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The light absorption tail in a polar crystal is considered for the case when the photon energy deficit 
A = E, - NZ (E, is the width of the forbidden band and f2 is the light frequency) is large compared with the 
phonon energy hie,. It is shown that two different mechanisms of multiphonon absorption may occur, 
quasistatic and dynamic. In the first case the absorption occurs in a fluctuation state that does not manage to 
change during the absorption time (equal to the exciton lifetime 7, in the fluctuation state). The test of the 
quasistatic absorption is o,r, (1. In the opposite (dynamic) limit simultaneous absorption of n phonons takes 
place, where n = [(E, - fin - IE,l)]/fio, (E, is the exciton binding energy including polaron effect). Self- 
consistent field equations are derived which are valid for all cases in which a large number of phonons 
participate, and describe both limiting cases in a unified manner. It is shown that fluctuation "overscreening" 
of the Coulomb attraction between the electron and hole should be possible. As a result the electron and hole 
repel each other and exciton effects turn out to be insignificant. The dependence of the light absorption 
coefficient on frequency 0 turns out to be somewhat stronger than that predicted by the well-known Urbach 
law and is consistent with the latter only at low temperatures. 

PACS numbers: 71.35. + z, 71.36. + c 

I. INTRODUCTION 

An exponential light-absorption tail is observed in 
the forbidden band of many substances. This pheno- 
menon was first  observed by Urbach' in AgBr. Urbach 
has noted that the dependence of the absorption coeffi- 
cient K,(S2) on the photon energy fiw and on the temper- 
ature is well described by the empirical formula (the 
Urbach rule) 

K.(Q) =KO exp [a(fiQ-E,)lT], (1) 

where Eo is a certain energy of the order of the band 
gap E, and o is a constant. In alkali-halide crystals 
o =O.  7-1.5, and in semiconductors a =  3-5. 

A similar behavior was subsequently observed in 
many alkali-halide crystals (reviews can be found in 
Refs. 2 and 3), semiconductors,4~5 and molecular 
crystals (see Ref. 6). It turned out that a is frequently 
a function of the temperature, and it appears that 
the ratio a(T)/T tends sometimes a s  T - 0 to a finite 
limit; this corresponds to finite absorption a t  T = O .  

In some cases the absorption tail may be due to im- 
purities, but in pure crystals the relation (1) is attri- 
buted a s  a rule to the thermal vibrations of the lattice. 
Favoring this assumption is the temperature depen- 
dence (1). We shall consider hereafter only pure crys- 
tals and disregard the possible influence of impurities. 

The theoretical justification of the rule (1) is the sub- 
ject of a large number which can be arbitrar-  
ily divided into two groups. In the first  group7-lo the 
interaction with the phonon is reduced to the interaction 
of an exciton with homogeneous and constant electric 
fields (or with strains, depending on the type of con- 
sidered phonons). The final expression is then averag- 
ed with the distribution function of these fields (or 
strains). Dexter7 considered the homogeneous varia- 
tion of the band gap under the influence of the strain. 
The expression he obtained for lnK,(S2) is quadratic in 

the rule ( I ) ,  Toyozawa8 investigated a variation of E, 
quadratic in the strain. This assumption, however, 
seems to deviate from the known data. l6 

In another paperg Dexter assumed the cause of the 
rule (1) to be the quadratic Stark effect on excitons. A 
quadratic dependence of the level shift on the electric 
field, however, calls for the assumption that the field 
is homogeneous. It would be obviously more convenient 
to produce an inhomogeneous field fluctuation, thus en- 
suring a linear level shift. 

Dow and Redfeldlo interpreted the Urbach rule (1) a s  
a Kelydsh-Franz effect averaged over random fields. 
They, however, started out from a linear dependence 
of Ka(S1) on A in a constant homogeneous electric field, 
which is not the case in the Kelydsh-Franz effect. On 
the basis of numerical  calculation^,^^ Dow and Redfeld 
have proposed that the exciton effects al ter  radically 
the Keldysh-Franz effect and lead to such a linear de- 
pendence. The latest investigations18 do not confirm 
this assumption. We note that even if we s tar t  out from 
the premises of Dow and Redfeld, the final expression 
for Ka(S1) has neither the same frequency nor the same 
temperature dependence a s  (1). 

It will be shown in the present paper that the assump- 
tion that the fields (and strains) a r e  static, which is 
made in the first  group of papers, can be satisfied un- 
der  certain (rather stringent) conditions on the tem- 
perature T and on the energy A. On the other hand, the 
assumption that the fields a r e  homogeneous is always 
incorrect. The characteristic wavelength of the phonons 
responsible for the absorption process (i. e . ,  the size 
of the field fluctuations) coincides with the wavelength 
of the electron and hole, so  that their interaction with 
the field has essentially a quantum nature in both the 
static and dynamic case. Therefore the results of 
Refs. 7-10 and the very concept of homogeneous fields 
o r  strains a r e  not correct. 

A = E ,  - AS1 and does not coincide with (1). To satisfy In the second group of papers the interaction of the 
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electron-hole pair with phonons is considered directly. 
Some papers11q3 use the approach adopted in the theory 
of light absorption by an infinitely heavy impurity cen- 
ter .  The need for satisfying the momentum-conserva- 
tion law when a phonon is absorbed is practically ig- 
nored. As a result, contributions to the absorption 
are  made by phonons having momenta that differ sub- 
stantially from the electron momenta. A detailed criti- 
cal analysis of Refs. 11-13 was carried out by Kagan,14 
who obtained an estimate of K,( (Y)  within the framework 
of an approximation that takes into account interaction 
between the phonons and only one of the particles. The 
lowest order of perturbation theory in the phonons, en- 
suring the possibility of absorption of a photon with en- 
ergy fin was considered. 

We shall show in the present paper that the possibil- 
ity of considering only the lowest order of perturba- 
tion theory ar ises  in a case that is the alternative of the 
quasistatic approximation. 

Kaganl* has noted that at T = 0 the absorption in the 
region of frequencies lying below the ground bound state 
should vanish exactly. Therefore a t  sufficiently low 
temperature the statistical approximation cannot be 
valid in this frequency region, since it leads to finite 
absorption. Nonetheless, in a number of experiments 
the absorption coefficient K,(S1) remains finite a s  T -0 .  
If we exclude from consideration the influence of the 
impurities, then i t  remains to assume that the fre- 
quency interval corresponding to the rule (1) lies higher 
than the ground state in these experiments. The latter  
is possible for a strong exciton-phonon coupling, when 
the energy of the localized exciton lies much lower than 
the energy of the free exciton. 

Such a situation was considered by Sumi and Toyo- 
zawa15, where the behavior of K,(n) was investigated, 
using the Frenkel-exciton model, in a frequency region 
much lower than the free-exciton energy and much 
higher than the energy of the localized exciton. 

II. QUALITATIVE ANALYSIS AND PRINCIPAL 
RESULTS 

We assume in this paper that al l  the characteristic 
energies of the problem a re  much lower than the band 
width, and the characteristic dimensions a re  much 
larger than the lattice constant. This allows us to use 
the effective-mass method for the electron and for the 
hole, and to neglect the dispersion of the optical pho- 
nons. At the same time we shall assume that A>>fiw,, 
and regard the electron and hole a s  being in a state 
that varies adiabatically with the motion of the lattice. 
We consider interaction with longitudinal optical (LO) 
phonons. 

1. Quasistatic fluctuations 

We study first the conditions of applicability of the 
quasistatic approximation, where the premise is that 
during the entire absorption act the fluction of the elec- 
tric field remains unchanged. According to the Franck- 
Condon principle, the state of the lattice does not man- 
age to change during the time -a-' of the optical transi- 

tion (since 51>> w,). Therefore, in order for an exciton 
to be produced in a certain polaron well with an energy 
level -A,  the polaron jacket corresponding to this state 
should be prepared beforehand by a fluctuation method. 
At sufficiently high jacket energy, the probability of 
such a fluctuation is exponentially small, and this pro- 
vides in principle a possibility of explaining the rule 
(1). 

The probability of the onset of any fluctuation corre- 
sponding to any value of A is finite also a t  T =O (on ac- 
count of the zero-point oscillations of the vacuum). 
This, however, still does not mean that the absorption 
is finite. Indeed, the duration of the absorption act  is 
in fact not the time 51" of the optical transition, but the 
lifetime T, of the final state, after which the coherence 
of the exciton state with the photon is violated a s  a r e -  
sult of some scattering act. However, i t  is meaningful 
to speak not simply of an optical transition but of ab- 
sorption of a photon and creation of an exciton in a given 
fluctuation state only i f  the lifetime of the exciton in 
this state is much shorter than the time during which 
the fluctuation itself changes i ts  form, i. e . ,  i f  w , ~ ,  << 1. 

To explain this, we consider in greater detail the 
case T=O. If the energy -A lies below the ground 
state of the system, then a departure from the fluctua- 
tion state into a stationary state is possible only with 
increase of the exciton energy. The system contains 
no phonons capable of being absorbed; on the other 
hand, i t  is impossible to draw energy from the zero- 
point oscillations. Therefore T, - m and the static ap- 
proximation is certainly not applicable. If an optical 
transition to such afluctuation state does take place, the 
system must of necessity again emit a photon (without 
loss of coherence), and such a transition will contribute 
only to the real  part  of the dielectric constant, but not 
to the absorption. 

If T #0, then T, -N', where N =  [exp(EwJ~) - 11' is 
the phonon occupation number, and at a certain tem- 
perature the condition w0rS << 1 will be satisfied. 

When the energy -A lies above the ground state of the 
system, the static approximation may turn out to be 
valid even a t  T = 0.  Indeed, in this case transitions 
with emission of phonons a r e  possible and can take 
place also a t  T = 0. 

Thus, the Franck-Condon principle (which i s  valid 
a t  Sl-lw, << 1) does not necessarily lead generally speak- 
ing to applicability of the quasistatic approximation, 
the condition for which is W,T, << 1, and the Franck- 
Condon principle by itself, of course, does not contra- 
dict the requirement that an exact absorption edge exist. 

We assume initially for simplicity that the electron 
is much lighter than the hole. In this case, owing to the 
larger polaron coupling constant of the hole, 

it turns out to be convenient to ensure the greater part 
of the decrease of the exciton energy on account of the 
hole and not on account of the electron. The fluctuation 
of the electric field should have a hole level with energy 
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E,= -A, and the electron energy is close to zero. The 
energy of the hole interacting with the polarization is 
described by a functional of the energylg 

D(r) is the electric induction produced by the hole in a 
state with wave function 4, and P(r)  is the polarization. 

The condition for the applicability of expressions (2) 
and (3)  is a large value of the energy (E,l compared with 
iiw,, i. e. , A >> h,. The energy of the polarization is 
of formlg 

Since the probability of the fluctuation increases with 
decrease of E,,, the optimal fluctuation should ensure 
a minimum of E,,, upon satisfaction of the condition 
E,= -A. It is easy to estimate minE,,. Let the hole 
potential well have a depth U, and a width a, (Fig. 1). 
The characteristic polarization energy density in the 
region of the well is then w -(E?-  c,l)-'(UJe~,)~, and 
the volume of the region in which the energy is concen- 
trated is -a;. Therefore 

E,"., ( A )  -wahJ- (8:' -eO')-f(Ude)Zah. (5) 

It is clear that U, - 1  E,] = A .  From (5) it is seen that 
8,, decreases with decreasing dimension a, of the fluc- 
tuation. However, when a, becomes comparable with 
the hole wavelength t i (2m,~)" /~ ,  the level E, begins to 
be pushed out of the well. Therefore the optimal size 
of the fluctuation is determined by the wavelength of the 
hole with energy A. Consequently 

A variational calculation (see Sec. 1 ' )  yields a value 
const = 1.167. 

The light absorption coefficient is proportional to the 
probability W(Eh,,(h)) for the onset of the optimal 
fluctuation: 

At high temperature (T  >> Ew, we have N + 1/2 - T/Ew, 

FIG. 1. Form of the optimal fluctuation. U,,, and a , ,  are  
the depth and width, respectively, of the electron hole wells. 
The solid and dashed lines show the potential energies of the 
hole and of the electron, respectively. 

and expression (7) coincides with the usual Boltzmann 
formula exp( -E/T). At low temperature the fluctuation 
is due to  the zero-point oscillations of the phonon vac- 
uum. As shown above, this is possible without viola- 
tion of the condition wars << 1 only i f  A < 1 E,I, where E,  
is the energy of the ground state of the system. 

We consider now the case when the masses  of the 
electron and of the hole a re  comparable. Two fluctua- 
tion wells should be produced then, electron and hole 
(Fig. 1). Since the charges of the electron and of the 
hole a re  opposite, the hole well is a potential "humpn 
for the electron, and vice versa. It is clear therefore 
that it is impossible to place both an electron and a hole 
in a single well (provided that the exciton interaction 
between them is not too large, see below). 

Let the wells be separated by a large distance L, s o  
that the interaction can be neglected in the zeroth ap- 
proximation. It is then easy to determine the energy 
of the optimal fluctuation: 

E;,, (A ,  L=m) = min ( E ; ~ ,  (-E.) +ELL ( - ~ h )  

E.+Eh=-A 

where E2: a re  determined by expression (6). As a re-  
sult E&,(A, L = =) differs from (6) and that a, is re-  
placed by @ *  = (a: + z)112. For the energies we obtain 

To take into account the interaction it is necessary to 
find the effective charges q, and q, of the polarization 
wells, which screen the "bare" charges of the electron 
and the hole. Obviously, q, PO, q, <O, and their values 
can be estimated from the relation I E,  1 - e 1 qi I /ai o r  
Iq, I - (h/e) ( l  E, (/rn,)lf2.  Using the obtained expres- 
sions for E, (in the zeroth approximation in the inter- 
action) we have 

At q = e/&, the screening charge coincides with the 
"bare" charge and the effective dielectric constant be- 
comes infinite (complete screening), while a t  q >e/&, 
i t  becomes negative, and overscreening se ts  in. We 
emphasize that we a re  dealing here not with the equili- 
brium static dielectric constant, but with the fluctuating 
one, which has a finite lifetime. With the aid of (9) we 
can write the over screening condition in the form 

where R is the exciton Ryberg. Calculation yields 
const= 1.3. At m,<<m, i t  turns out that A,>>R, but a t  
me <<m, the behavior of the electron is of no impor- 
tance a t  all ( i ts  energy is low). At me -m, we have 
A,-R and overscreening sets in a t  al l  energies, in the 
exciton region. At A >>A, (strong overscreening), the 
bare charge el&, can be neglected compared with q. 

In the present paper we consider for simplicity just 
the case of strong overscreening, neglecting the exci- 
ton effects. We note, however, that in the case of weak 
overscreening (A 2 A,) the exciton effects, while sub- 
stantially altering the value of K,(n), do not change the 
character of the dependence of K,(Q) on A and on N. 
The situation here is the same a s  in the Keldysh-Franz 
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effect, namely, the exciton effects lead to an additional 
term in the argument of the exponential. This term 
is large compared with unity but small compared with 
the fundamental non-Coulomb term and therefore does 
not change strongly the frequency and field dependences 
of the effect. l8 A strong restructuring of Ka(S2) a s  a 
result of exciton effects can be expected only a t  A < A,. 

Allowance for a strongly overscreened interaction 
makes i t  necessary to add the interaction energy 
-A = Ee + E, + qe/L to the condition that the total energy 
of the pair be equal to -A (E,,, a re  the single-particle 
energies). As a result we have 

Thus, the fluctuation energy decreases with increas- 
ing distance between the wells (in the case of over- 
screening). It must be remembered, however, that 
Ka(S2) is proportional not only to the probability W(EI$,) 
of the onset of the fluctuation (density of states), but 
also to the square of the overlap integral I J(L)I2 of the 
electron and hole wave functions, which decreases ex- 
ponentially with increasing distance between wells. 
Obviously, J ( L )  is determined by the tails of the wave 
function of the lighter electron in the region of the po- 
larization of the heavier hole, therefore 

Consequently, the optimal fluctuations will be the one 
determined by those L =Lo,, which ensures a maximum 
of the product I J(L)  I2W(E,*,,): 

K.(Q) - max IJ(L) I2w(Ed.,) 
L 

The second term in the exponential of (11) need be ta- 
ken into account only when i t  i s  large compared with 
unity (this means Lo,, >> ae) ; a s  m$m, - 0 it becomes 
small and (11) coincides with (7). 

We now write out explicitly the expression for 7,. 

Calculation of the free-path time of a particle i with 
energy E,,  interacting with phonons, yields (see, e. g. ,  
Ref. 20) 

at 1 E, 1 > ( E, 1 (transitions with phonon absorption) and 

a t  I E, I < 1 Eel (transitions with both absorption and 
emission of phonons). We have 

fined," r,A >>R. We note also that by virtue of the very 
same condition the second term in the argument of the 
exponential in (11) is always smaller than the first, so 
that we can regard the interaction a s  a small increment 
to the single-particle energies. 

Thus, the condition for the applicability of the quasi- 
static approximation is of the form 

2. Dynamic fluctuations 

We consider now another limiting situation: 

In this case the fluctuation can certainly not be regarded 
a s  static. However, the smallness of the parameter 
l/wor, means effective weakness of the interaction with 
the phonons, and by the same token the possibility of 
using perturbation theory. At A >> Rw, only high order 
(n-th and higher, where n = [A/Rw,] + 1 >> 1, and [. . . ] is 
the integer part of the number) of perturbation theory 
contribute. The contributions of lower order a re  equal 
to zero  because of the impossibility of satisfying the 
energy conservation law. At w,r, >> 1 it  is necessary 
to take into account only the n-th lowest of the nonvan- 
ishing orders of perturbation theory. The absorption 
coefficient is thus proportional to the probability of 
simultaneous absorption of n phonone14: 

and the optimal dynamic fluctuation constitutes simply 
n phonons. 

To illustrate the estimate (14), we put again m, > me 
and calculate the imaginary part of some perturbation 
theory diagram of P-th ( P  '- n) order for the hole Green's 
function, for example G ,  shown in Fig. 2. This diagram 
contains p phonon lines, 2p + 1 hole lines, 2p vertices, 
and p integrations over the phonon momenta. It is 
clear that all the momenta of both the phonons ( Q ~ ~ )  and 
the holes (Q,) in the G ,  diagram a r e  of the same order. 
Also of the same order a re  a l l  the hole energies E,: 

Allowance for the different momenta and energies leads 
to a change in the constant in (14); we disregard the 
constant in the present estimate. Substituting (15) in 
G,, we obtain 

Since a l l  the phonon momenta a re  of the same order, 

The optimal-fluctuation method used above is valid 
i f  E z, >>Rw,(N+ 1/2); in the opposite case the contribu- 
tion to the absorption is made by non-optimal fluctua- 
tions and Ka(S2) ceases to be an exponential function. 
With the aid of (6)  and (12) i t  is easy to verify that the 
last requirement coincides with the condition that the 
quantum state of the electron-hole pair is "well-de- 

FIG. 2 .  Typical Feynman diagram of G,, corresponding to the 
absorption of p =  5 phonons. Dashed lines-phonon Green's 
functions (at finite temperature), solid line-Green's function 
of free hole. 
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permutations of the ends of the phonon lines should not 
lead to a strong change of G,. Therefore approximate- 
ly equal contributions are  made to K(S2) by all p! dia- 
grams of p-th order in which the sequence of phonon 
absorption is arbitrary. The difference between these 
contributions will influence only the constant in ( 1 4 ) ,  
and we shall therefore assume them to be the same. 
As a result, the contribution of all  the diagrams of p-th 
order is 1m6,=p! ImG,. Putt ingP=n+n,,  where 
n, << n, we obtain 

or,  comparing with ( 1 2 )  

Thus, the parameter of the perturbation theory in this 
situation is indeed l / w o r s ;  at  l / w o r s  << 1  we can neglect 
al l  the 6, except en, and the estimate ( 1 4 )  is valid. 

The calculation of the constant in ( 1 4 )  a s  well a s  of 
a l l  the two particle effects by the diagram technique 
is difficult. They will be calculated in Sec. IV by the 
self-consistent-field method. We note here only that a t  
E,>>Ew, is i t  necessary to take into account the renor- 
malization of the bare Green's functions. As a result, 
in the calculation of 7, i t  i s  necessary to replace A  in 
(12a)  by = A  - I E,( . This corresponds to using a s  the 
zeroth approximation not free holes but polarons (or 
excitons-depending on the type of bond that predomi- 
nates in E,) .  

It must be emphasized that the possibility of using 
perturbation theory with respect to phonons in the cal- 
culation of Ka(S2) is not connected with such a possi- 
bility in the calculation of the energy of the ground 
state E,. In the former case the parameter is 1/w0r, ,  
and in the latter i t  is a,, and smallness of the first 
does not mean smallness of the second and vice versa. 
The point is that the absorption is due only to real  
phonons with momenta Q - ( r n , ~ ) " ~ ,  and the self-en- 
ergy is due to virtual phonons with momenta that do not 
depend on A  and a r e  determined only by E ,  itself. 

3. Self-consistent-field approximation, principal results 

The two limiting cases considered above, which de- 
scribe different physical situations, have one common 
feature; a large number of phonons participate in the 
process. This feature is connected with the condition 
A  >> Ew, and does not depend on the value of w,r, .  In 
Sec. III of the present paper we obtain a method that 
makes i t  possible to calculate Ka(SZ) using only the 
condition that the number of phonons be large. A non- 
linear Schr'ainger equation is derived, which de- 
scribes the motion of an electron-hole pair in a self- 
consistent field that is not regarded a s  static but 
varies adiabatically slowly in comparison with the pair- 
motion frequency. The adiabaticity is ensured by the 
condition A  >>Ew,. The interaction of the pair with the 
field of the optimal fluctuations is reduced to the effec- 
tive self -action. At t = 0, the obtained equation is similar in 
structure to the equation introduced by Iordanski'f and 
RashbaZ1 for the description of tunnel autolocalization. 

The developed method makes i t  possible to take into 

0 5 " W0SI 

FIG. 3 .  Plots of fi, f2, andf3 [see expressions (16) and (50)l. 

account the interaction of an electron with a hole, to 
determine all  the numbers in the exponential, and to 
calculate the pre-exponential factor. The final expres- 
sion for K , ( a )  at  A  > 1 E,(  is of the form 

Here C, is a certain number of the order of unity, 7 ,  i s  
defined by ( 1 2 a ) ,  s is the interband matrix element of 
the velocity operator, and no is the refractive index. 
The functions f,, f,, andf, a re  shown in Fig. 3. Their 
quasistatic ( x  << 1 )  and dynamic ( x  >> 1 )  asymptotics a r e  

Figure 4a shows in the TA plane the regions of appli- 
cability of the expressions obtained for the case of 
weak and intermediate coupling (a* s 6 ,  R s &,, E ,  
s Ew,). 

Equation ( 1 6 )  is valid everywhere except in the region 
A s  Ew,, in which the absorption i s  determined by a 
small number of phonons, and in the region ( ~ / h , ) ~ / '  
x Aw,/~Y *T 2 1  ( r S A  5 h ) ,  where thevery high temperature 
causes the absorption to be large and to depend non- 
exponentially on A. 

The region of applicability of the quasiclassical 

FIG. 4. Region of applicability of the quasistatic and dynamic 
approxin?ations in the TA plane. a) Weak and intermediate 
coupling; b) strong coupling. 1) t sA  - f i ,  2) tsw0 " I .  EO i s  the 
energy of the free state. QSF and DF are the regions of quas- 
istatic and dynamic fluctuations, and SA i s  the region of strong 
(non-exponential) absorption. 
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asymptote (w,~, << 1) (16) is  quite narrow in the case of 
weak coupling and lies entirely in th region of high P temperatures ( T  >> Rw,) and very large deficits A. At 
ordinary temperatures the quasistatic situation cannot 
be realized in the case of weak and intermediate 
coupling. The entire region of low and medium tem- 
peratures is described by the dynamic asymptotic 
relation (16). 

Figure 4b deals with the case of strong coupling. In 
this case Eq. (16) describes only a frequency lying be- 
low E, ( A  > (E,I). In expressions (12a) and (16) it i s  
necessary here to replace A by A =  A  - 1  E,J. Let us 
analyze the region A  < (E,( .  At high temperature 
(T >>/two) this entire region (until the condition 7, A  >> R 
is violated) is  described by the quasistatic equation (11) 
At low temperature, the quasistatic approximation is 
valid only in a narrow region [I ~ , l (6w,)~] '  l3  << A << (E, 1, 
and at AS (E,I there is realized an intermediate case 
which, however, is not described by expression (16), 
since the principal role is played in this case by vir-  
tual phonons. This situation will not be studied in de- 
tail in the present paper. We note, however, that the 
self-consistent-field approximation (expressions (32)- 
(34) is valid here, too. 

Ill. DERIVATION OF THE SELF-CONSISTENT-FIELD 
EQUATIONS 

To calculate the absorption coefficient we use the 
known connection between the complex dielectric con- 
stant and the exact Green's function (GF) of an elec- 
tron pair: 

Here &(a) is the complex dielectric constant, 
G,(Re, Rh;R:, Ri) i s  the exact GF of the electron-hole 
pair with energy E and takes into account both the di- 
rect Coulomb interaction of the electron and hole a s  
well a s  their interaction with the phonon a t  the tem- 
perature T. Expression (20) contains the GF for iden- 
tical coordinates of the electron and hole, since the 
electron and hole a re  created a t  the same point. 

To obtain the self-consistent-field equations we rep- 
resent the time-dependent GF in terms of a functional 
integral over the electron-hole-pair wave function 
7/J (t, Re, R,): 

S D $ I P ( ~ ,  R., R)$'(o, EL', %')exp ( i s { $ ) )  
G (&, %; R.', %'; t )  =-i 

j ~ l p  exp ( i s o  {$I (21) 

Here and below we use units in which ti= wo=mO= 1 
(m, is the mass  of the free electron), a, is the polaron 
coupling constant divided by the mass  of the free elec- 
tron, and x = e 2 m ~ 1 2 / t i 3 1 2 ~ ~ 1 2 s _  is the Coulomb coupling 
constant with account taken of the high-frequency part 
of the dielectric constant. 

In (22) and (23) we put 

the angle brackets denote integration with respect to 
R, and R,;s,{+} is the action for the free exciton, and 
sin,{$} describes the exciton effective retarded self- 
action with the aid of exchange of polarization phonons. 
The electron located a t  the instant t, at the point R,, 
produces a lattice polarization that acts in succeeding 
instants of time both on the electron itself [the first  
term of (25)] and on the hole (third term). The factor 
K(t, - t,) describes the retardation effect. Similarly, 
the second and fourth terms of (25) describe respec- 
tively the self-action of the hole and i ts  action (via the 
phonon) on the electron. Obviously, since the electron 
and hole have opposite signs, they a r e  oppositely acted 
upon by one and the same polarization, therefore the 
signs of the corresponding terms in (25) a r e  opposite. 

Thus, S,,, contains both the self-action of the electron 
and hole (the polaron effect) and their effective interac- 
tion. If the electron and hole a r e  a t  r e s t  (or move 
slowly enough), and the lattice manages to reach equili- 
brium, this interaction screens partially the "right- 
hand" Coulomb attraction, a s  a result of which &, ap- 
pears in the expression for x in place of E,. 

The possibility of excluding the phonon fields and re- 
ducing the interaction of the exciton with the phonons 
to i ts  effective self-action is the consequence of only 
the quadratic and linear dependences of the Lagrangian 
of the electron-phonon system on the phonon coordi- 
nates. 22.23 Consequently, i t  is possible to carry out in- 
tegration over the phonon field in the initial functional 
integral. The result is Eq. (21). 

We note also that the action used in the normalization 
factor [the denominator in (21)] was So rather than the 
total action S, in contrast to standard field theory (see, 
e. g. , Ref. 24). The reason is that in our problem only 
one electron and one hole take part-no pairs a r e  pro- 
duced, so  that a l l  the vacuum loops a r e  identically 
equal to zero and all  the diagrams in the expansion of 
(21) a re  connected. This is ensured by the use of re- 
tarded GI?. 24 

When the energy deficit A  >> 1, only diagrams with a 
large number of phonons (n and more) contribute to the 
absorption coefficient. The large number of phonons 
participating in the process make it possible to apply 
the saddle-point method in the calculation of the func- 
tional integral (21); this method is equivalent in the 
present situation to the self-consistent-field approxi- 
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mation. v = 1. Consequently, the stationary point is v = 1. 

By varying the argument of the exponential in (21), 
we obtain the following nonlinear Schriidinger equation 
for the saddle-point wave function: 

V{$ , )=  K(t,-t ,)dt,($, , ' lU(R.I,  Ro,; R.1, R,,) I$,,). (27) 
0 

We note that when the action is independently varied 
with respect to I )  and I)*, an additional condition that 
the potential v{I),,) be real  is imposed. We, however, 
do not need this condition, for ultimately imaginary 
times will turn out to be essential and the potential is 
real automatically. 

Since the pair energy is of the order of A >> 1, and the 
potential V changes within a time of the order of unity 
(or oil in ordinary unit), the solution of (26) will be 
sought in the adiabatic approximation 

Here cp(tl) is the wave function normalized to unity and 
slowly varying in time, and E(t) is the energy, which 
also varies slowly in time. The factor v " ~  was intro- 
duced because integration is carried out in (21) over 
all  the wave functions with arbitrary normalization, 
and i t  is not obvious beforehand that the saddlepoint 
function is normalized to unity. From the Schriidinger 
equation (26) follows only the independence of the nor- 
malization of the time. 

Carrying out in the integral (21) a shift by q,, we 
obtain 
G(R;,R~'; Re,  Rh, t )  =- iF{q,  v ) v ( ~ ( R / ,  Rhl, t ) ( ~ '  ( R e ,  Rh. 0) exP (is{cp, v ) )  3 

(29) 

t ' a  
j ~ ( e x ~ ( i i  dt; (C'I i - -&.-vV{p}I) , )  

O 
a t ,  

F(cp,v}- (31) 
$4 ""P {is0 {rp)) 

In (31), ?= I)- $,,. When calculating the action we have 
neglected the time derivatives of the slowly varying 
quantities cp(tl) and E(tl). 

The absence of vacuum loops from the theory makes 
the factor F that describes the vacuum polarization 
equal to unity. Indeed, al l  the diagrams in the expan- 
sion of (31) in V are  identically equal to zero (since 
they do not contain free ends). From this we get F = 1. 

The normalization constant v is determined from the 
condition for the extremum of expression (30). It is 
easily seen that 

The right-hand side of the equation vanishes by virtue 
of Eqs. (26) and expression (28) in which we must put 

As will be shown later on, the essential role in the 
Fourier transformation of the GF is played by imagi- 
nary times ( t  = -27). Making the substitution t = -27, 
we obtain 

G(R.'. R,,'; R., Rh, T )  =-i(p(Rerr Rr', r ) q ' ( R . ,  Rhr O ) ~ ~ P ( - S ( ~ F } ) ,  (32) 

where 

x (qi'qz'I U ( R e r ,  Ri; Rt2, R ~ z )  I ( P I ( P D ) ) ,  - 
and cp i s  determined from the condition that S be a min- 
imum under the conditions (cp* ( cp) = 1 ; 

K i ( r 2 - z , )  =(N+1) exp ( - 1  7 , - r z l ) + N e x p  IT , - s , ( .  (35) 

We emphasize once more than the condition for the 
applicability of self-consistent-field approximation is 
a large number of phonons (real  o r  virtual) participat- 
ing simultaneously in the process. It does not matter 
whether the cause of the presence of the large number 
of phonons is the impossibility of realizing the process 
(in this case-absorption of a photon with an energy de- 
ficit A >> 1) by a small number of phonons, 'the high 
temperature, o r  the large value of the coupling con- 
stant a.  

IV. SOLUTION OF THE SELF-CONSISTENT-FIELD 
EQUATIONS 

For  the reason discussed in Sec. 11, we shall disre- 
gard the Coulomb interaction in the Hamiltonian I?,. In 
addition, we neglect initially the contribution of the 
virtual phonons [unity in the first  term of (35)]. 

Obviously, this can be done a t  high temperature, 
when N >> 1, but it is valid also at N S 1, inasmuch a s  
the important role in the integral (33) is played by 

- r2( that a r e  so  large that the entire f irst  term with 
the damped exponential in (35) can be neglected com- 
pared with the second (with the rising exponential). 
The possibility of neglecting unity in (35) is a reflec- 
tion of the already noted need for participation of a 
large (compared with unity) number of phonons in the 
process. 

Let L >> a,, a ,  be the distance between the electron and 
hole wells. Then the interaction can be regarded a s  
weak and cp(R,, R,, 7) = cp,(R,, 7)cph(Rh, r), while expres- 
sion (33) takes the form 

% % 

s=s,+s~+ J dr ,dz ,K,  (T , -T=) ,  (36) 
12L 0 0 

. 1 st= rnin { j d r .  j -  I Y ~ . ( ~ , ,  R , )  Izd3R - -j j K . ( T , - n ) d r . d r ,  
2 m, ' 2"ie 

Making in (37) the substitutions cp, = (m,a$r')3'2cp(r) and 
R = (m,a,N)-'r, which preserves the normalization, and 
neglecting the virtual phonons, we obtain 
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(39) 
The maximum should be obtained under the condition 
Jd3rlIcp(rlr r1)I2= 1. 

The Schrijdinger equation in the region of the well is 
of the form 

v ' 
~ ( r . ) + ~ + ~ ~ ~ c h ( r . - r , ) d r ~ J  - d301rl-91-' 

Substituting (38) in (36), we obtain 

S=-a"NlZ(z) + 2 f i a o ~ ( c h  r-1)lL. 

The f i rs t  term is due to the self-action, and the second 
is due to  the interaction of the electron and the hole and 
is smaller  than the f irst  in a l l  cases  (see Sec. 11). 

Let for the sake of argument m, > me. It is then ob- 
vious that the probability of finding the electron and 
hole a t  the same point i s  ensured by the tunneling 
of the electron from i t s  localization region into the 
hole localization region. We write down for the elec- 
tron a Schradinger equation that is valid far  from i t s  
localization region, 

The first  term in the potential energy describes the 
interaction with "its ownu polarization well, and the 
second with that of the hole. Both interactions have 
a Coulomb form a t  large distances, with the time-de- 
pendent interaction constants of equal absolute value 
and of opposite sign. Re is reckoned from the center 
of the electron jacket. 

The wave function of the electron in the localization 
region of the hole can be obtained from (42): 

const 
( L ) = -  exp (-LIa.), 

La, 'IZ 

Here a0(7,) is the radius of the electron well. Expres- 
sion (43) is valid a t  L >> a,. The constant in (43) depend 
on the type of wave function a t  short  distances. Al- 
though (42) contains a Coulomb interaction with polari- 
zation wells, there i s  no Coulomb logarithm in (43), 
since the Coulomb logarithms corresponding to at-  
traction and repulsion in (42) cancel each other. 

It i s  seen from (23) that cp(r1)= (p(r - T,), and in par- 
ticular cp(0) = (p(r). Substututing (43) and (41) in (32) 
and integrating, we obtain 

g ( r ) = - i  S ~ . , , ( R ,  o ) V , * ( ~ + r ,  o ) ~ ~ ~ ( L + R ,  o ) ~ ~ ( L + R  

+ r, O )  e -' d+. 

It is clear that the integral with respect to r converges 
in the region r -a,(O). In this region cp, does not have 
time to change greatly (at  comparable masses  me and 
m,, the value of cpe changes by an amount equal to it- 
self, and if the masses  differ greatly i t  does not change 
a t  all). Therefore, accurate to a number of the order 
of unity in the pre-exponential factor, we can write 

=- - const 
i- exp [ a*aNaI ( r )  - 2 y % * N ( c h r - i )  -&] (44) 

LSae(O) LMV* ae (0)  

We have chosen R = 0, since this ensures a maximum 
of g(r) .  The value of L must also be chosen from the 
condition that the argument of the exponential in (44) be 
a maximum. As a result we have 

g(7 )  =-i. const 
M"s 

a'Na,'(O) (ch z-1)  

f i a . ~  (ch z- 1) 

To determine E,(O) and a,(O) we shall use  the follow- 
ing relation: 

E (0) =E ( r )  = - d I ( r ) / d r .  

Indeed, differentiating (39) we obtain 

Here Z(T, cp) is the varied functional that stands in the 
right-hand side of (39), and cp, is the extremal value. 
The second term in (47) i s  ze ro  because Z(T, cpo) i s  ex- 
tremal,  and the first coincides with -E(r), a s  can be 
easily verified by d i rec t  differentiation and compari- 
son with (40). 

From (46) we obtain 

Substituting (48) in (45), we obtain the final expression 
fo r  g(d: 

g ( r )  =-i.const. m."(m./M)'"a'NI'(z) (ch z-1)  -I 

Xexp { U ' ~ N ~ I ( T )  -4a'N (m.lM) " [2 (ch r-1)  Zr"(z)] "1. 

T o  calculate the absorption coefficient, we must take 
the Fourier  transform g(r)  of the retarded: - 

g ( A )  =- ( g ( i t )  e-"ldt. 
0 

The saddle point t = -ire lies on the imaginary axis, and 
the integration contour should have the form shown in 
Fig. 5. Only the horizontal section of the contour con- 
tributes to the imaginary part  of g(A). The saddle point 
T, is determined from the equation 

[TO find the saddle point it is necessary to take into 
account only the principal (f irst)  term in the exponen- 
tial.] Carrying out the integration by the saddle-point 
method, we obtain 

Here R i s  the coordinate of the center of the hole well. 
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FIG. 5. Integration contour for the Fourier transform of dt). 

We arrive ultimately a t  expression (16), where 

The functions I ,  f,, f,, and f3 were calculated by a direct 
variational method with a computer. When the func- 
tional (39) was maximized, the tr ial  functions were 
chosen in the form 

where 

A(T, T ~ )  was determined from the conditions that cp be 
normalized. 

In the quasistatic case (x<< 1), T, is also small 
(7, ex). Therefore cosh(~ ,  - T,) = 1 and cp can be re- 
garded a s  independent of time. Then 

Making the substitutions cp = ~ ~ ~ ~ 1 1 ,  and r = ~ ' l ~ ,  We ob- 
tain Z(r) = 731,. From (49) we get 

to=z(3I,)-", (51) 
1 

~,=max(-  j F d s p , +  - fi j j ~p.-p.~-~ 

is the energy functional investigated by Pekarlg in the 
theory of a strong-coupling polaron. Using (50) and 
(51), i t  is easy to obtain the quasistatic asymptotics 
(17) forf,, f,, andf,. 

In the dynamic case (cpx >> 1) we have T, - lnx > 1. The 
integrals with respect to time in (39) converge near 
the end points of the interval ( 0 , ~ ) .  We can then write - 1 

I(.) =2max {- jar. vrq(r,, a) I V ' ~ ,  
0 

We have subdivided the interval ( 0 , ~ )  in to two: (0, 7/2) 
and (7/2, T), and in the second we made the substitution 
T~ - T -  T~ and extended the integration to infinity by vir- 

tue of the rapid convergence of the integral. 

Making now the substututions cp = ( ( 1 / 2 ) e ~ ) ~ / ~ $  and 
r = ((1/2)eT)-'p, we obtain I(?) = (1/2)eZTI2. From (49) 
we get 

TO=ln (x/Iii2), 

From (52) and (50) we get the dynamic asymptotics (18) 
forf1,  f2, andf3. 

Let us see now what results from allowance for the 
virtual phonons. As already noted, below the renor- 
malized absorption edge the quasistatic case can be 
realized only if N>> 1. Consequently, in this situation 
the virtual phonons need not be considered. In the dy- 
namic case T >> 1, therefore the first  term in (35) can 
be substantial only if N << 1. We shall show that in this 
case allowance for the virtual phonons [unity in (35)] 
leads to a renormalization of the absorption edge, a s  
a result of which it is necessary to make the substitu- 
tion A - & = A -1 E , I  in all the expressions.' Indeed, the 
second term in (35) attenuates exponentially with in- 
creasing distance between T, o r  T, and the end points of 
the interval (0, T) in i t s  inner region, but in the inner 
region the principal role is played just by the term with 
unity in (35), which does not contain the small factor N. 
Thus, the action correction due to the virtual phonons 
is determined by the inner region of the interval (0,  T) 
and is given by 

rp i  does not depend on the time, since T>> 1. As a re- 
sult, integrating with respect to time, we obtain again 
the Pekar energy functionallg and ultimately 

Allowance for 6s leads thus to replacement of A by 
= A - I E, 1, i. e. , to a renormalization of the absorp- 

tion energy. In addition, it must be noted here that far 
from the end points of the interval (0, T) the Coulomb 
interaction is no longer overscreened, so  that E, should 
be taken to be not -a*'I,, but the binding energy that 
takes into account the Coulomb interaction of the elec- 
tron and the hole. The renormalization i s  important 
only in the case of strong coupling (E,>> 1). 

V. CONCLUSIONS 

The main results of the present paper a re  reduced to 
the following. 

1. We have demonstrated the existence of two limiting 
cases of interband absorption of light with participation 

808 Sov. Phys. JETP 54(4), Oct. 1981 A. S. loselevich 808 



of a large number of LO phonons: quasistatic and dy- 
namic. In the first  case, the lattice does not manage 
to change its configuration during the time of the ab- 
sorption, while in the second, on the contrary, it exe- 
cutes many oscillations. The criterion that separates 
these two situations is the quantity war,, where wo is 
the phonon frequency and 7, is the lifetime of the state. 

In the quasistatic case the absorption probability is 
determined mainly by the probability of the onset of a 
fluctuation well having a level with an energy equal to 
the photon energy deficit. In the dynamic case, the 
absorption coefficient is proportional to the probability 
of simultaneous absorption of n phonons, where 
n = [h/fiw,] + 1 is the smallest number needed to make 
up for the energy deficit. 

The characteristic size of the fluctuation well (or the 
phonon wavelength) coincides with the wavelength of the 
particle (electron o r  hole), therefore the fluctuations 
cannot be regarded a s  homogeneous, and the particles 
have essentially a quantum motion. 

2. We have demonstrated the possibility of fluctua- 
tion overscreening of the Coulomb attraction, a s  a 
result of which large distances between the electron 
and hole a r e  energywise more profitable. This makes 
it possible to simplify the problem greatly, by regard- 
ing the interaction between them a s  weak. The possi- 
bility of overscreening is  due to the specifics of the 
long- range interaction with LO phonons . 

3. We derived self-consistent-field equations that 
make it possible to solve in a unified manner the prob- 
lem in both limiting cases, a s  well a s  in the inter- 
mediate region. The condition for the applicability of 
the method is a large number of phonons participating 
in the process. The equations a r e  valid also in the ab- 
sence of overscreening. The method makes possible a 
calculation of not only the exponential factor of the 
absorption coefficient, but also the pre-exponential one. 
Similar equations can be easily derived also for pro- 
cesses in whichphonons of any other type participate. 

4. In the present paper, the self-consistent-field 
equations were solved in the strong-overscreening ap- 
proximation (when the Coulomb attraction can be en- 
tirely neglected). A single answer was obtained, capa- 
ble of describing the entire range of temperatures and 
light frequencies lying below the absorption edge renor- 
malized on account of the polaron effect at an arbitrary 
binding force. In the case of strong coupling the self- 
consistent-field method is applicable also for absorption 
above the renormalized edge. This situation is con- 
sidered in the paper only under the condition that the 
quasistatic approximation is valid. 

It is of interest to investigate exitonic effects that a re  
essential in the non-overscreened situation, and also to 
consider in greater detail the absorption above the re -  

normalized edge of the band. We emphasize that a l l  
this can be done within the framework of the self-con- 
sistent-field approximation proposed in the present 
paper. 

5. The expression obtained for the light absorption 
coefficient below the renormalized edge corresponds 
to the Urbach rule (1) only a t  low temperatures, in 
which case o - 1 and does not depend on T. With in- 
creasing temperatures, the frequency dependence of 
K(S2) becomes stronger than in Eq. (1): The linear de- 
pendence on A in the exponential gives way first  to 
~ l n ( h ' / ~ )  and next to A ~ " .  

The author is deeply grateful to A. G. Aronov for con- 
stant interest and help, a s  well a s  to S. L. Ginzburg, 
M.  I. D'yakonov, and I?. I. Rashba for valuable remarks 
and discussions, and to A. V. Repin and A. V. Maslov 
for the numerical calculations. 
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