(x). An 
example of the situation described above i s  shown in 
Fig. 1. As follows from this figure, an entire band 
(shown shaded in Fig. 1) of values of the amplitude of 
the external field y, is produced in which the solutions 
of (5) [in this example Q(x) is  a monotonic function and 
the solution i s  unique] a r e  unstable. The presence of 
a unique and unstable solution of the system of nonlinear 
equations (3) and (4) leads us to expect the appearance 
of a limit cycle on the phase plane of the system. Such 
a limit cycle i s  indeed observed (Fig. 2, thick line, 
with the thin line showing an example of a phase tra- 
jectory that reaches the limit cycle in the course of 
time). The presence of the limit cycle means the onset 
of self-oscillations in the "particles in resonator+ fieldw 
system, and accordingly amplitude-phase self-modula- 
tion of the field emerging from the resonator F, (F, 
= T"~F).  As follows from Fig. 2, the modulation depth 
in the chosen numerical example is appreciable. 

Let us dwell in greater detail on the analysis of the 
stable stationary solutions of system of equations (3) 
and (4). In the usual dispersion bistability based on 
resonant polarization of two-level particles: P = 0 and 
$(g) i s  a monotonic function of $. Therefore at  @#0 
and i f  g varies continuously the natural frequency of 
the single-mode resonator filled with the nonlinear 
medium can be tuned only once to resonance with the 
frequency of the external field. This can lead to the 
onset of one decreasing section (inflection) of the plot 
of Q(x) against x, which in turn yields three solutions 
of Eq. (5) of which two [corresponding to the sections 
with positive slope of Q(x)] a re  stable (bistability). If 
account i s  taken of the dynamic Stark shift of the levels 
(6 #O), then x l ( I )  i s  a nonmonotonic function of I. 
Therefore when I varies continuously the frequency of 

FIG. 1. Onset of the instability zone of stationary states of 
the system (C = 20, P 2  = 10, = 20, A = 0). 
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FIG. 2. Limit cycle on the phase plane of the system (C = 20, 
B2= 10, * = 2 0 ,  A =  0, y i  = 15). 

the resonator becomes tuned more than once to reso- 
nance with the frequency of the external field, a s  a re- 
sult of which Q ( x )  acquires additional inflection sec- 
tions. Equation (5) then has more than three solutions, 
of which more than two are  stable (multistability!). It 
is easy to see that at A/P>> 1 the inequality I x ( I ) I  
<<XI(%) i s  satisfied and the multistability has a pure 
dispersion character. The outward physical manifesta- 
tions of this multistability a re  similar to those investi- 
gated by us earlier in Refs. 5 and 6. 

In conclusion, we make a few estimates. Let there be 
satisfied a quasi-resonance condition between level 2 
and some quantum-system level k connected with level 
2 by a dipole-allowed transition (Er << 1 E, - E, - Ewl 
<<Awl. Then the polarizability can be approximated by 
the expression o! - I d2,I2/El E, - E, -Em. In this case 

The quantity (3 reaches the values /3 2 1 needed for the 
effects described above to manifest themselves, for 
example, when 

If we chose y - lo8-10' sec'l, ( dl,/ -lO-lD, T - and 
KL - lo3, values C 2 1 are  reached at particle densities 
N 2 1013-1014 ern-=. Choosing - y  we find that y 2 1 a re  
reached at F,  2 10-lo2 V/cm. Inasmuch as  in the fore- 
going estimates we chose typical values of the param- 
eters, the effects described above a re  expected to be 
observable under nonextremal conditions. 

The author thanks V. A. ~ o v a r s k i r  and L Sh Averbuch 
for a helpful discussion of the results. 
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