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The distribution function determined by the field correlators of all orders, of the photocounts in nonlinear 
resonance atom fluorescence induced by quasimonochromatic radiation is investigated. The extreme cases of 
long and short observation times are considered. Results of a numerical calculation are presented. Some 
distribution features connected with the photon antibunching and the feasibility of experiments are discussed. 

PACS numbers 32.50. + d, 32.80.K.f 

1. Nonlinear resonance fluorescence (NRF) is pre- T T 

sently the object of intense experimental and theore- ~ . ( ~ ) = q " S d s  ,... j d s . j d t  D i . . . j d t .  @ 

tical study, being a typical example of the nonlinear (3 

photoresponse of atomic-molecular systems. The X(E.-(rI,t1)Ep-(4,t:) ... EP+ (rzrtt)E.+ (r,,t,) ). 

dynamics of the system under resonant excitation of 
light manifests itself in the spectrum, in the cor- Here q i s  the quantum yield of the photodetector and 
relation functions of the field, and in the statistics of E i ( r ,  t) a r e  the NRF field operators in the Heisenberg 
NRF photocounts . representation. The integration is over the surface of 

Observation of antibunching of photons in NRF, a 
phenomenon theoretically prediced in Refs. 3-5, was 
reported in Refs. 1 and 2 .  The antibunching is due 
to the time delay of the successive acts of photon 
scattering by one and the same atom. This delay 
reflects the dynamics of the population of the excited 
level of the atom in the field of an intense light wave. 
It manifests itself already in the fourth-order correla- 
tion function of the field of the scattered radiation: 
the term corresponding in this function to the single- 
atom contribution vanishes a t  equal times. 

In this paper we investigate the distribution function 
p(n, T) of the photocounts n during the observation 
time T for stationary scattering of intense mono- 
chromatic light by a two-level atom. This function 
is determined by the correlators of all orders of the 
field of the scattered radiation. We consider in greater 
detail the case of negative correlations (antibunching) 
and compare the results with the Poisson distribution, 
which corresponds to the coherent state of the radia- 
tion field. 

2. It is convenient to calculate the characteristic 
function QhT)  of the distribution p(n, T),  which is de- 
fined by an expansion in the vicinity of the point 1 = 1 

in the form of a ser ies  near the point x = 0: 

the photodetector, which is assumed to be spherical with 
a center in the scattering region and with a radius 
much larger  than the s ize  of this region. Summation 
is carried out over the repeated indices of the Carte- 
sian components. 

Generalizing the procedure of Ref. 5, we can re- 
present the correlator (. . . ) in (3) in the form of the 
diagram 

9 Q 9 

In the diagram (41, each shaded block represents a 
diagonal element pZ1'(7) of the atom density matrix in 
a strong field-(the upper indices denote the initial 
condition a t  7 = 0  with 1 and 2 standing for the ground 
and excited levels, respectively). The circles in 
the upper part of the diagram a r e  se t  in correspon- 
dence with the operators E'(r,, ti); and in the lower 
part with the operators E-(r,, ti). For  the form of 
the photon propagators (wavy lines) see  Ref. 5. After 
integrating in (3) over the surface of the photodetector, 
we obtain 

Here Q,,(T) a r e  the factorial moments of the distribu- Here n i s  a coefficient that depends on the details of 
tion p(n, T); they a r e  directly connected with the the experimental geometry (see Ref. 51, A, i s  the 
correlators of the field of the scattered radiation in- stationary value of the population of the excited level. 
cident on the photodetector6: Expression (5) is a multiple convolution; this makes 
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i t  easy to obtain i t s  Laplace transform: 
P Q, ( s )  =n! - ; - p  (s)"-I, n>l;  Qo ( s )  = U s ,  (6) 
S 

where P=qc~y;b,, i s  the mean value of the stationary 
photocurrent, and p(s )  = qcu,pi:l)(s) (for simplicity 
we use the same symbol for  the original and i t s  La- 
place transform, making only the argument change 
T-  s ) .  Using (6), we c a r r y  out a formal summation 
of the s e r i e s  (2) in the Laplace representation: 

From the condition for  the normalization of the dis-  
tribution p(n, T) it follows that the Laplace transform 
Q(X, s )  of the generating function (1) exists  under the 
condition Re(s)  > 0 and is analytic in X ,  a t  least  in the 
open circle I 1 - x 1 < 1.  On the other hand, the func- 
tion (7) appears as a sum of a s e r i e s  that converges 
under the condition I ~ p ( s ) l  < 1. From the explicit f o rm 
of p,U,"(s) [see Eqs. (10) and (11) below] i t  is c lear  
that p g )  (s) becomes arb i t ra r i ly  sma l l  if the region of 
permissible values of s is shifted f a r  enough to the 
right. Therefore f o r  any E > 0 i t  i s  possible to satisfy 
the inequality I Ap (s) l < 1 in the circle I & I 1 + E , 
confining oneself to the region ~ e ( s )  >A(&) in which 
I p(s) 1 < (1 + & ) - I .  The function Q(x, s) obtained in the 
form (7) under the indicated limitation, can be ex- 
panded in the E -vicinity of the point & = 1 in the s e r i e s  
(1) fo r  the L.aplace t ransforms.  We thus obtain 

The same result can be obtained directly by expres-  
sing p(n, s )  in t e rms  of Q,(s) using the formula 

The se r i e s  (9), with account taken of (61, converges 
again under the condition I p(s) l < 1. But the Laplace 
transform p(n, s) of any of the sought functions p(n,  
T) exists  and i s  analytic in the entire Re(s) > 0 plane 
[since p(n, T) c 11. Inasmuch a s  p(n, s) is determined 
in the region Re(s) > A ( & )  (see above) by expressions 
(8), and the function (8) a r e  meromorphic, we a r r ive  
a t  the conclusion that they represent  p(n,  s) everywhere 
a t  Re(s)>O. 

We present now the expressions fo r  p ~ ~ " ( s )  and 
jS,,, which follow from the solution of the system of 
equations for  the elements of the density matrix of a 
two-level atom in a strong monochromatic field (see,  
e . g . ,  Ref. 5): 

p::') ( s )  =D ( s )  -'Vo2(2s+y) ; (10) 

s3+2ys' + (X + v:+lvo' v:+~v. ' ) ]  , (11 ) 
4 

Here v, =w, - w,, i s  the detuning from resonance, V ,  
= Id,, Eol /2R, w, is the frequency, E, i s  the ampli- 
tude of the incident light wave, and w,, and d,, a r e  the 

frequency and the dipole moment of the transition of 
the a tom.  

3. From expressions (8) it i s  easy  to show that 

2 = 
f ( T )  =nay - (T  r )  [p::'' ( r )  -Pzzldz.  T s  - 

The result  (14) fo r  the dispersion of the number of 
photocounts was obtained and discussed in Ref. 7. It 
i s  a l so  possible to obtain the asymmetry of the dis-  
tribution p(n, T) ,  defined by the formula 

In the general case  the expression for  y, turns out to 
be  too cumbersome. A lucid result  i s  obtained fo r  
sufficiently long observation t ime 

Under this condition 

Here 

P r= lim r ( s ) ,  r ( s )  = p  ( s )  - -, 
8-0 

(19) 

r = '1, lim E ( T )  
T - r m  

=qay J [ P : : ~ '  (TI-pz21dr. 
0 

The asymmetry (18) can be  sma l l e r  than for  the cor-  
responding Poisson distribution [i.e., less than 

and becomes negative a t  r 2 -0.17. 

By way of example, the figure shows the result  of a 
numerical calculation [the inverse Laplace transform 
of expressions (8)] fo r  concrete values of the param- 
e t e r s .  We call attention to the narrowing of the dis- 
tribution (by almost  a factor  of 2) compared with the 
Poisson distribution, and the f a s t e r  decrease  a t  n 
> W. It can be stated that the realization of the photo- 
current  pulses is in this case  more  uniform than the 
realization of the Poisson process;  this corresponds 
to antibunching of the photons in t ime.  

4. In the case  of a sufficiently long observation time, 
when A=PT >> 1, i t  i s  possible to obtain analytically 
ra ther  s imple approximate representations of the dis-  
tribution function p(n,  T).  

It i s  easy  to verify that complete neglect of the photon 
correlation, namely the replacement r ( s )  - 0 ,  i. e .  , 
pA1 ' (~ ) -~ , ,  [see Eqs. (19) and (8) o r  (6) and (9)] leads 
to a Poisson distribution. Let us obtain an approxi- 
mate expression for  p(n, T) under the condition of 
relatively smal l  correlations. Nhen taking the inverse 
Laplace transforms of expressions (6) fo r  Q,,(s) we 
confine ourselves to the pole s = O  and leave out the 
t e rms  with the derivatives rG") (s),:,. It can be 
shown that this corresponds to the condition n<<H/l rl 
[see  Eqs. (19)]. We then obtain in t h e  indicated re-  
gion of n approximate expressions fo r  the factorial 

849 Sov. Phys. JETP 54(5), Nov. 1981 D. F. Smirnov and A. S. Troshin 849 



FIG. 1. Distribution p(n, 2') of the photocounts. Columns- 
results of numerical Laplace inverse transformation of the 
functions (8); i = 5, vo = 0, V; =y2/8 [see Eqs. (10)-(12)l; 
circles-Poisson distribution at ii = 5; qa = 1. 

moments Qn(T) (we do not present i t  here for  the 
sake of brevity). To find the generating function 
Q(A, T) from formula (2) it is necessary to take into 
account a sufficiently large number M of the factorial 
moments. Namely, since a rough estimate yields 
Qn(T)-@T)"=P, we must chooseM >>E. This re- 
quirement with respect to the numbers of the approxi- 
mately obtained factorial moments Qn(T), together 
with the limitation n << H/ 1 rl , leads to the condition 

I rl << 1. We then obtain for the genrating function 

~ ( i , ~ ) = e x p { - A } .  l+ir  i i = p ~ .  (20) 

Under the same restrictions (n << E/ l r I ,  I r l << 1) we 
obtain from (20) on the basis of the definition (1) 

p n , = e x p { - ) ( n ~ l ( - ) .  i+r i+r  (21) 

Here L,C1 '(x) = Ln(x) - L,,(x), where Ln(x) i s  a Laguerre 
polynomial. We note that the upper limit of the zeros 
of the polynomial L:-')(X) =xOz 4n (Ref. 8). Therefore 
formula (21) is  valid also at r <  0 (antibunching con- 
dition) and I r l << 1 in a sufficiently large region of 
values of n, containing n. 

We obtain now an expression for p(n, T), which i s  
valid for  all values of r ,  but only in the central region 
In - R I <<ii under the condition R >> 1. We write down 
the inverse Laplace transform of expression (8) for 
p(n, S) in the form 

Here q = (n - E)/R; we made the substitutions s = ix/T 
a n d n + l - n = R ( l + q ) .  If Iql s (n)- l f2 ,  then thevital 
region in the integral (22) is  1x1 2 (i~)lI', since the 
poles s, of the function r ( s )  lie in the left half-plane 
and I Re(s,) I if of the order of y [ ~ q .  ( l l ) ] ,  and we can 
assllme in (22) that I r ( .  . . ) l s 1 . We expand both 
logarithms in (22) in powers of x/R and retain the qua- 
dratic terms [by leaving only the linear terms we 
would obtain p(n, T) = b(n -;)I. We arrive ultimately 
at the Gaussian distribution [inthe region In - nI 5 (n)lI2 1: 

[we recall that here r=  r(O), Eqs. (19)]. The result 
(23) agrees with the central limit theorem. The number 
n of the photocounts during the time T >> rc, where 
5 E 1 rl / p  is the characteristic photon-correlation 
time, can be regarded as the sum of the large number 
of almost independent random quantities n,-the num- 
bers  of the photocounts in the time intervals T, (7, 
<< T, << T). The pair correlation of the photons mani- 
fests itself in this approximation in the photocount- 
distribution variance, which coincides with the exact 
value (14). 

5. We consider in conclusion the possibility of 
experimentally determining the function p(n, T) for  
the NRF of one atom in experiments of the type per- 
formed in Refs. 1 and 2 with an extremely rarefied 
atomic beam. Many-atom interference effects and 
fluctuations of the number of atoms in the region of 
their interaction with the laser  radiation can alter 
substantially for the form of the distribution p(n, T) 
compared with that obtained above. Therefore each 
individual measurement of the number of photocounts 
must be carried out in the reliable presence of one 
atom in the interaction region. The most direct 
method of separating"sing1e-atom" situations i s  control 
of the intensity, o r  more accurately of the total num- 
ber  of photocounts during the transit time. The time 
intervals T of the samplings a r e  chosen inside the 
time during whch the atom traverses the region of 
interaction with the laser  beam (To). In the statistical 
analysis one takes into account only those intervals To 
for which it has turned out that I n(To) -%(To) 1 < [ n ( ~ , ) ] ' / ~  
(here %(To) =pT0 is the expected number of photocounts 
from one atom). Such an organization of the experiment 
seems realistic in connection with the development 
of the technique of laser detection of individual atoms? 
In principle it is possible also to use the features of 
the correlation of the intensity in the NRF of a sys- 
tem of two o r  more atoms. For  example, recording 
of excess coincidences of photocounts during a time 
on the order of the reciprocal Doppler width of the 
line, at large photon-gathering angles, would be 
evidence of the presence of more than one atom in the 
interaction region. 
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