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Passage of an ultrarelativistic positronium atom through a thin layer of dense matter is investigated for the 
conditions in which the layer thickness is I <  %cy/AE, where AE -me4/4# is the characteristic difference 
in the energies of the stationary states of positronium. It is shown that if I is much greater than the mean free 
path, the probability of observation of the positronium atom in a bound state is inversely proportional to I. 

PACS numbers: 61.80.Fe, 36.10.Dr 

1. INTRODUCTION been discussed in the literature," in particular, in con- 

Let a quantum system (elementary particle, nucleus, 
atom, etc.) in i t s  ground state hit a target. In each 
collision inside the target the system with a certain 
probability can change i ts  internal state (be excited or 
broken up into parts) or can remain in the initial state, 
changing only i ts  direction and velocity. What i s  the 
probability W that after traversal  of a target of thick- 
ness 1 the system will remain in its initial state? The 
answer to this question will depend on the ratio between 
the characteristic time T determined by the internal 
structure of the system and the interval T =  L,,/u which 
separates successive inelastic collisions with the par- 
ticles d the target (here L,, = l/Na,, is the mean free 
path for inelastic interactions, v i s  the velocity of the 
system, and N is the number of atoms per unit volume). 

The quantity T satisfies the relation 

.r=A/bE, (1) 

where AE i s  the characteristic value of the energy dif- 
ference of the eigenstates of the system; for ultrarela- 
tivistic systems 7 must be replaced by y7, where y i s  
the Lorentz factor. Usually the time T i s  very short, so  
that 

Then after each collision the fate of the system is de- 
cided long before the next collision, i.e., in each inter- 
action the system will be in a single definite stationary 
state. A cascade process based on the pattern of in- 
dependent successive collisions develops. Here inverse 
transitions of the produced excited states to the initial 
state a r e  possible. If such transitions can be neglected, 
the answer to the question posed is the ordinary expo- 
nential 

The situation i s  different for the condition 

Now the behavior of the system i s  determined not by 
independent actions of each of the successive collisions 
individually, but by the combined and essentially simul- 
taneous action of many collisions, and a s  a result of 
this, simple expressions like Eq. (3) lose their meaning. 
A situation which i s  essentially similar has already 

nection with the regeneration of neutral K mesons, 
where T is very long a s  a result of the small mass dif- 
ference of the K: and KO, mesons. 

In a two-level system such a s  the neutral K mesons, 
the simplest case i s  realized. If there a r e  several 
levels, the behavior becomes more complicated, al- 
though its general nature remains a s  before. Qualita- 
tively new features ar ise  for systems with an infinite 
number of levels, and the purpose of the present work 
i s  to analyze such systems in the specific example of 
passage of ultrarelativistic positronium through a thin 
target. As was shown by ~ e m e n o v , ~  beams of ultra- 
relativistic positronium atoms produced in decay of 
ultrarelativistic no mesons in the reaction no - y + (e*e-) 
can be achieved in existing accelerators (see also Ref. 
4). For positronium in the ground state, T= 10-l6 sec, 
and with a Lorentz factor y =  lo3 the value of yr i s  
= 10-l3 sec, which corresponds to a range yrc= 3. 
cm. On the other hand, the cross  section for interac- 
tion of positronium with the atoms of the target i s  so  
large (for example, in aluminum 0 - 2 .  lo-'' cm2 ac- 
cording to Ref. 5) that in condensed matter L,, - 

cm, i.e., the condition (4) can be satisfied with a 
large margin. In what follows we shall assume that in 
addition to (4) an even stronger condition is  satisfied: 

Since in the case of positronium AE - me4/4R2, where 
m i s  the electron mass, in view of Eq. (1) this i s  equiv- 
alent to the requirement 

It follows from Eq. (5') that for  y - lo3 the subsequent 
theory applies only to sufficiently thin targets, the 
thickness of which does not exceed a few microns. 

2. ULTRARELATIVISTIC POSITRONIUM. IMPACT 
APPROXIMATION 

The interaction of a positronium atom with the atoms 
of the target reduces to the Coulomb interactions of i t s  
electron and positron with the electric fields created by 
the nuclei and electrons of the atoms. Under the condi- 
tions considered, these interactions can be analyzed in 
the framework of the impact approximation. The radius 
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of positronium i s  about twice that of ordinary atoms. If 
the target i s  made of a material with a high atomic 
number 2, the electric field in i ts  atoms i s  concen- 
trated inside a screening region whose dimensions a r e  
small  in comparison with those of the atom itself. 
Therefore, putting off for the moment the analysis of 
the general case, we shall assume that in each indi- 
vidual collision there actually takes part  either only the 
electron of a positronium atom or  the positron, but not 
both particles together. 

We shall write the internal wave function of posi- 
tronium in the ground state in the form cp,(r), where 
r = r, - r2 is the distance between the electron and the 
positron. If after collision with some atom the elec- 
tron obtains a transverse momentum2' q,, the center 
of gravity of the positronium will change i t s  momentum 
also by an amount q,, and the internal wave function 
will go over to the form 

On the other hand, if the positron took part in the colli- 
sion considered and received a transverse momentum 
~ z ,  then the center of gravity of the positronium will 
change i t s  momentum by an amount g, and the internal 
wave function will go over to 

cp (r) =cpl (r) exp (iq2r/2h). (6') 

Strictly speaking, the states (6) and (6') a r e  not sta- 
tionary, but when the condition (5) i s  satisfied they have 
no time to change before the next collision. Therefore 
after traversing the entire target the center of gravity 
of the positronium acquires a transverse momentum 
Q, +Q2 and the positronium wave function i s  

where Q, and Q2 a r e  the combined transverse momenta 
acquired by the electron and positron in all  collisions 
inside the target. All collisions in effect merge into a 
single combined collision, and the positronium inter- 
acts at once with the entire target a s  if with a huge 
single atom. 

By means of Eq. (6') it i s  easy to obtain the prob- 
ability W,, of a transition to any final stationary state 
of the positronium 6: 

In particular, the probability that i t  remain in the ini- 
tial state i s  

As i s  well known (see Ref. 6, Sec. 139), it follows from 
Eq. (7') that 

wtt=[l+(Q1-Qz)'a2116hz]-', (8) 

where a = 2ii2/me2 i s  the positronium radius. 

Since the quantities Q, and Q, a r e  random transverse 
vectors, the expression (8) must still b e  averaged over 
the appropriate distribution U(Q,, Q,). Then 

Note that (W,,) does not coincide with the probability 
of absence of collisions inside the target; collisions a r e  
not forbidden, and the direction of motion of the posi- 
tronium can change; i t  i s  required only that eventually 
the positronium turn out to be  in i t s  initial internal 
state. 

The number of collisions inside the target i s  deter- 
mined by the ratio between I and L,,,, where L,,, i s  the 
mean range corresponding to all possible interactions 
of positronium, including elastic interactions; in the 
model considered here, L,,, i s  half the corresponding 
range for a f ree  electron o r  positron. If the target 
thickness I is s o  small  that I/L,,, << 1, then only one 
collision can occur inside the target and the correspon- 
ding probability i s  l/Ltot. Consequently the distribution 
i s  given by 

where the function u(Q,, Q,) =u(q,, q2) describes the 
normalized distribution of the momenta transferred to 
the electron and positron in an elementary collision. It 
follows from Eqs. (9) and (10) that 

The quantity in the curly brackets coincides in meaning 
with the probability of any excitation of positronium a s  
the result of a single collision which has occurred and 
is equal to u,,/u,,, = L,,,/L,,. Therefore in the limit 
considered 

As expected, Eq. (11) coincides with the f i rs t  two terms 
of the expansion of the exponential (3). It can be shown 
that when the remaining terms a r e  taken into account 
the quantity (W,,) always exceeds this exponential (see 
below). Rather thick targets in which z/L,,, >> 1 a r e  
especially interesting in this sense. Each of the quan- 
tities Q, and Q, i s  then distributed according to a Gaus- 
sian law, which with allowance for axial symmetry can 
b e  written in the form 

where Q = I QI. The transverse momentum Q coincides 
with the transverse momentum which would be  acquired 
by a f ree  electron (or positron) which had traveled 
through the same target and had undergone in it multi- 
ple Coulomb scattering. Therefore 

where (e2) i s  the mean square multiple-scattering 
angle of an electron possessing longitudinal momentum 
p equal to half the positronium momentum. The quan- 
tity (8,) i s  given by the formula 

where u,,(B) i s  the differential cross  section for scat- 
tering of an electron by an atom into an element of solid 
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angle dC2 without regard to excitation and ionization of 
the atom; the integration in Eq. (13) i s  carried out over 
the entire solid angle. 

In the model considered here, the quantities Q, and 
Q, a re  statistically independent. Therefore the random 
quantity (Q, - Q,) can be replaced by the quantity Q, 
where Q i s  the total momentum which a free electron 
would obtain in double the number of collisions. Con- 
sequently Eq. (9) can be  rewritten in the form 

where (Q2) i s  defined by Eq. (12). 

For a sufficiently thick target the quantity (Q2) i s  very 
large in comparison with E2/a2 and the exponential in 
Eq. (14) can be replaced by unity. Then Eq. (14) goes 
over to 

After integration we eventually obtain 

where ( 8 2 )  i s  given by Eq. (13). 

As i s  well known, the coefficient of 1 in Eq. (13) i s  ap- 
proximated with high accuracy by the Williams formula 

where E, = ( 4 a ~ ~ / e ~ ) ~ ' ~ r n , c ~  = 21 MeV and L,, i s  the 
radiation length (see for example Ref. 7). It i s  clear 
from this that a s  v/c - 1 the probability (Wll) does not 
depend on the positronium energy and i s  inversely pro- 
portional to the layer thickness L3) Substituting the 
numerical values of the constants into Eq. (15), we ob- 
tain 

For sufficiently large values of l/Li, the probability 
(15') can be several orders of magnitude greater than 
the value calculated4' with the formula exp(-l/Li,). 

Although up to this time we have been considering 
only the probability ( W , , ) ,  the approach used above is 
completely applicable also to calculation of the prob- 
abilities (W,,) corresponding to the transition from the 
positronium ground state to any discrete state [see Eq. 
(7)]; this applies also to transitions between excited 
discrete states. In all cases for very thin targets the 
result is described by ordinary formulas containing ef- 
fective cross  sections, while for sufficiently thick tar-  
gets the transition probability is 

where p,, i s  a numerical coefficient which depends on 
the initial and final levels. As we have seen, P,, = 8/3. 
It can be shown that the combined probability of transi- 
tion of positronium from the ground state to the nearest 
excited states with principal quantum number n = 2 i s  
determined by Eq. (16) with PI,= 0.47. In the case of ex- 

citation of levels with a principal quantum number n 
= 3 we have the coefficient p,, = 0.156. For very large n 
we have p,, = 128/5n3. It i s  clear that after traversal  of 
a sufficiently thick layer of matter by the positronium 
(under the conditions L,, << 1 << YCT) the total probability 
that i t  remain in a bound state is proportional to 1/1 
and i s  small in comparison with unity, while the 
probability of breakup i s  close to unity. However, i t  
must be  emphasized again that the probability of re- 
maining in a bound state can be  many t imes greater 
than the "customary" value exp(-I/L,), where L, 
= l/Nub, i s  the mean range corresponding to breakup of 
the positronium. 

As we have mentioned above, after traversal  of the 
target the center of gravity of the positronium acquires 
a transverse momentum Q, + Q,; accordingly, the di- 
rection of motion of the positronium changes by an 
angle 

For a thick target, when the statistically independent 
vectors Q, and Q, a r e  distributed according to a Gaus- 
sian law, the angle o! i s  also distributed according to a 
Gaussian law, and the quantity ( a 2 )  i s  half the mean 
square angle for multiple scattering of an electron with 
momentum p. In the Gaussian approximation the ran- 
dom quantities Q, +Q, and Q, - Q, a r e  statistically ia- 
dependent. Therefore the angular distribution of the 
positronium atoms will not depend on what internal state 
they turn out to be in after passing through the target.5 

3. GENERAL DISCUSSION. THE El KONAL APPROACH 

It was assumed above that the size of the positronium 
is large in comparison with the screening radius of the 
target atoms. In order to understand what occurs when 
this condition is not satisfied, we shall give a purely 
technical discussion of the opposite limiting case, which 
would be realized if the size of positronium were very 
small  in comparison with atomic  dimension^.^' Then 
the electron and positron would be almost together and 
the same electric field would act on them inside an 
atom. This would lead to a complete correlation of the 
transverse momenta of the electron and positron. As 
a result of the opposite signs of the charge, we would 
have the equalities Q, = -Q,, ((Q, -Q,)') = 4 ( ~ ~ ) ,  where 
(Q2) is  defined by Eq. (12) (for the case of "largeM posi- 
tronium discussed in Sec. 2 ((Q, - Q,)') = 2(~ ' ) ) .  AS 
a result, values one-half those of Eqs. (15) and (16) 
would be obtained and, a s  we can easily understand, 
this determines the lower limit of the effect, In fact, 
in the general case we always have ((Q, -Q,),) d4(Q2). 
Consequently, for any real  ratio of the sizes of posi- 
tronium and the target atoms we have the inequalities 

where p,, a r e  the coefficients entering into Eq. (16). 

We note that treatment of the probabilities (W,,) a s  
mean squares of the transition form factors [see Eqs. 
(7)-(9)] i s  valid only if the correlation between the 
transverse momenta of the electron and positron either 
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is absent or does not depend on the distance between the 
electron and positron. For an arbitrary ratio between 
the value of a and the screening radius R this i s  not the 
case. More accurate formulas which take into account 
this circumstance can be obtained by the eikonal meth- 
od, which i s  widely used for description of processes 
a t  high energies (in particular, in the Glauber theorf). 
The condition of applicability of this method to the 
problem of interest here coincides precisely with Eq. 
(5); i t  can also be written in the form 

LapaYti, (5") 

where p = I pl and 2p is the momentum of the positroni- 
um. 

We shall represent the normalized wave function of 
positronium in i ts ground state and moving in vaccum 
a s  

$z,t(R, t ,  r ) = ~ t r ( R ,  t)cpt(p, I). (17) 

Here x,,(R, t) is the wave packet which describes the 
motion of the center of mass of the positron, 2p i s  the 
average momentum of the positronium, ql(p, z )  i s  the 
wave function of relative motion in the res t  system of 
the positronium, and p and z  a r e  the components of the 
vector r = r, - r, perpendicular and parallel to the mo- 
mentum p. 

Let the positronium pass through a layer of matter of 
thickness 1. We shall assume that the center of the 
packet crosses the boundary of the material a t  the time 
t = 0. Since the velocities of the nuclei and atomic elec- 
trons a re  small in comparison with the velocity of 
ultrarelativistic positronium, we can discuss the mo- 
tion of the latter in a medium with fixed locations of 
the nuclei and electrons of the target. If the condition 
(5) i s  satisfied, immediately after the positronium 
leaves the layer of matter the wave function of the 
system (electron+ positron+ macroscopic target) i s  the 
product of the wave function (17) taken a t  t = l / c ,  the 
wave function characterizing the state of all atoms of 
the target, and the eikonal phase factor 

@ @IL), P, {b*; lk*,. . . 1) (18) 
=exp{i &'[ti(bk-~(~~- P ; I LZ,. . . ) - t i ( b k - ~ ( ~ ) +  !- ; I&, .  lk2,. . . ) I ]  

2 

where (b,; b,, I,,, . . .) i s  the set  of transverse coordi- 
nates of the nuclei and electrons of the target, l,,, 
=YE' -  b,, the subscript k numbers the nuclei, and the 
subscripts kn number the electrons in the atoms (cf. 
Ref. 6, 9152). The phase 6 in Eq. (18) is expressed in 
terms of the potential of the Coulomb interaction by 
means of the usual relation 

1 Ze' e2 
6 (a, 11, 12. . . . ) - - j ( (.2+uz)X -i I ~ a + ~ , , ) z + u 2 ~ 8 ~ 2  ) - m n-l 

The total probability that after traversing the layer of 
matter the positronium will remain in the ground state, 
regardless of the change of i ts  momentum and without 
regard to the excitation ionization of the atoms of the 

target, i s  given by the expression 

in which the symbol ((. . .))(,, indicates averaging over 
the electronic state of the target atoms and the bar in- 
dicates averaging over the locations of the nuclei. Here 
we have used the completeness condition for the wave 
functions of the target atoms and the wave functions 
which describe the free motion of the center of gravity 
of the positronium. Equation (20) can be rewritten in 
the form 

In Eq. (22) the averaging i s  now over the electronic 
state of one atom. 

We shall assume that the locations of the nuclei a r e  
distributed according to a Poisson law. For a Poisson 
distribution of points 5, in three-dimensional space the 
following relation i s  validg: 

where N i s  the average number of points per unit 
volume. Using Eq. (23) we verify that, with allowance 
for the smallness of the atomic size, the result of av- 
eraging of the quantity llkS(bk - R(L), p, p ' )  over the loca- 
tions of the nuclei in a macroscopic target will not de- 
pend on R('). The final expression for (WLl) takes the 
form 

( w l t ) = J  exp(-NzK(p, p') )cpIZ(p, z)cp,l(pJ, z f ) ~ p d z d Z p '  dz', (24) 

where 

K(P,P')= j [ l - ~ ( b , ~ , ~ ' ) l f l b .  

It follows from Eq. (22) that K ( p ,  p') is a negative real 
function which i s  symmetric with respect to the permu- 
tation p =p' and which satisfies the conditions7) 

We note that in the eikonal approximation the com- 
bined cross  section for excitation and breakup also is 
expressed in terms of the function K (p, p'):  

Thus, in the limit of very small 1 we have 

i.e., Eq. (24) goes over into Eq. (11). In the general 
case with allowance for the fact that K(p,  p') is real we 
have the inequalitys' 

830 Sov. Phys. JETP 5 4 5 ) .  Nov. 1981 V. L. Lyuboshitz and M. I .  ~od~oretsk i i  830 



Let us now calculate (W,,) for the condition Nu,,Z>> 1. 
In this limiting case the argument of the  exponential in 
Eq. (24) is large at p #p '  and we can use the method of 
steepest descent. In view of Eqs. (22), (25), and (26) 
the function K ( p ,  pf)  for small 1 pf  - pl i s  described by 
the expression 

which has the structure 

where p = lp( . Substituting Eq. (30) into Eq. (24) and 
recognizing that the exponential exp[-NIK(~, pr)]  i s  a 
rapidly decreasing function, we obtain 

Here, a s  in the preceding section, we have neglected 
terms - exp(-  NU,,^) (see footnote 4). 

It i s  easy to see  that the probabilities of transitions to 
excited bound states cp, a r e  calculated with formulas 
similar to Eqs. (24) and (31) with the substitutions 

We emphasize that the asymptotic behavior 1/1, which 
was obtained previously on the assumption that the 
positronium radius is much greater than the screening 
radius of the atom, has a general significance. 

In the case of "large" positronium discussed in the 
preceding section, the crossing term in Eq. (29), which 
corresponds to the correlation between the electron and 
the positron, disappears; here C(p) - 0, and the quan- 
tity A i s  no longer dependent on p, namely: 

It can be shown that in the framework of the eikonal 
approach Eq. (32) has the equivalent form 

where u,,(8) i s  the cross  section for scattering of an 
electron with momentum P by a target atom into an ele- 
ment of solid angle di2 regardless of the final state of the 
atom. Consequently the quantity NZA i s  proportional to 
the mean square angle of multiple Coulomb scattering 
of an electron in a layer thickness I :  

We then have 

' I  1  
qIZ(p, Z) qIZ(p, 2') dZpdzdzZ= 7 9' (x') dZx= -. (34) (2n) 3naz 

Here 

-2 

T ( x 2 )  = j rptZ (p, I) e-xx*d2pdz= (it q) 

i s  the form factor of the ground state. With inclusion 
of Eqs. (33) and (34), the result (15) follows from Eq. 
(31). In the general case, as i s  clear from Eq. (29), 
we have the inequality 

This leads immediately to the lower bound (16'). 

It must be emphasized that our discussion in this and 
the preceding section applies equally to parapositronium 
and orthopositronium. As for the probability of change 
of the spin state of positronium on passage through a 
layer of matter, i t  i s  negligible (-(W,J(fJ)2). 

4. THE CASE OF TWO SEPARATED TARGETS. 
QUALITATIVE ANALYSIS 

After traversal  of a sufficiently thick plate by the 
positronium, i ts  probability for remaining in a bound 
state i s  very small, and the probability of breakup is 
close to unity. On the other hand, the probability of 
remaining in a bound state falls  off rather slowly with 
increase of 2, in proportion to 1/1, so  that when I is 
doubled i t  decreases by only a factor of two. The situa- 
tion i s  different if instead of a target of double the thick- 
ness we have two successive targets of thickness I 
separated by a rather large distance A. 

Let us consider the case in which the quantity A satis- 
fies the inequality inverse to (5"), i.e., 

A >>pa (35) 

Then a positronium atom which has broken up after the 
f i r s t  target cannot recombine into a bound state inside 
the second target, since in the path A the wave packets 
of the electron and positron move apart in the trans- 
verse direction to a distance A >> a. In fact, i t  follows 
from relations similar to Eqs. (15) and (16) that for 
(W,,)  << 1 the angle ( ~ ~ ) ' ~ ~ > > ~ / a p  and the quantity A 
> > f i ~ / a p ,  i.e., when Eq. (35) i s  taken into account we 
have A >>a. 

Therefore we should be interested only in those cases 
in which after passing through the first  target the posi- 
tronium atom turns out to be  bound. The masses m, 
of the discrete stationary states q, differ from each 
other. Therefore after traversing the path A, there 
ar ises  between any pairs of states q, and $9, a phase 
difference a,, = (w, - m,)Ac/yti. If the distance A be- 
tween the targets i s  so  large that the inequality (35) i s  
satisfied, then the phases a,, >> 1, i.e., an incoherent 
mixture of states q, with weights proportional to 1/1 
arrives a t  the second target. Each of these states 
passes through the second target independently of the 
others and, on leaving it, results in a bound state of 
positronium with a small probability, which is also 
proportional to 1/2.  Altogether, after traversing the 
two targets, the probability of formation of bound posi- 
tronium turns out to be negligible (- 1/Z2). There is a 
great contrast to the case of a target of double thick- 
ness (or of two targets located close together). 
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The present .work was initiated by L. L. Nemenov, 
who called our attention to the possibility of nonexpo- 
nential damping of ultrarelativistic positronium passing 
through a thin layer of matter and who emphasized in 
this connection the important role of the condition (5). 
We express our sincere gratitude to him. We also 
thank G. F. Drukarev for taking part in the discussions. 

Note added in Proof (25 September 1981). An analysis 
shows that for validity of the results obtained by us the 
condition (5) is  necessary but not sufficient, It i s  nec- 
essary also to require that the transverse displace- 
ments of the electron and positron as the result of 
multiple scattering be small in comparison with the 
size of the positronium. This leads to a somewhat 
more severe condition I < <  10*~~/~LfL:, where I and L,, 
are expressed in centimeters. A preprint has recently 
been published on a similar subject (L. L. Nemenov, 
JINR preprint R2-81-263, Dubna, 1981). 

"We can mention the analysis of interactions of y rays of 
rather high energy with nuclei, taking into account the pos- 
sibility of mutual conversions of y rays and secondary ha- 
drons.' In its more general aspect the role of the character- 
istic time T is  discussed in connection with the problem of s+ 
called young particles (see for example the review by Fein- 
berg2). 

 he change of longitudinal momentum in the problem of in- 
terest here can be neglected. 

"TO avoid possible confusion we note that in experimental 
studies for purely technical reasons in determining (e2) a cut- 
off of some type is used in the upper limit of the integration 
over the scattering angles, and the magnitude of the lisiting 
angle itself is  considered dependent on the target thickness 
I. This leads to a violation of the linear relation between 
(e2) and I. However, in the present work we a re  discussing 
the quantity ( 0 7  without any artificial cutoffs, so that (e2) z 
and Eqs. (13) and (13') a re  valid. 

4 '~tr ic t ly  speaking, in the right-hand side of Eq. (15) we must 
add terms proportional to exp(-1 /Lbt) which a r e  due to those 
cases in which positronium passes through the target without 
interaction or  with a small number of interactions. For 2 

>>Lbt these terms a r e  rapidly damped; in what follows we 
shall discuss those thicknesses I for which the relative con- 
tributions of the exponential terms to ( Wii) is negligible. 
We note that results such as  Eq. (15), of course, concern not 
only positronium. In particular, if conditions (4) and (5) a r e  
satisfied, then in passage of ultrarelativistic atoms or ions 
through sufficiently thick films the probability (WH) also i s  

proportional to 1/1. For the hydrogen atom (Wii) = (16/3) 
( r i c / ~ ~ a ) ~ & ~ / l ,  where a =  2 ~ ~ / r n e ~  is twice the Bohr radius. 
In contrast to the case of positroniurn, this result does not 
depend on the ratio between the radii of the hydrogen atom 
and the atoms of the medium. 

5 ' ~ n  analysis shows that this result applied only to the limiting 
case a>> R considered here (a is the radius of postronium and 
R ie the screening radius). For a / ~ - 1  this property of inde- 
pendence is destroyed. 

6'Besides, just this situation can occur for the bound system 
b+p- ) ,  which is similar to positronium. 

"According to Eq. (22), ReK(p, p')> 0, K(p, p') =fl-p, -pf) 
= K*(pf, p). In view of the axial symmetry K can depend on- 
ly on the scalars p2, pf2, and pp'. With allowance for this, 
we have ImK(p, p') = 0. 

 he result (28) follows from the general relation 

which i s  valid for positive-definite functionsyand for real 
functions H of any number of variables. In the case consider- 
ed here 
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