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Optical absorption in a Peierls dielectric with various electron concentrations c has been studied. The 
concentration range correponding to a model of doped trans-polyethylene was investigated. The frequency 
dependence of the absorption between various singularities in the electron spectrum was found. It was shown 
that all direct transitions lying above the fundamental absorption edge A are, in the dipole approximation, 
forbidden for an ideal periodic structure. The restoration of the transitions due to destruction of long-range 
order (for c>A ,/up) or due to melting (for c (A ,/v,) of the periodic structure was studied. 

PACS numbers: 78.50.E~ 

I. INTRODUCTJON 

1nt-ense experimental study of conducting polymers 
and analysis of the corresponding theoretical models where the sum is taken over doubly filled (taking ac-  
(see reviews of the l i terature in Refs. 1-3) point to the count of spin) s tates p ;  g is the electron-phonon inter- 
essential role of disordered states such a s  domain action constant. The system of Eqs. (1) and(4) have a 
walls, polarons, periodic superstructures.  Optical ab- solution6 with one forbidden band L?+ > E'> E? in the .!$ 
sorption effects for  various electron concentrations a r e  spectrum under the condition that A(%) satisfies the 
important in the study of these systems. equation 

Inthe present work optical absorption in a Peierls  A"'-6A2A'+AA'=0, A=2(E.+2+E-Z). (5) 
dielectric a s  a function of the number of electrons per 

Eq. (5) has various types of solutions, describing a peri-  
atom, p, is  studied. The concentration region ex- 

odic structure, '  isolated domain walls7 and polarons.' 
amined was c = Ip-11 /a<< a-', where a is the mean in- 
teratomic distance. The model considered is suitable 
for  describing doped trans-polyethylene. 11. OPTICAL TRANSITIONS IN A PERIODIC 

STRUCTURE 
In the concentration region I p - 1 1 we can res t r ic t  

The solution of Eqs. (1) and (4) for  an  ideal periodic 
ourselves to the continuum a p p r o x i m a t i ~ n ~ , ~  for  the 

structure has the form6 
electron wave functions and the lattice deformation po- 
tential a(%): A ( 2 )  = b r  sn (- A k ( ~ ~ x o )  , k )  , A ~ = ~ ' I ~ A , ,  

@ (2 )  =2' [U ( x )  cos ( n d a )  + iV(x)  s in(nx/a)]  , 
Q ( 5 )  =A ( x )  cos (nxla) . 

To  the same approximation the components of $(x)  
=(u(x) ,  V ( x ) )  and A(%) a r e  related by the equations for  
the eigenvalues of the energy E, : 

a 
(run-+ a . ~ + b  E &-0, ax (1) 

where v, is the Fe rmi  velocity in the metallic phase; I 
and a,,,,, a r e  the unit matrix and Pauli matrices. The 
current  density operator is of the form 

For calculating the optical absorption we use the 
usual expression for the imaginary part  of the permit- 
tivity in the dipole approximation: 

where L is the length of the system and s, is the cross  
section for  one chain, 

where 2A, is  the gap in the electron spectrum for  a 
Pe ier l s  dielectric with p = 1, when A(%) =Al = const. The 
parameter  k (0 c k s 1) is determined by the concentra- 
tion of additional electrons c = ~ , / 2 ~ ( k ) k ;  K(k) and E(k) 
a r e  the complete elliptical integrals of the f i r s t  and 
second o rde r ,  and sn(x, k) is  the Jacobi elliptical sine. 

The wave function is characterized by the quasi- 
momentum x. The x ( E )  dependence i s  shown in Fig. 1 
where % = n / l=  n/2c, where I is the period of the func- 
tion A(x). The spectrum of the system consists of three 
allowed I E I > E,, I E (< E -  and two forbidden bands 
E m <  I E I< E,, where E,  = ~ , (k - ' *  1)/2. A splitting occurs 
a t  the edges of the band for 

In the absence of external fields and without taking E ( x )  - E , = ( X - ~ ~ ) ~ / ~ M , ,  M,=( i+kp)2 /2( l+k)uF2.  (7) 

thermal and quantum fluctuations into account, the The choice of the sign in Eq. (6) is determined by the 
equilibrium s ta te  of the system is determined f rom the branch of the spectrum; the sign is  + for  branch 1 and 
self-consistency condition - for  branch 2. The central allowed band I E I <  E -  must 
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ixnl x exp - dx. 
2 

F r o m  Eq. (1 1) we obtain f o r  transitions with ul% > 0 

( 4 -  C1, Ai- Cz) 

Transi t ions with n = 2 m  a r e  consequently forbidden. In 
a n  analogous way we find that f o r  0 (Al- C1, 
4 - C,), t ransi t ions with n = 2 m  + 1 a r e  forbidden. FIG. 1. 

Suppose now that  ul -% = (272 + 1)2%, ul% > 0. We ob- 
t a in  from Eqs.  (6) and ( l l ) ,  a f t e r  s imple  t rans forma-  
tions, 

be empty f o r  p< 1 o r  completely full  f o r  p >  1. The ob- 
se rved  optical propert ies  should be the s a m e  for  these 
two cases.  

We shal l  consider  the c a s e  when t h e  cen t ra l  band is 
empty, p <  1. This  c a s e  corresponds to acceptor-doped 
polyethylene. I t  is evident that  optical t ransi t ions take 
place with conservation of quasi-momentum and the 
total momentum x is conserved,  in general ,  to within a 
reciprocal  la t t ice  vector: % - ul = 2x,n. Equation (5) 
takes the form 

4nez 
E ~ W ) = = Z  jg 

,,=o *1 

X 6 ( E ,  (x+2x,n)  -E,  ( x )  - w )  

Transi t ions with n + 0 a r e  mos t  important  in the l imi t  
c<,<< 1,  w,<< A, ( 6 ,  = U,/A,), when the t ransi t ion f re -  
quencies become close together. In this  l imi t  we obtain 
f o r  O< x< f 

To evaluate the mat r ix  element  in Eq. (8) i t  is conven- 
ient to express  the function V in t e r m s  of U. Using Eqs. 
(4) and (6) we obtain Substituting Eq. (13) into Eq. (12) we obtain 

fo r  the upper and lower bands 

U v=- 
p+b 

[ Z E A ( x ) i * y l ,  

f o r  the middle band 
U v=- ( -2EA ( x )  i k ~ ) .  

Ip+bl 

Similar ly we obtain f o r  t ransi t ions 6(A,- C,) with 
3 - u l  ~ 2 % -  2n 

1I'"'=2/n ( 2 n - 1 ) .  (15) 

Substituting Eqs. (14) and (15) into Eq. (8) we obtain 
We shal l  consider the main optical transitions. 

1. Absorption f r o m  band A to  band C (transition 6 in 
Fig. 1). Using Eq. (9) we  obtain f o r  the d i r e c t  t rans i -  
tion with n = 0 4nez A, ~ [ o - 2 A , - x , ' ~ , ~ / 2 A , - ( x ~ + 2 n x ~ ) ~ v , ' / 2 A ~ ]  

[ A ,  ( w - ~ A , )  - x o 2 ( 2 n ) z ] "  I 
Et J?'= I U , . U , [ ~ ~ A ( ~ )  --- -L+L 

( p + b ,  b  p+b, p+b. 1 &. (10a) 

Since E, = -El, y, = y l  and b2 = b,, we obtain f r o m  Eq. 
(9) 

where  B(x) is the Heaviside function. 

I t  follows f r o m  Eq. (16) that the fundamental absorp-  
tion edge spl i ts  into a sequence of thresholds w -2Al 
= n 2 % / ~ , ,  n >> 1,  with intensity falling off a s  1/n2. F o r  
o - 2A1 >> 2, evaluation of the summation in Eq. (16) 
leads to the expression 

la (O )=  " J A  ( x ) ~ x = o .  
( F + b ) L  

( lob)  

The transition considered is thus forbidden in the di- 
pole approximation f o r  an ideal periodic sys tem,  i.e., 
the absorption c is absent. agreeing with the resu l t  f o r  absorption in a uniform 

P e i e r l s  dielectric.  Umklapp processes  thus produce 
continuity in the average optical absorption f o r  c - 0 
in sp i te  of the d i rec t  optical transition being forbidden. 

We shal l  wri te  the mat r ix  element  f o r  t ransi t ions 
with n # 0 in a form which is m o r e  convenient f o r  the 
p resen t  case ,  using Eq. (9): 
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2. Absorption from band A to band B. I t  is  easy to 
deduce from Eqs. (7) and (8) that for  a transition from 
the lower edge of band B with x, =i%, % = T%, n = 1 
(transition or in Fig. 1) 

F o r  c- 0 we have k- 1, M* - ~, /4 ,  J- n(c5,)'@/2 and 
we find that in the limit of sma l l  concentrations Eq. 
(17) goes over into the expression for  absorption by 
widely spaced s o l i t ~ n s . ~ * ' ~  For  c>> 5;' we have kc< 1 
and Eq. (17) becomes the expression corresponding to 
absorption ac ros s  the gap E, = A, in the FrBhlich model. 
Using Eq. (11) we find fo r  a transition to the upper 
edge of band B (transition 0 in  Fig. 1) that J(t)=0. It 
follows that in the dipole approximation transition 
(A,- B,, 4- 4)  is forbidden for  any frequencies. 

We shall  consider other transitions from band A to 
band B with a change in momentum H, - x, = 2 w ,  n >  1. 
We obtain fo r  transitions A,- B,, A, - 4 (transition y 
in Fig. 1) 

i.e. en+"=O. On the other hand J(zn)=O for transitions 
-%-BIT A i - 4 -  

For  transitions y with even n ,  H, -3 =2% - 2n, we ob- 
tain analogously to Eq. (12) 

In the limit ctO<< 1 the parameter  k-1 and Eq. (18) 
can be evaluated by using relations (13) and formulae 
f o r  band B analogous to them: 

b p - A , ' ,  M + = A , / u d ,  M'=M+. 

From Eqs. (18) and (19) we obtain en)= B ( c ~ ~ ) ~ ~ ,  i.e., 
f o r  c-0 the matrix element is weakly dependent on n. 
Evaluation of the matrix elements J(,") and dBn) leads to 
the s ame  results. 

We obtain from Eq. (8) fo r  the optical absorption 

Eq. (20) is s imi lar  to the expressions found for absorp- 
tion by widely spaced solitons.g110 

Ill. THE CHANGE IN  THE OPTICAL PROPERTIES ON 
DESTROYING THE PERIODIC SUPERSTRUCTURE 

The most important study is of the previously for- 
bidden optical transitions. Small non-uniformity in the 
system can be produced by quantum and thermodyna- 
mic fluctuations in the phase of the deformation A(x), 

by interaction with external fields and by impurities. 
We can consider that in expression (6) for  ~ ( x )  the co- 
ordinate x, is a slowly varying function of x and t. The 
order in the system i s  then destroyed and the correla-  
tion length becomes finite. For  smal l  concentrations 
cto<< 1 such that 

[w, is the phonon frequency f o r  the deformation A@)] 
shor t  range o rde r  is destroyed; the crystal  melts. 

We shall  consider the direct  transition from A to C 
with n = 0 for  cij, > 1. Long range order  in the system 
is  then destroyed, but shor t  range o rde r  is  preserved. 
We can then use Eq. (10) for  the matrix element of the 
transition. We obtain from Eq. (10) 

From Eqs. (22) and (7) and (8) we obtain for  w - 2E, 
<< A, 

In the l imit  c[,>> 1, k<< 1,  corresponding to the Fr6h- 
lich model, 

A ( x )  =A, sin(qz+cp(x) ), q=2xo=nc. 

Consequently, 

where S(q) is the s t ruc ture  factor  of the system. 

In the classical  case,  T/w,>>qi,,>> 1 (Ref. l l ) ,  

t i  is the correlation length of the impurities. 

In the quantum case,  q5,>> T/u,, the structure fac- 
t o r  without taking account of random impurities is 
known4 

Substituting Eqs. (24), (25a) and (25b) in Eq. (23), we 
obtain 

Other causes which lead to a finite value of the ma- 
t r ix  element for  the d i rec t  transition from A to C can 
be  the allowance for  the finite momentum of light and 
higher multipole contributions. 

For sma l l  concentrations satisfying Eq. (21) the sys -  
tem appears a s  a number of randomly distributed do- 
main walls. The solution fo r  a single domain wall has 
been found earlier7: 

For a system of widely spaced domain walls the func- 
tion ~ ( x )  can be expressed approximately in the form 
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In writing Eq. (27) we a r e  neglecting corrections 
-exp(-l/c[,), ar is ing from the interaction of solitons. 
We obtain the electron wave functions U and V to the 
s ame  accuracy from Eq. (1). 

For a continuous spectrum with (%j +s j - , ) / 2<  x 
< (%, +%,+1)/2 

and for  (s,, + ~ 5 ~ - , ) / 2 <  x<  +%,)/2 

where e'" = (ku, +iA,)/E,, E, =*(u;k2 zk, U j  and 
V j  a r e  the functions U ( x )  and V ( x )  in the vicinity of 
the j - th  soliton. The wave functions for  localized s ta tes  
with E = 0 a re ,  in the tight binding approximation: 

(Y = 1,. . . . . . , N, N is the number of solitons. 

We use Eqs. (3) and (3a) with @,- p,, pz - pz to find 
~ ( w ) .  We note that because of the non-uniformity the 
optical transitions will occur with a change in momen- 
tum, Pl'P2. 

In the region of the fundamental edge w = 2A, we ob- 
tain from Eqs. (28) 

- exp 
2 

i(pl-p2) ( ~ j + ~ j - i )  

2 

Since, essentially, p, -p2 -c<< A,/+ we obtain from 
Eq. (30) 

The f i r s t  term in Eq. (31) becomes zero  fo r  q = O  So 
that it does not make a singular contribution to q(w). 

The main second te rm remaining in Eq. (31) gives 

We shall assume that under the influence of random 
impurity fields, thermal and quantum motion of solitons, 
the coordinates xj a r e  distributed randomly and that they 
have negligible correlation. Using a Poisson distribu- 
tion, we then obtain for  large N 

We have from Eq. (3) for  q<< A,/v, 

Substituting Eq. (33) into (34), we obtain 

I t  can be seen  from Eq. (35) that the absorption peak is  
smoothed out fo r  w - 28, -z&c2/8,. We obtain for  transi- 
tions into the middle band, using Eqs. (3), (3a), (28), 
and (29) 

Equation (36) shows that absorption into the middle 
band is proportional to the number of solitons, i.e., i t  
occurs a t  each soliton independently. The absorption 
by widely spaced solitons was studied in Refs. 9 and 
10, and Eq. (36) is analogous to the expressions ob- 
tained. 

IV. CONCLUSIONS 

The band s t ruc ture  of a Pe ier l s  dielectric with a 
number of electrons p +  1 has eight van Hove singular- 
i t ies ,  lying a t  points with wave vectors i ~ ,  with ener-  
gies iE- and iE+. The optical absorption coefficient 
f o r  an  ideal periodic s t ruc ture  should have a singular- 
ity E ~ ( w )  - (W - w < ) - " ~  fo r  the transition [ E ~ .  (17)]. 

Other transitions between singular points a r e  dipole 
forbidden. Transitions with a change in momentum, 
occurring between singular and non-singular points 
a r e  allowed: 

where m, n = 1,2 , .  . . . . Near transitions 0 ,  y ,  6 the ab- 
sorption coefficient must  have a non-singular thresh- 
old. 

For  p- 1, E -  - 0, % - 0 the frequencies of transitions 
6 with different m,n converge. As a result,  the sum of 
the transitions of type 6 reduce to the normal singular- 
ity ~ ( w )  - ( E  - zg)-'@, 2,- 2A1, characterist ic  of the 
fundamental absorption for  the Peier l s  s ta te  with p = 1. 

The frequencies of transitions a, /3 and y also  con- 
verge and lead to a singularity 4(w)  - (1 - p)(w- A,)-''', 
characterist ic  of transitions from the valence band 
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E <  -A, to the localized levels E = O  of solitons with con- 
centration c = ( I -  p ) / a  In the limit c>> A,/u, transition 
a assumes its normal form, characteristic of the fun- 
damental absorption for  an incommensurate Peierls-  
~ r 6 h l i c h  system. 

The forbiddenness of direct  (n- n) dipole transitions 
is lifted when the periodicity of the s t ruc ture  is 
destroyed. In a rea l  system for  c<< h,/v, the periodic 
structure must go over into a system of randomly dis- 
tributed solitons. In this case  transition 6 becomes 
allowed, but the absorption peak is smeared out in the 
region w - 2A, - C ~ / A , .  For c>> A,/u, the s t ruc ture  only 
becomes destroyed over large distances 6 >> vP/kr by 
thermal and quantum fluctuations and through the action 
of random potentials. As a result ,  transition 6 simi-  
lar ly becomes allowed [Eq. (26)] but with a very smal l  
oscillator strength. 

The theory of optical absorption for  systems of 
widely spaced solitons has recently been discussed 
(Refs. 9 and 10). The effect of broadening of the funda- 
mental edge [ ~ q .  (35)l was omitted and the specific 
features of optical transitions for periodic structures 
were not considered in these papers. 
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