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Suflicient conditions for the applicability of the quasiclassical approximation in a three-dimensional problem 
are formulated. The conditions are based on the concept of the Fresnel volume of a classical trajectory; these 
conditions characterize the "diffraction thickness" of the trajectory and reduce to the requirement that the 
potential should not change abruptly across the transverse section of the Fresnel volume. A simple method is 
also proposed for estimating the modulus of the wave function in the caustic regions of inapplicability of the 
quasiclassical approximation; the method is based on the law of conservation of the probability flux in a tube 
of trajectories of fmite section. 
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1. BASIC ASSUMPTIONS proach, which i s  based on Hyugens's principle. The 
calculation of Feynman path integrals by the method In one-dimensional problems, the condition of ap- 

plicability of the quasiclassical approximation re- of stationary phase leads to the same results. 

duces to the well-known requirement that the de Broglie 
wavelength x = h/p = h/[2m (E - U)]1/2 of a particle 2. DERIVATION OF THE INEQUALITIES (3) AND 

with energy E in the potential field U ( x )  should change ESTIMATE OF af 

little over distances of order x (Refs. 1-3), i .  e .  , 
~ [ d ~ / d x ]  << A or  

IdUdzI<rl. (1 

In three-dimensional problems, this condition i s  
only necessary but it is not sufficient, since the ful- 
fillment of the inequality (1) by no means guarantees 
smallness of the diffraction effects, which a r e  not des- 
cribed by the quasiclassical approximation. 

Hitherto, the conditions of applicability of the quasi- 
classical approximation in three-dimensional problems 
have been obtained only for a number of special 
cases (see Refs. 1-4 for examples). However, it i s  
possible to formulate general conditions of applica- 
bility by requiring that the parameters of the quasi- 
classical wave function 

$(r) =A (r)e's'r)'n (2) 

(the amplitude A and the momentum components p j  
= aS/ax,) change little within the region important 
for the formation of the wave function. It is clear 
that the region of formation i s  concentrated near the 
classical trajectory leading to the given point r (see 
Fig. 1). Let 2a, be the diameter of the transverse 
section of this region. Then the general conditions of 
applicability can be written in the form of the inequal- 
ities 

Let p' be a radius vector in some plane P, l; be the 
distance along the normal to P, +O(r') = + O ( p f ,  l; = 0) be 
the initial wave function specified on the plane P ,  and 
g ( r ,  r') be the Green's function of the stationary 
Schradinger equation 

The wave function $(r) a t  an arbitrary point r can be 
expressed in terms of i ts  value $'(rf) in the plane P 
by the diffraction integral 

which follows from Green's theorem in the case of a 
flat surface and reflects Hyugens's principle. 

The quasiclassical approximation (2) ar ises  from the 
exact integral representation (5) a s  a result of cal- 
culation of the integral by the method of stationary 
phase. Therefore, the conditions of applicability of 
the method of stationary phase a re  simultaneously the 
conditions of applicability of the quasiclassical ap- 
proximation. To apply to the calculation of (5) the 
method of stationary phase, we represent the initial 
wave #'(rf) and the Green's function g ( r ,  r') in the 
quasiclassical form: 

Q ( r l )  = A"(r') es"(r')/n, g (r, r') = G (r, r') e'S(r9 r') ", (6) 

which must be satisfied along the complete trajectory 
(here, V, i s  the operator of differentiation a t  right 
angles to the trajectory). There a r e  at least two ways 
of deriving the inequality (3) and simultaneously deter- 
ming the scale a,. Below, we use the simplest ap- 

FIG. 1. 
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where A0 and G a r e  the slow (on the scale of the de 
Broglie wavelength x = h/p) amplitude functions. Then 
by analogy with Ref. 5 ,  

i as (r, r') iB (I, v) jn 
U C ~ ' ) = ~  5 , s . o ( ~ ' )  G (r, r') e dap', 

S ( r ,  r') =SO(r') +S(r,  r') 

The equation VIS(r, r ') = 0 distinguishes the stationary 
point rL= (p;, 0), which serves  a s  the s tar t  of the clas- 
sical trajectory which leads to the point r. The main 
contribution to the integral (7) is made by the n neigh- 
borhood of this point , within which the total phase 
S(r,  rf) /E differs from its stationary value S(r,  r3/ 
A s  S(r)/E by not more than n, o r  

This equation determines the scale af of the region of 
formation of the wave function $(r)  in the plane P. 

The determination of a, from Eq. (8) can be signifi- 
cantly simplified by using the fact that a, is small 
compared with the length L of the trajectory. This 
means that in (8) we can make an expansion in the 
difference q = r' - ri and restrict  ourselves in this 
expansion to the quadratic terms: 

lLT(r, r') -&'(r, r l )  1 z ' /~  1 (qV')2S(r,  r') 1 r,=r;=h/2 (9 

(the term linear in q is  absent because of the extremal 
properties of the classical trajectory). If the second 
derivatives vanish, it is necessary to retain in (9) the 
cubic term, etc. 

When the method of stationary phase i s  used, the 
pre- exponential factors in (7) a r e  taken outside the 
integral with their values at the stationary point r;. 
This operation is valid if the pre-exponential factors 
change little within the n neighborhood of rL, and this 
leads to the inequalitites (3). 

In optics, the n neighborhood of the stationary point 
is  called the first  Fresnel zone. It is  therefore 
natural to call the se t  of al l  then neighborhoods threaded 
by the reference trajectory leading to r the Fresnel 
volume of the classical trajectory of the particle. Above, 
the Fresnelvolume appeared a s  the region important for 
the formation of the wave function. It can also be interpre- 
ted a s  the region over which the classical trajectory 
of the particle i s  smeared,  in the same way that in 
optics the Fresnel volume characterizes the extent 
to which the ray trajectory is smeared. ' v 7  In prin- 

ciple, the degree of smearing of the trajectory could 
be determined experimentally by placing a screen 
with an opening in the path of the flux of particles. 
Diffraction distortions of the wave function $(r)  ar ise  
when the diameter D of the opening (see Fig. 1) is 
reduced to 2af. 

3. APPLICATIONS 

In the various special cases when it i s  possible to 
establish the applicability of the quasiclassical ap- 
proximation (for example, by comparison with an 
exact o r  an asymptotic solution), the cri teria (3) 
agree with the already known conditions. Below, we 
shall use the cri teria (3) to determine the caustic 

region of inapplicability of the quasiclassical approxi- 
mation and to estimate the wave function in this region. 

a )  Estimate of the caustic region of inapplicability 
of the quasiclassical approximation. The quasiclassical 
approximation breaks down near a caustic because the 
amplitude A becomes infinite. The boundary of the 
caustic region of inapplicability could be estimated 
by means of the condition a f  I VIA( -A, a t  which the first  
of the inequalitites (3) is violated, but one can show 
that in the neighborhood of the caustic this condition 
i s  equivalent to the requirement that the n neighbor- 
hoods of the stationary points in the integral (7) 
should touch, i. e . ,  that the difference I S, - S, I /ti 
between the phases along two trajectories leading to 
the given point r be of order r: 

But if n trajectories ar r ive  at the point r, the boundary 
of the caustic region i s  determined by the condition that 
a t  least two of the many n neighborhoods touch: 

In the case of a simple caustic (n =2 ) ,  the difference 
IS, - S, I increases in proportion to l3I2, where I is the 
distance along the normal to the caustic8*': 

where1 v l i s  the relative curvature of the trajectory 
and the caustic, and PC and Uc a r e  the particle momen- 
tum and the potential on the caustic. Substituting (12) 
in (lo), we obtain the following estimate for the 
width of the caustic region of inapplicability: 

This result agrees well with the local Airy asymptotic 
behavior of the wave function. *19 Indeed, the maximum 
of the Airy function is  separated from the caustic by 
the distance I' = 1.02A, and the first  zero by the distance 
1" = 2.34A, so  that our estimate of 1, lies between 1' 
and I". For  estimates, it is convenient to take a s  
the measure of the width of the caustic region the 
characteristic scale A = (p/2p,21 vl )'I3. 

b) Estimate of the wave function in the neighborhood 
of a caustic. Although the quasiclassical approximation 
breaks down in the immediate proximity of a caustic, 
it can be used to obtain the correct order of magnitude 
of 1 $ I 2  by applying the quasiclassical law of conserva- 
tion of the probability flux in a pencil of classical t ra-  
jectories to the caustic region, the wave function being 
assumed to be uniformly "smeared" over this region. 
Then an estimate of the wave function on the caustic, 
I $,I , c a n  be  taken to be the averaged quantity 

I $,I = I@" (P"~/P~X,) '", (14) 
where zc i s  the transverse section of the pencil of 
trajectories corresponding to the caustic region, and 
x0 is the initial transverse section of this pencil. 

Comparison with the results of exact1' and asympto- 
tic (Ref. 1 ,  Sec. 127, and Ref. 4) calculations shows 
that in the case of a simple caustic formed by scat- 
tering on a centrally symmetric potential formula 
(14) gives (for width A of the caustic region) a value 
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of Ivct,l which differs from the value 1 I a t  the f i rs t  
maximum of the Airy function by a coefficient 0.80, 
i. e. , a value only 20% smaller. Bearing in mind that 
1 %  I is an estimate of the wave function averaged over 
the caustic region, the difference is even less .  Con- 
sidering also the analogous results for electromagnetic 
and acoustic waves,6*7 it is to be  expected that for  the 
more complicated caustics as well the estimate (14) 
will give an e r r o r  not exceeding 20-5%. 

4. GENERALIZATIONS 

The estimates proposed above admit generalizations 
in several directions. Firs t ,  inequalities of the type 
(3) can be extended to the case of nonstationary prob- 
lems by introducing the concept of a Fresnel volume 
in space-time, a s  in analogous electrodynamic pro- 
blems. % Second, the conditions (3) can be readily 
extended to vector problems of quantum mechanics. 
In this case,  it is necessary to impose the require- 
ment of small changes in the spin state within the 
Fresnel volume. Third, the arguments presented here 
can be used to analyze the applicability of the asymp- 
totic methods (the comparison function method4."-ls 
and Maslov's canonical operator method1s*14*15), which 
eliminate the principal shortcoming of the quasiclas- 
sical approximation, namely the divergence on the 
caustics. 

Finally, it is possible that the prescriptions intro- 
duced here for determining the Fresnel volume will 
simplify the finding of the regions which a re  important 
for  integration in a function space. 

We a r e  grateful to I. A .  Batalin and B. M. ~olot ivskir  
for  a detailed discussion of the wiper. 
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