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Logarithmic perturbation theory (PT) for screened Coulomb potential is considered. Calculation of higher PT 
orders of the level energy E, is reduced to recurrence relations that are valid for any type of screening and are 
very convenient for computer calculations. They are employed to calculate the PT coefficient of E, up to 
k = 100 for a number of physically interesting cases such as the Yukawa potential, the quarkonium potential, 
etc. The approach of E, as k-+m to the asymptotic form of l?,, , defined by the quasiclassical approximation, 
is discussed. The problem of summation of the divergent PT series is considered. By employing the Pad6 
approximants and the asymptotic form of E, it is possible to determine with a high accuracy the energy level 
E ( g )  for the potentials mentioned above in a range that exceeds considerably the range of applicability of PT, 
including the strong coupling region. 

PACS numbers: 1 l.lO.Jj, 1 l.lO.St, 03.70. + k 

1. A "logarithmic perturbation theory"" was develop- discussed the asymptotic form of the coefficients E, of 
ed earlier1-l4 f o r  the discrete-spectrum states in quan- the P T  ser ies  a s  k -a and i t s  connection with the 
tum mechanics. In this theory a transition is used quasiclassical theory. We proceed next (Sec. 4) to 
from the Schradinger equation to the Riccati equation specific examples: the Hulth6n and Yukawa potentials, 
for the logarithmic derivative of the wave function. the funnel, etc. 
With the anharmonic o ~ c i l l a t o r ~ . ~  and the Stark effect in 

In quantum-mechanics and field-theory problems, the 
the hydrogen atomssp6." a s  an example, i t  was shown perturbation is as a rule2) more singular than the initial 
that this modification of perturbation theory (PT) is potential Vo. A s  a result, the P T  s e r i e s  coefficients 
very convenient for the calculation higher P T  orders,  

increase factorially: 
especially in the case of the ground state. We con- - 
tinue here  the study of this group of questions and con- Ek~B,(1+c,/k+~~/k2'r. . .) k+m, 

sider the calculation of the higher orders  and the sum- Ek= (ka) ! (-a)'kB~,, 
mation of the diverging P T  se r i e s  for a screened Cou- and the PT series itself is asymptotic and has a zero 
lomb potential convergence radius. The question ar i ses :  what physi- 

cal  information is contained in this case  in the higher 
P T  orders?  

where E= rn = e = 1 (atomic system of units), 

i s  the screening function, with f, = 1 (the potential be- 
comes pure Coulomb at short distances). 

The class considered includes a number of physically 
important potentials. Thus, a t  f(x) = e-% we obtain the 
Yukawa potential, which is frequently encountered in 
nuclear physics, solid state theory, plasma physics 
(Debye screening), etc. The Thomas-Fermi model 
corresponds to p = 2 ( 4 / 3 ~ r ) " ~ ~ " ~ ,  with f ( x )  the solu- 
tion of the equation ~ " ~ f " =  f 3 / 2 .  At p =g1/2 and f (x) 
= 1 - x 2  we obtain a potential of the "funnelw type: 

which is a popular variant of the phenomenological de- 
scription of the states of the heavy quarkonium. 1 5 9 1 6  

The number of such examples can be easily increased. 

The plan of the art icle is the following. In Sec. 2, 
the calculation of the higher P T  orders  for the level 
energy and for the wave function is reduced to recur-  
rence relations that a r e  much more convenient for cal- 
culations than the usual17 P T  scheme. In Sec. 3 is 

To answer this question it is necessary to resor t  to 
methods of summing divergent ser ies .  In Sec. 5 is dis- 
cussed the summation of the P T  se r i e s  for the ground- 
level energy with the aid of Pad6 approximants. Two 
examples a r e  considered in detail: the Yukawa potential 
V(r) = -ee"'/r and the potential (1.2). It i s  shown that 
by this method i t  is possible to reconstruct with high 
accuracy the level energy in a wide range of values of 
p and g, including the strong-coupling region (Sec. 6). 
Thus, the calculation of the higher P T  orders,  a s  well 
a s  their asymptotic forms a s  k -m,  makes i t  possible 
to obtain the energy E ( g )  far  beyond the limits of the 
region of applicability of standard PT. This conclusion 
is of interest, especially for quantum field theory, in 
view of the considerable progress made in recent years  
both in calculations of multiloop diagrams and of the 
asymptotic coefficients of the P T  series,lg2' and in the 
summation of diverging P T  ser ies .  22-24 

2. Just a s  in the preceding papers,3" we reduce the 
higher-order P T  calculation to recurrence  relation^.^' 
In the case of the ground s t a t e  we make the substitution 
R'/R + r' = - 5, where R(r )  is the radial wave function. 
The Schrijdinger equation then goes over into the Ric- 
cati equation 
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Expanding t ( r ,  p )  and E ( p )  in formal KT se r i e s  in pow- 
e r s  of the screening parameter F :  

we obtain a chain of equations for the functions 5,(r): 

It follows from them that 

and tk(r )  is a polynomial of degree k - 1 a t  k 2 1. We 
put therefore 

and arr ive  a t  recurrence relations fo r  the coefficient 
ajk): 

fk, 

I -a p+p-j 

Decreasing the index j in succession, we calculate the 
k-th PT  order for the level energy: 

The structure of the recurrence relations (2.4) does 
not depend a t  al l  on the actual form of the screening. 
These relations a r e  convenient for computer calcula- 
tions and make i t  possible to calculate quite high or- 
de r s  of PT (up to k = 150-200 a t  our present computa- 
tion capabilities). In principle i t  i s  possible to obtain 
with the aid of (2.4) also explicit expressions for E, in 
terms of the f i rs t  k coefficients off,, 1 cn ~ k ,  but such 
equations a r e  quite cumbersome. It i s  more conven- 
ient to use for the calculations Eqs. (2.4) directly in 
each concrete case. 

Once the quantities 5, and E, a r e  calculated, it is 
easy to obtain8 also a P T  expansion for the wave func- 
tion: 

where R2 = (1/2) f2r3, R3 = f3( l /3r3  + r2 ) ,  and a t  k a 4 the 
polynomials R, a r e  determined from the recurrence 
relations 

where 

The constant C in (2.6) in k-th P T  order is deter- 
mined from the normalization condition 

~ R 2 ( r ) ? d r = i + O ( p k + 1 ) .  
0 
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We note that ( , ( r )  and R,(r) vanish identically a t  an 
arbitrary form of the screening f(pr) .  This is seen 
even from the fact that 

V ( r )  - - r - '+f ,p+O(p2) .  

Thus, the first-order correction in p yields a constant 
energy shift that does not a l ter  the wave functions. 

We have confined ourselves above to the ground state. 
The presence of a node of the radial wave function a t  
the point r = r,(O < r, < m) ra ises  a certain difficulty in 
the considered method, since ( ( r )  - 00 a s  r - r,. It 
was shown in Ref. 6 how to use the Riccati equation and 
the method of recurrence relations in the case of states 
with nodes. 

3. Asymptotics of the higher PT orders  and the quasi- 
classical approximation. 

Let 

where v(0) = 0 and v(r) - a s  r - m [we assume for 
simplicity that v(r) is a monotonically increasing func- 
tion of r, although this is not obligatory]. As is 
k n o ~ n , ' ~ * ~ ~  to calculate the asymptotics of the coeffi- 
cients E, a s  k - .o i t  is necessary to find the jump in 
the level energy4) 

on the cut g= - A <O. At g < 0  tunneling of a particle 
through the potential barr ier  becomes possible, i. e . ,  
the bound level turns into a quasistationary one. 

As A - + 0, the WKB method can be used to calculate 
i t s  width y .  The quasiclassical momentum 

has three turning points: r,, r- and r+. The region 
r, < r  < r -  is allowed for classical motion, and the r e -  
gion r. < r < r+ is forbidden. At small A, the first  two 
turning points a r e  almost independent of A: 

whereas the point r+ goes off to infinity a s  X -0. Thus, 
for v(r) = rN we have 

r ,  = (2n2h)  -'Ix-c+O ( A l l N ) ,  

Here E =  - 2E and E is the level energy (at g=O, E = E ,  

= l/n2); A = O  for s-levels, A = 1 + 1/2 a t  E #O (Langer 
correction), c, is the level shift in f i rs t  order in g: 

E ( g )  = e o - ~ ~ g f O ( g ' ) .  (3.4) 

We note that for the ground level E, = 1, E ,  = 2-N(N + 2)!, 
and in the case N =  1 (funnel) E~ = 3n2 - 1 ( 1 +  1) for a level 
with arbitrary quantum numbers n and I .  



The level width y is determined by the penetrability 
of the barrier.  As X -0 there exists a region of values 
of Y, Y- << Y << Y+, in which the quasiclassical wave func- 
tion 

is matched to the tail of the exact wave function of the 
free atom1': 

and this determines the constant C. Going next around 
the turning point r+, we continue the solution into the 
region Y >r,, where i t  takes the form of a divergent 
wave. The flux of particles that go off to infinity de- 
termines the width of the level 

y(h)=ICIZ=yo exp { - 2 1 ( h ) ) ,  

(n+A)  "+*(,-A) (3.5) 
yo= e-'", I (&)  = Ip ( r )  l dr. 

(n+l) ! (n-1-1) In3 

We emphasize that Eq. (3. 5) is asymptotically exact 
in the limit a s  h -0. The reason is that the quasiclas- 
sical approximation was used only in the region r >> Y-, 
where the conditions of i t s  applicability a r e  satisfied. 

We rewrite the preceding equation in a more illustra- 
tive form 

where w,, = 2n/T =nm3 i s  the frequency of the revolution 
of the particle along the Keppler ellipse [period 
T = n(2 ( E  13)'12 = 2nn3], 

Equation (3.6) has a lucid physical meaning. The 
factor w,,/2n is equal to the frequency of the impacts of 
classical particle (localized in the region yo < r < Y,) 
against the wall of the potential barr ier  Y =  Y-, while the 
exponential corresponds to the probability of tunneling 
a t  each impact. If the quasiclassical approximation 
were exact for a l l  n and 1, the coefficient A would be 
equal to unity. This is satisfied when n - m: 

Even for small quantum numbers, however, the dif- 
ference between A and unity is small. Thus, for the 
ground state yo = e-' and A = 2ne-' = 0.85033. . . . The 
region of applicability of the WKB method is seen to 
stretch out a l l  the way to n - 1 (this takes place also in 
other physical problems, see,  e. g., Ref. 25). 

Thus, the determination of the asymptotic form of 
y(X) a s  X -0 reduces to a calculation of the integral 
J(h).  Subsequent calculations will be made for a power- 
law potential v ( r ) = r N .  This corresponds to Eq. (1.1) 
with 

The scale transformation r = ( E / ~ x ) " ~ x  yields 

] (A)  = e ( N + Z ) J Z N  (2h)  - 1 I N f  ( , , )  (3.9) 

for  the ground state, where 

We a r e  interested in the expansion f(v) a s  v -0. In this 
case 

x-=v [1+vN+(N+l )v2"+ .  . .], 

and it is easy to show that 

where 

At k > k ,  we have 

Here k ,  is the number of subtractions in the dispersion 
relations for E(g) .  Substituting here expressions (3.5) 
and (3. l l ) ,  we obtain the asymptotic form of the coef- 
ficients of the P T  series.  For  the ground level i t  
takes the form (1.3), where 

a = N ,  b=1, 

and atN.1 

We consider now the Yukawa potential. When the 
sign of the screening parameter p is reversed, this 
potential takes the form 

Since now V(Y) - m a s  Y - m, a barrier i s  present and 
tunneling takes place. At any positive A, the level has 
a width, i. e . ,  the energy E = E ( p )  has a discontinuity 
a t  p<O. The asymptotic form of the coefficient of the 
P T  ser ies  is in this case 

This asymptotic form is somewhat unusual and differs 
from expression (1.3) for perturbations of the poly- 
nomial type. 

Finally, in the case of a Hulthbn potential the rever- 
sa l  of the sign of p leads to the potential 

V ( r )  =-h/(i-e-"1. 

Since 
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tunneling is impossible in such a potential, therefore 
y(A)=O a t  sufficiently small  A. From the dispersion 
relations (3.12) i t  follows that the PT-series coeffi- 
cients do not grow factorially. In this case E, = 0, 
starting with k = 3 (see below). 

4. Higher PT orders. The equations obtained in Secs. 
2 and 3 make it possible to calculate high PT orders  
for  the level energy and consider the question of their 
acquiring an asymptotic value E, as k --a. We present 
several  results. 

a )  in Eq. (1. I ) ,  the Hulthbn potential corresponds to 

where B, a r e  Bernoulli numbers. From (2.4) we ob- 
tain Eo = E, = -1/2, E, = -1/8, and E, = 0 a t  k >2, which 
coincides with the exact solution of the Schrijdinger 
equation for the ground level: 

b) Yukawa potential 

f ( x )  =e-', f,=i/n!. (4.2) 

It follows from (2.4) that in this case all  the E, a r e  
negative and a r e  rational fractions. We calculated 100 
P T  coefficients for the ground level: 

and, for example, 

(for more details see Table 1 of Ref. 8). 

We note that the higher P T  orders in this problem 
were first  considered by ~olikanov'  who suggested the 
transition from the Schradinger to the Riccati equa- 
tion. He, however, constructed the P T  in a somewhat 
different manner than in Refs. 3-8 and in the present 
paper. In the k-th approximation the wave function was 
determined accurate to p2', but in each P T  order i t  i s  
necessary to normalize the wave function to unity accu- 
rate to terms -F", take exponentials of the power se- 
r ies,  etc. In the upshot, the calculation procedure 
turned out to be quite cumbersome. In Ref. 1 were 
calculated the seven first  PT orders for the ground- 
level energy; the coefficients E ,  andE, differ from (4.3) 
and a r e  in e r ro r .  Recentlyt4 the coefficients E ,  were 
calculated (by another method) up to k = 40. The re- 
sults of Refs. 8 and 14 a r e  in full agreement. 5 '  

c) The screened Coulomb potential 

is encountered in solid state physics when i t  comes to 
describing the potential of an impurity ion in metals and 
semiconductors (see, e. g., Refs. 26-28). The method 

FIG. 1. Coefficients of the PT series for the ground-level 
energy: solid curve-Yukawa potential, dashed curves-the 
potential (4.4). The points 0 and. correspond to positive 
and negative Ep. The scales of both axes change at k = 20. 

described above works successfully a lso  in this case 
[see Table 2 of Ref. 8, where the coefficients of the ex- 
pansion (2.2) a r e  given up to  k = 1001. The growth of 
1 E,I is not s o  regular here a s  for the Yukawa potential, 
and the E, do not maintain a constant sign. As seen 
from Fig. 1, the sequence of the alternation of the signs 
in them is quite complicated. 

d) In the case of the potential (1.2) fo = -f, = 1, and the 
remaining f,, a r e  equal to zero. The coefficients E, 
were calculated with the aid of (2.4) and a r e  given in 
Table I. For  k >10 they a r e  approximate and only a 
small  fraction of the result  is given, but this fraction 
does given an idea of the growth rate of the P T  coef- 
ficients a s  k - m. Their asymptotic form is deter- 
mined by Eqs. (3.13) and (3.14). In particular, a t  
N =  1 [funnel, s ee  (1.2)] i t  is necessary to put in Eq. 
(1.3) for Ek 

and a t  N =  2 (a potential equal to the sum of the Coulomb 
and oscillator potentials) we have 

The ratio EJE,, a s  a function of the P T  order k, is 
shown in Fig. 2. Just a s  in other quantum-mechanics 
 problem^,^" the asymptotic value of E,, which is  de- 
termined by the discontinuity of the energy E ( g )  on the 

TABLE I. 

Note. It can be shown with the aid of the recurrence 
relations (2.4) that E, are rational fractions of the form 
E,= -MJ2Q. Here Mk and n, are positive integers, with 
n ,s3k-3 a t k > l .  
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FIG. 2. Approach of the PT coefficients to the asymptotic va- 
lues Eb for the ground level in the potential V ( r )  = -r-'+ g#. 
Marked on the curves a re  the values of N. Dashed curve- 
the ratio %/Zk in the case AT= 1, see Eq. (5.4). 

cut g<O, is quite slow. This indicates that the power- 
law corrections to E, [i.e., the terms c,/k, c2/k2,. . . 
in the expansion (1.3)] a r e  not small. 

5. Summation of the PT  series. We consider now a 
question that is perhaps the most interesting from the 
point of view of the use of methods of summing asymp- 
totic ser ies  in quantum field theory (see Refs. 19-24): 
what information on the properties of the exact solution 
E(g)  can be obtained i f  one knows in exact form the 
first  few P T  orders and the asymptotic value of g, a s  
k - -. To sum diverging P T  se r i e s  we use the method 
of Pad6 approximants. 

From the coefficients E, we can construct the ra-  
tional fractions 

Here P, and Q, a r e  respectively polynomials of degree 
M and N; they a r e  determined completely from the con- 
dition that the first  M + N  + 1 terms of the Taylor se r i e s  
for (5.1) coincide with the corresponding terms of the 
asymptotic ser ies  (2.2) for the level energy. The func- 

FIG. 3. Diagonal pad& approximants (solid curves) and PT 
polynomials (dashed curves) for the ground-level energy in a 
Yukawa potential. 

tions (5.1) a r e  called Pad6 approximants. Explicit 
forms for the calculations of P,(p) and Q,(p) a r e  given, 
for example, in Ref. 29. 

The results  of the calculation in the case of a Yukawa 
potential a r e  shown in Fig. 3. The sequence of the ap- 
proximants [N, N](p) converges rapidly with increasing 
N, in contrast to the P T  polynomials 

The employed approximants [lo, lo], i. e . ,  the first  
20 coefficients E,, determine with sufficient accuracy 
the energy E(p)  in the entire interval 0 < p < p,,, in 
which the level is bound. At least nine significant fig- 
u res  of E ( y )  a r e  determined a t  p S O .  5, and six figures 
a t  p = 1. With increasing p ,  the accuracy with which 
the energy is determined decreases, but even a t  p - p,, 
i t  remains high enough. At the same time, ordinary 
P T  is not suitable a t  a l l  a t  F - p,, (see the dashed 
curves in Fig. 3). At p =  p,,= 1.190612 the level goes 
off to the continuous spectrum. This value of p,, re-  
fines the value obtained earlierS0 in a numerical solu- 

I I 
0 zoo ;loo 2 

FIG. 4. Summation of the PT series for the ground-level en- 
ergy in the potential (1.2): a) region of small g; solid curve- 
exact solution, dashed curve-PT polynomials pN@; b) pad;? 
approximants (5.2); c) the approximants (5.5). The points on 
the Figs. b and c denote the values of E(g) taken from Ref. 15; 
the values of N are indicated on the curves. 
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tion of the Schrijdinger equation. Similar results 
were obtained8 also for the oscillating potential (4.4). 

In the case of the funnel (1.2), the P T  polynomials 
yield a good approximation to  the energy E(g)  only a t  
small  g<O. 1 (see Fig. 4a). Advance into the region of 
larger g is possible with the aid of the Pad& approxi- 
mants. We consider the functions 

where J?(g) is the Borel sum6' of the ser ies  with the 
asymptotic coefficients I?,, and %,, a [N, ~ ] ( g )  is the 
approximant (5.1) for the ser ies  

constructed from the differences E, - g,. 
The first  2N + 1 coefficients of EN(g)  coincide with the 

exact ones, and in addition correct  account is taken of 
the asymptotic form of the f a r  tail of the P T  a s  k - m. 

Therefore the function (5.2), in contrast to the P T  poly- 
nomials, has a correct  analytic behavior a t  the point 
g=o. 

The results of the calculation for the ground level a r e  
shown in Fig. 4b. At N>17 the E,(g) curves a r e  prac- 
tically indistinguishable from one another and a r e  in 
good agreement with the results  of a numerical solu- 
tion of the Schrijdinger equation. ') 

The convergence can be further improved by taking 
into account the asymptotic value of the correct  solu- 
tion a s  g- 03, which in this case can be easily obtained 
[see the next section, Eq. (6.3)]. The function E(g)  
-gZf3 cannot be described exactly with the aid of Pad6 
approximants, i. e., in the class of rational fractions 
P,(g)/Q,(g). This, however, can be done by changing 
over from g to a new variable g'; for example, the sim- 
plest variant is 

g l = g ( l + K g )  -" K>0.  (5.3) 

Rearranging the P T  ser ies  in powers of g': 

i t  is easy to find the connection between the coefficients 
a, and E, (see Appendix B), after which we determine 
functions similar to (5.2): 

E N ' = d ( g i )  + [ N ,  N i l ]  (g ' ) .  (5.5) 

Here A(g') is the Borel sum of the se r i e s  

and the Pad6 approximants N, N + 1 (g') a r e  constructed 
from the differences a,- 12,. It is easy to see that 

a s  g - -; the correct  asymptotic form of E i  a t  infinity 
is ensured by the same token. 

The parameter K in (5.3) can be chosen in principle 

from the condition of the fastest convergence of the ap- 
proximants E i  with increasing N. We, however, did 
not carry  out such an optimization, and simply fixed K 
from the condition a, = 0, which yields K = 3E2/E1 = 3. 
This choice, obviously, improves the convergence in 
the region of small g, but offers no special advantages 
a s  g.- *. 

We consider now the calculation results. It is seen 
from Fig. 2 that the rate a t  which the coefficients a, 
reach the asymptotic values ii, is approximately the 
same a s  for the coefficients E,. Summation of the P T  
ser ies  with the aid of the approximants (5.5) is shown 
in Fig. 4c. The transition to the functions (5.5) en- 
sures  good agreement with the numerical solution15 up 
to values g-500, i. e. ,  i t  expands the region of appli- 
cability of P T  by 3-4 orders  of magnitude. 

6. The strong coupling limit: g - m. We consider 
the Hamiltonian %(a, g)  = (1/2) p2 - a/r + gfl. 

Using a procedure proposed by Symanzik (cited in Ref. 
31), we carry  out the scale transformation r -g-1J(N+2' Y, 

which yields 

It follows that a s  g- m the eigenvalues take the asymp- 
totic form 

E,, ( g )  =EnL ( I ,  g )  =c("l' - g  2'(N+z1 9 (6.2) 

where the constant c',"') coincides with the correspond- 
ing eigenvalue of the simpler Hamiltonian 

At N = l  and 1=0 we obtain the Airy equation. In this 
case we have for the ns level ~ 2 ' = 2 - ' / ~ 5 , ,  where -5, 
denotes the n-th zero  of the Airy function Ai((), (, >0. 
In particular, the ground level in the potential (1.2) 
we have 

this determines the behavior of the energy E ( g )  in the 
region g - a, where P T  is certainly not applicable. 

We consider now the approximants (5.5). In this case 
we have a t  infinity 

[N, Al+l] (g ' )  -gl-g"', B(gl) -g-'" In g+O 

[see Eq. (A.3)]. Therefore EL =cNg2/3 a s  g- m, i. e . ,  
the E; account correctly for the functional dependence 
of E on g in the strong-coupling region. The coeffi- 
cient c, is easily expressed in terms of the ratio of the 
lowest-order coefficients of the numerator and denomi- 
nator of the fraction [N, N + l](gl) .  It turns out that c, 
is numerically close enough to the exact value (6.3) 
even a t  N-10: c lo= l .  61, c2,=l.68, etc. 

We note that the coefficient c, depends on the choice 
of the parameter K that enters in the definition of the 
new variable g'. Variation of this parameter in the in- 
terval 1 c K  c 4  has shown that the character of the con- 
vergence of c, to the limit c, a s  N- .o depends little 
on the choice of K. Thus, for example, clo = 1.62 and 
czO=1.73a tK=2 .5 ,  c l o = 1 . 2 8 a n d c , o = 1 . 6 7 a t K - 3 . 5 ,  
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Comparison of these results  with Fig. 4b leads to the 
following conclusion. If we use in the calculations, be- 
sides the first  P T  orders and the asymptotic values of 
E,, also information on the behavior of the exact solu- 
tion E(g)  a s  g -  m, we can reconstruct E ( g )  in a sub- 
stantially larger region of g (in our example, for prac- 
tically a l l  0 <g<m). A similar situation obtains also 
in the calculation of the Gell-Mann-Low function8) in 
field theory with the interaction gq4 (cf. Refs. 22 and 
24 in this connection). 

The examples considered above show, however, that 
for a reliable advance into the strong-coupling region 
the number of exact coefficients of the P T  ser ies  must 
be sufficiently large (for example, 42 coefficients E, of 
the P T  ser ies  a r e  used in the calculation of c,,). 

APPENDIX A 

If a = 1 in (1.3) and /3 is a non-negative integer, then 
the Bore1 sum of the ser ies  with the asymptotic coeffi- 
cients E, is  calculated in finite form 

- 
x) - ( 1) "+' {U, (x-') el"Ei (-x-') + V" (I-') }, (A. 1 ) S,(x)= E l k n ( -  '- -, 

ll-0 

where Ei  i s  the integral exponential function 

and U, and V,  a r e  polynomials defined in Ref. 22. In 
particular, 

u o ( 2 ) -& - v-, (z) =0, U ,  (z) =zZ+z, Vr (2) =Z , etc. 

In the case (4.5) we have 

E (g) =e, [ ( t ' f t )  e' Ei (-t) t t ]  , t=2/3g. (A. 2) 

Let a,= k!kO, P >O. The asymptotic form of the sum 
(A. 1 )  a s  x - can be easily obtained with the aid of the 
Sommerfeld-Watson transformation: 

The singularity of a, farthest to the right on the com- 
plex k-plane is k = 0 (if 6 is not an integer) o r  k = -1 
(at p = n = l , 2 ,  . . . ). Bending the integration contour to 
the left, we obtain 

""I  x 

where C = 0.5772. . . . The last equation can be easily 
obtained also from (A. I ) ,  recognizing that 

We note that (A. 3) remains valid also at 6 =0, a s  
can be verified from the explicit result: - 

1 
So (I) = k! (-2) k= - - el1" Ei (-x-') . 

x 
k-0 

(A. 4) 

APPENDIX B 

We indicate the connection between the coefficients 

E,and a,. Let 

[in (5.3), v = 1/3 and w =gl] .  Using the binomial se-  
r i e s  

- 
r (kv+n) 

lok= c ( - K )  "gk+" 
"-0 

r (kv) n! 

and equating in (5.4) the coefficient of like powers of g, 
we obtain 

and a t  k 2 

These recurrence relations make i t  possible to calcu- 
late a, in succession from the already known P T  coeffi- 
cients E,. We obtain now the asymptotic value of a, a s  
k -m. The factorial relation 

determines the discontinuity of E ( g )  on the cut g= - 5  
< 0: 

AE (g) =-nc,(a~)-'B+" exp (-'ilaj), e=++0. 

In the vicinity of point g= 0 

g=w+vKwZ+ . . . , g-l=w-'-vK+O(w). 

It follows therefore that on going from g to a new vari- 
able w the coefficient c, in (B. 3) is multiplied by 
exp(- vK/a), while the remaining parameters remain 
unchanged. Therefore the asymptotic forms of the 
coefficients E, and a, differ by the same numerical 
factor. In particular, for the ground state in the po- 
tential (1.2) we obtain 

 his name was proposed in Ref. 9. 
"1t suffices to mention such known problems as  the anharmonic 

osci~lator,'~ the Stark and Zeeman effects in the hydrogen 
atom." Also included are most screened-Coulomb-potential 
variants considered below. 

3 ' ~  more detailed exposition of the content of this section i s  
given in Ref. 8. 

4 ' ~ h e  quasistationary level E = Eo - i y / 2  is  located on the low- 
er edge of the cut gCO. This is  seen from the following 
considerations. At g >  0 the quasiclassical asymptotic form 
of the wave function of the bound state i s  

Corresponding to the quasistationary state is a solution of 
the type of "diverging wave at infinity," which i s  obtained 
from this at g =  he-i', A-0. 

"with account taken of the different normalization of the Ham- 
iltonian, which leads to the relation EL= (-1)?2'bi~k, where 
EL are the Privman's ~oefficients,'~ and the E ,  were defined 
above. 

6 ' ~ n  the case (4.5) this sum i s  calculated explicity-see A p  
pendix A, Eq. (A. 2) .  
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"see Ref. 15. We note that g=4/h3, E = 2&/h2, and h and 6 
a r e  the Schrijdinger-equation parameters used in Ref. 15. 

8 ) ~  number of workers have s h o ~ n ~ ~ - ~ ~  that when the sign of 
the coupling constant g is reversed in the functional integral 
for  the Green's function, the la t ter  acquire an imaginary 
part a exp(-c/lg I ) ,  c > 0. The analogy of this result with 
the results of Sec. 3 is obvious. When the function integral 
is analytically continued to complex values of g, a number of 
subtle problems ar ise  dealing with regularization and renor- 
malization. These problems a r e  considered in particular 
detail in Ref. 34 for the gP4 scalar field theory. 
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