
Static properties of distributed inhomogeneous Josephson 
junctions 

S. A. Vasenko, K. K. Likharev, and V. K. Semenov 
Moscow State University 
(Submitted 22 April 1981) 
Zh. Fhp. Teor. Fiz. 81, 1444-1455 (October 1981) 

The process involving the entry of a vortex structure into a long Josephson junction whose parameters vary 
greatly but smoothly along the length of the structure is theoretically analyzed. A sine-Gordon-type equation 
that describes the rapid oscillations of the Josephson current along the junction is reduced with the aid of the 
asymptotic technique to an "abridged" equation that describes the slow variations of the parameters of such a 
vortex structure. The abridged equation admits of an analytic solution, and this allows us to find in its explicit 
form the critical junction current as a function of the magnetic field. The obtained results are in good 
agreement with the data obtained in recently performed experiments. 

PAC§ numbers: 74.50. + r, 74.40. + k 

1. INTRODUCTION h being the vortex structure's wave number, which i s  
propo&onal to mean magnetic field. In the' case of 

Recently, there has been an upsurge in interest in the weak perturbations of the homogeneous equation, the 
investigation of the static and dynamic properties of complete solution should be close to cp,, but now the 
distributed Josephson junctions, i.e., those junction structure constant a=28/h may vary slowly along the 
whose length L i s  significantly longer than the Joseph- length of the junction. 
son penetration depth A, (see, for example, Refs. 1-4). 
This interest i s  explained by the fact that there can be Several attempts are known to have been m a ~ i e " ~ ' ~  to 
realized in long junctions vortex (many-soliton) struc- apply such an approach to equations formally close to 
tures, which attract attention from the point of view of (1). In all these investigations the dynamical case, in 
both general and applied  physic^.^'^ which the term B2cp/8f i s  essentially taken into consid- 

It i s  well known (see, for example, Ref. 5)that the be- erationon the left-hand side of the equation, was analyz- 

havior of the vortex structure in a junction i s  described ed. At the same time it i s  assumed in Refs. 2 and 9 that 

by the distribution of the quantity cp, the order-parame- the slow variations of h along the length of the junction 

ter phase difference, over the plane of the junction. In are  caused not by the inhomogeneity of the junction, as 
the static situation (i.e., for acp/at=O), the function in the case of Eq. (I), but by small losses (terms of the 

cp(x, y) satisfies a nonlinear differential equation that, type acp/at) and the extraneous current. In Ref. 4 the 

in the one-dimensional case of interest to us, has the term containing sincp i s  assumed to be small. There- 
form fore, the approach used in these papers cannot be di- 

d 
rectly used to solve Eq. (I). 

g (ra(d 2) ==pa(x)sinp-je(=). The purpose of the present paper i s  to construct an 
The functions pP(x), p2(x), and je(x) describe the distri- approximate solution to Eq. (1) by the asymptotic meth- 
bution of the specific parameters of an inhomogeneous od, and use this solution to describe the behavior of the 
Josephson junction along the length of the junction. vortex structures. It i s  assumed that the characteris- 

In the general case Eq. (1) admits of only a numerical 
solution, and, what ismore, thecomputationaldifficult- 
ies increase rapidly as  the ratio L/X, increases7 be- 
cause of the rapid oscillations of the quantity cp (the 
period i s  shorter than, o r  of the order of, A,). At the 
same time asymptotic methods of solving nonlinear dif- 
ferential equations are  known which make essential use 
of the very fact of the existence of such oscillations 
(see, for example, Ref. 8), and in which the solution i s  
sought in the form of a rapidly-oscillating function with 
slowly varying parameters. As applied to equations of 
the type (1 ), these methods are based on the fact that, 
in the case of a homogeneous structure [i.e., for dp/dx 
=dp/dx = je(x)r 01, Eq. (1 ) has a solution cp,(z) that de- 
scribes a periodic vortex lattice: 

where the function z i s  a dimensionless coordinate: 

tic distance over which the parameters of Eq. (1) vary 
i s  much greater than A,. This assumption i s  the basis 
of the method used in the present paper to solve the for- 
mulated problem. The method, which leads to the re- 
placement of Eq. (1 ) by the "abridged" equation (1 5), i s  
expounded in Sec. 2; in Sec. 3 we discuss the physical 
meaning of the parameters of the abridged equation. In 
Secs. 4 and 5 we find with the aid of this equation the 
critical current of an inhomogeneous junction for differ- 
ent external-magnetic-field strengths. Section 6 i s  de- 
voted to the comparison of the results obtained with ex- 
periment. 

2. DERIVATION OF THE ABRIDGED EQUATION 

Let us first consider the auxiliary problem of the 
homogeneous Josephson junction. The formation in such 
a junction of a static periodic vortex lattice described 
by Eq. (1) in which f i 2  and p2 are constants and je=O,  

z=hx,  (3) i.e., by the equation 
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where the function cp,(z, k) satisfies the periodicity con- 
dition (2), i s  possible. In this case we can assume that 
the variables z and x are connected by the equation 

dzldz-h, (5 

the parameter k being defined by the relation 

Let us now consider an inhomogeneous Josephson junc- 
tion whose specific parameters p(x) and p(x) vary 
smoothly along the junction, and in which the distributed 
extraneous current je(x) i s  weak, i.e., for which 

This means that the function cp that describes the inhomo- 
geneous lattice and satisfies Eq. (1) can be sought in the 
form of the expansion 

qi1-e, qiz-ez, .. . . 

The quantities h and k satisfy, a s  before, the relations 
(5) and (6), although now they can be slowly varying 
functions of the variable x. 

The function cp, and the subsequent terms of the expan- 
sion (8) describe the vortex deformation caused by the 
inhomogeneity of the vortex structure. Let us require 
that the function cp given by the expansion (8) satisfy a 
condition similar to (2), i.e., that rp, be a periodic func- 
tion of z: 

cp t  (z+2n, k )  =rp, ( z ,  k ) .  (9 

Substituting the expansion (8) into Eq. (I), linearizing 
it  with respect to cp,, and taking the relations (4)- (6) 
into account, we obtain in the first approximation in & 

the following equation for cp,: 

The general solution to the inhomogeneous linear equa- 
tion (10) can be written in the form 

9 '. 
where the second term i s  the particular solution to Eq. 
(lo), while cpiO) i s  the general solution of the corre- 
sponding homogeneous equation: 

where C,, C,, and zo are  arbitrary constants, any two 
of which can be considered to be independent. 

Substituting the expressions (12) and (13), written for 
the point z=zo, into the periodicity condition (9) and the 
analogous condition, following from it, on the deriva- 
tive acp,/az, and subtracting the resulting equalities 
from each other, we obtain the condition 

where the brackets (. . .) denote averaging over the peri- 
od 2n of the argument z. Thus, Eq. (10) possesses the 
required periodic solution cp, only upon the fulfillment 
of the condition (14), which assumes, when the explicit 
form (11) of the function f (z) i s  used, the form 

d  
;EF [wahA(k)  I=-i., (15) 

A ( k )  =( (dcpdaz)". (16) 

Equation (4) allows us to represent the function A (k) in 
the parametric form: 

where K ( y )  and E ( y )  are the complete elliptic integrals 
of the first and second kinds respectively. 

The condition (15) i s  the sought '%ridged" equation 
that describes together with the relation (6) the slow 
variation of the parameters h and k of the vortex lattice 
along the junction. 

3. THE PHYSICAL MEANINGS OF THE VARIABLES 
h AND k AND THE FUNCTJON A(k)  

A s  has already been indicated, h i s  the wave number 
of the vortex lattice, and i s  proportional to the local 
magnetic field, averaged over the local lattice quasi- 
constant a =  2n/h, in the junction. The variable k, which 
i s  defined by the equality (6), differs from the quantity 
h by the factor p/p, which has the meaning of a local 
value of the Josephson penetration depth A, (x), i.e., 

k ( z )  =2n~, ( z )  / a ( z ) .  (18) 
It i s  well known (see, for example, Ref. 5) that the 
properties of the vortex lattice change significantly 
when we go over from the case a ZA, (thin lattice) to 
the case S A j  (close lattice). It i s  precisely because of 
this that the correct criterion for transition from the 
thin to the close lattice i s  a condition for k (namely, 
k-1), and not for h. 

In order to elucidate the physical meaning of the func- 
tion A (k), let us consider the homogeneous ( p = const, 
p=const) portion of a long Josephson junction contain- 
ing a stationary vortex structure acted upon by a dis- 
tributed extraneous current j, (Ref. 3). Using Eqs. (6) 
and (15), we obtain 

The right-hand side of the equality (19) can be regard- 
ed a s  an elastic force exerted by the slightly deformed 
(dh/dx#O) vortex lattice, and balancing the distributed 
impressed Lorentz force (aj,). Thus, the quantity 

E=d(Ak) /dk  (20) 

gives the specific modulus of elastic deformation of the 
static lattice. From the relations (17) we have in the 
thin-lattice limit (k << 1 ) 

and for the close lattice (k>> 1) 
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Thus, in the case of a thin vortex lattice the elastic 
modulus E is  exponentially small, a fact which i s  natur- 
ally explained by the exponential character of the inter- 
action between the individual vortices (see, for exam- 
ple, Ref. 10). 

4. FORMATION OF A STATIC DOMAIN IN AN 
INHOMOGENEOUS JUNCTION 

Let us use the abridged equation (15) to describe the 
penetration of a magnetic field h into the junction. The 
penetration of a magnetic field through the edge of a 
homogeneous junction has been well studied (see, for 
example, Ref. 11). Of greatest interest in the case of 
inhomogeneous junctions are those situations in which 
the linear critical- junction-current density tends to zero 
a s  we approach the junction edges (x=O and x = L), i.e., 
in which 

p(z) +O as Z+O, L.. (23) 

In this case Eq. (15) i s  applicable throughout the junc- 
tion, including i ts  edges.') 

The function p(x), which describes the specific induc- 
tance of the junction, normally remains finite near the 
junction boundaries in this case. Then in the presence 
of an external magnetic field (i.e., for h+O) the product 
~h and, on account of the equality (6), the product pk 
are finite at the junction boundaries, and we have near 
a junction boundary 

where the second term should be small compared to the 
first. The relation (24) determines the relation between 
the magnetic field dcp/dx at a given point and its lattice- 
quasiconstant-averaged value h. 

Let there be applied at the junction edge x = 0 an ex- 
ternal field ho= (dq/dxb, ,. Then we have from the 
equality (24) in the zeroth approximation in E [see (7)] 
the following boundary condition for the abridged equa- 
tion (15): 

WO) -h,. (25) 

In the absence of a distributed extraneous current 
( j ,  =O), Eq. (15) with allowance for the equality (6) 
yields 

where the constantC of integration should be determined 
from the boundary condition (25). Using the asymp- 
totic form (22), we have 

c-F'(o) h,. (27) 

It follows from Eq. (26) and the relations (6) and (17) 
that, as we go into the interior of the junction, where 
the linear critical-current density (p2) increases, the 
magnetic field h decreases together with the parameter 
k. Thus, the external magnetic field penetrates into the 
inhomogeneous junction, gradually decreasing until i t  
vanishes at some point x,. In other words, there i s  
formed over the segment [0, x,] a static domain-a re- 
gion filled with interacting vortices. 

FIG. 1. Entry of a static vortex domain into an inhomogeneous 
junction ( p ~  1, p2 = sinwX/L) a s  the field h, at  the boundary 
increases. The variables h and k, which characterize the vor- 
tex density, were computed for h, values equal to 1.0 and 1.2 
with the aid of the relations (6), (26). and (27). The right do- 
main boundary reaches the middle, x=  L/2,  of the junction 
when h, = (ho),,,= 4/w *r 1.27. The vortices begin to move when 

2,4/?r. 

To find the domain boundary x,, let us note that, a s  
x-x,, not only h, but also k, tends to zero, since P 
and p are then finite. Taking the relation (21) into ac- 
count, we obtain for x, from the equalities (26) and (27) 
the equation 

From this i t  follows that, in the case of weak external 
fields (i.e., for h,-0), the domain boundary x, i s  located 
in the immediate neighborhood of the junction boundary 
[ p (x,)-0, x, - 01. An increase in the external-magnetic- 
field intensity leads to the growth of the domain: its 
boundary x, shifts into the region of x-coordinate values 
corresponding to ever increasing values of the function 
P ( 4  P (4. 

The process involving the entry of the domain into the 
junction i s  depicted in Fig. 1, where the functions h(x) 
and k(x) were computed with the aid of the relations (6), 
(26), and (27) for the case in which p (x) a 1 and p2(x) 
= sin(rx/L). The sharp decrease in the field h(x) and in 
k(x) near the domain boundary x, is  explained by the ex- 
ponential character of the interaction between neighbor- 
ing vortices in a thin (kc< 1) lattice. 

5. THE CRITICAL FIELD OF AN INHOMOGENEOUS 
JUNCTION 

The growth of the domain with increasing field inten- 
sity will continue until x, attains the point at which the 
function ~(x)p(x)  has it maximum value. No static solu- 
tions exist at higher-field-intensity values, i.e., the 
vortices begin to move steadily through the junction. 
From Eq. (28) we have for the determination of this 
critical value of the h, field the relation 

For the case of a homogeneous junction (i.e., for P, 
p=const), (h,),, coincides with the well-known "thermo- 
dynamic" critical field, in which the entry of vortices 
into the junction becomes energetically advantage~us.~ 
At the same time, the actual critical field of a homo- 
geneous junction i s  r/2 times higher than the thermo- 
dynamic critical field because of the pinning of vortices 
at the potential barrier formed by the sharp junction 
edge. The formula (29) shows that, in the zeroth ap- 
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proximation in E, there i s  generally no difference be- 
tween these critical fields in an inhomogeneous junction 
with the "smooth" boundary (23), which i s  due to the 
significantly weaker force with which vortices are 
pinned to the smooth boundary. 

Let us now consider the case in which the external 
field i s  applied to both ends of the junction: 

h=hQ for X=O, h-h, for Z=L . (30) 

Then a similar domain i s  formed at the other (X = L) junc- 
tion edge. Let us construct the region of static domain 
states in the plane of the external magnetic fields (in 
the same way as  i s  done in Ref. 1 for a homogeneous 
junction with sharp edges). Until the two domains merge 
into one domain filling the entire junction, they a re  in- 
dependent, and each of them i s  characterized by its own 
constant C determined from the corresponding boundary 
condition. This means that the static states fill at least 
a square half of whose side i s  equal to the critical val- 
ue of the magnetic field: 

At sufficiently high values of ho and hL the domains 
merge into a single domain characterized by a single 
constant C in Eq. (26). Comparing in this case the 
boundary conditions (27) written for the points x =0, L, 
we obtain the condition 

the fulfillment of which i s  necessary for the existence of 
a single static domain in the junction. Physically, the 
relation (32) implies the equality of the dimensional mag- 
netic fields Ho and HL at the junction edges, i.e., the ab- 
sence of transport current through the junction. Thus, 
in the zeroth approximation in E the region of static 
states of the junction consists of the square (31) supple- 
mented by the straight line Ho=HL, which continues one 
of the diagonals of the square (see Fig. 2). Thus, in the 
considered zeroth approximation the combined static 
state of the entire junction i s  possible only when the 
transport current through the junction i s  exactly equal 
to zero, a fact which i s  explained by the smallness of 
the potential barrier at the junction boundary. To allow 
for the pinning of vortices at this barrier, we must 

FIG. 2 .  Region of static states of the junction in the plane of 
the boundary magnetic fields Ho and HL. In the zeroth approx- 
imation in the small parameter E, this region consists of a 
square with side 2H,,,,,, where H,,, = CU~(O)(&) , , ,=  c j t2 (L)  
(h,),,,, and the continuation of its diagonal Ho = H,. Allowance 
in the first approximation in e for the effect of the potential 
barrier at a junction boundary leads to the expansion, indicated 
by the dashed lines, of the region of static states. 

retain in the relation (24) the second (small) term, 
which takes account of the specific vortex structure 
near the points x=O and x=L. When the boundary field 
values are higher than the critical values (31), we have 
in the first approximation in & at the points x =O, L 

Now the difference between the dimensional magnetic 
fields Ho and HL and, consequently, the transport cur- 
rent through the junction, which a re  proportional to the 
quantity 

A = P ' ( O ) ~ O - ~ ~ ( L )  hL, (35 

can be nonzero. The definition (35) of the quantity A, 
assumes, when Eqs. (33) and (34) are taken into ac- 
count, the form 

For long junctions (i.e., for L>> A,) the right-hand side 
of the expression (36) oscillates rapidly as the field h, 
increases, since an insignificant change in the quantity 
h, leads to a significant change in the argument z ,  which 
i s  defined by Eq. (5). Let us construct the envelopes 
(the dashed curves in Fig. 2) for the oscillating curves 
(36). In order to determine the distance between the 
envelopes, let us introduce the A-like quantity A,, (see 
Fig. 2) characterizing the amplitude of the oscillations. 
From the equality (36) we have 

where 1 AI The quantities I A I  and A,, are equal at 
the points of contact of the oscillating curves and their 
envelopes. It follows from the formula (37) that the am- 
plitude of the oscillations falls off more rapidly (- h,'2) 
in such a junction than in a homogeneous junction with 
sharp edges (-hi1) (see Refs. 11-13). 

6. COMPARISON OF THE OBTAINED RESULTS 
WITH EXPERIMENT 

Let us compare the results obtained in Sec. 5 with the 
experimental data reported in Ref. 7. Figure 3 shows 
the configuration of the inhomogeneous distributed 
Josephson junction used in the experiment. By writing 
the equation for the function, 9, describing the static 
behavior of the vortex structure in such a junction in 
the usual fashion:" we can verify that this equation 
coincides with Eq. (1) if a s  the units of length and lin- 
e a r  current density we respectively take Josephson pene- 
tration depth 

and the quantity jcWo. Here *,=hc/2e i s  the magnetic- 
flux quantum, j ,  i s  the critical Josephson current den- 
sity, A1=2k +dl i s  the magnitude of the magnetic gap in- 
side the junction, k i s  the depth of penetration of the 
magnetic field into the superconducting films (the elec- 
trodes), and dl i s  the thtckness of the dielectric layer 
in the junction. In this case 

769 Sov. Phys. JETP 54(4), Oct. 1981 



4 . - 
-, L X 

Screen b - 
a X 

FIG. 3. Diagrammatic representation of the experimental 
structure used by Broom et al.': a) the XY plane of the Joseph- 
son junction; the junction area is the hatched region; b) the 
shape of the XZplane. A ''control " current i, flowing through 
the mperconducting electrode 1 induces in the electrode 2 a 
current xic (%< 1) whose distribution over the electrodes 2 and 
3 is indicated by the continuous curves. The "gate "current 
i, (the dashed curve) determines the transport current flowing 
through the junction. 

P'(z) = W  ( 5 )  lWor (38) 
~ ' ( 2 )  = m + ( l - m ) p 2 ( x ) .  (39) 

The parameter m s 1  i s  equal to the ratio of the induc- 
tance per unit area of the junction to the corresponding 
quantity outside the junction, or, alternatively, 

m=AilA2= (2h+d,)/  (2h+dl),  (40) 

where A, and d, are the magnitude of the magnetic gap 
and the thickness of the dielectric layer outside the 
junction. 

For the specific junction configuration used in the ex- 
periment, the junction width W(x) near the edges be- 
haves linearly (see Fig. 3a): 

for z+0 
= - tor r+L.  

Let us consider the circuit for prescribing the cur- 
rents in the j~nc t ion .~  A "control" current i c  flows 
along the film 1 and induces in the upper electrode 2 a 
current xi,, where x i s  the coupling coefficient (equal 
to 0.82 in the experiment in question7), This current, 
flowing through the junction edges and the lower film 3 
(as depicted in Fig. 3a by the continuous curve), Pro- 
duces an external magnetic field at the junction edges. 
Besides this current, the magnetic field at the junction 
edges also induces a "gate" (transport) current i,, 
which i s  passed through the junction, and i s  distributed 
over the electrodes as  shown by the dashed curve in 
Fig. 3a. 

To find the magnetic field produced by these currents, 
let us use the well-known relation (see, for example, 
Ref. 5) connecting drp/dx with the strength of the current 
i flowing through the film: 

---- @ 2n I P i ,  
dz a0 c (42) 

where Y i s  the linear inductance density of the system 
shown in F ig. 3. Taking account of the above-considered 
distributions of the currents x ie  and i,, we can write 
Eq. (42) at the junction edges (i.e. for p=O) in the form 

ho=2xi./mi', (43) 
hL-2 (xi.+i,)/mi', (44) 

where the current i*=2j,XJWo i s  the critical current of 

a homogeneous distributed junction with sharp edges in 
zero magnetic field." 

Using Eqs. (43) and (44), let us reconstruct in the 
plane of the currents i, and i, the static-state region 
shown in Fig. 2, limiting ourselves to the i, 30  case. 
In the zeroth approximation in  E, this region consists 
of a triangle (see, Fig. 4a) and the straight line i,=O. 
The relations (31) and (44) allow us to determine the 
critical value io of the transport current i, i s  zero ex- 
ternal magnetic field (i.e., for ic=O): 

In the next, first approximation in E ,  there exists out- 
side the triangle a "residual" critical current that 
oscillates rapidly as  the control current i, i s  varied. 
Subtracting Eq. (43) from Eq. (44), and using the de- 
finition (37) of the quantity A,,,=, we arrive at the value 
of the ordinate of the envelope of the oscillating critical 
current: 

(46 
To compare the obtained results (45) and (46) with ex- 

periment, let us use the experimental parameter values 
given in Ref. 7: jC=1.6x1O3 A/cm2, L =6AJ=60 pm, 
Wm,,=32 pm, W0=35.5 pm, d, << 2A, and d,=200 nm. Us- 
ing the well-known expression for A, (see, for example, 
Ref. 11) and the known value of j, and taking account of 
the uncertainty in the experimental parameter values, 
we find that X =80* 15 nm. Thus, the values of the mag- 
netic gaps inside and outside the junction (A, and A,) 
are respectively equal to 160* 30 nm and 360* 30 nm. 

Substituting the numerical values of the parameters 
into the formula (45), we find that the strength of the 
current i0=6.6*0.7 mA, whereas the experimental val- 
ue for i0=7.7*0.2 mA. 

It follows from experiment7 that the side oscillations 
first come in contact with their envelope when i, 
= (1.6 k O.l)io, at which value i,=0.60* 0.05 mA. For the 
second and third contacts the ratio i,/i, i s  equal to 2.1 
* 0.1 and 2.4 * 0.1, while the current i, i s  respectively 
equal to 0.30*0.05 and 0.25 *0.05 mA. Taking account 

FIG. 4. Region of static states of the junction in the plane of 
the currents i, and i,: a) the transport current is fed into the 
junction from one edge; b) the transport current is injected 
into an interior region of dimension L 'q L (Refs. 1 and 3). The 
critical current 4 is given in the zeroth approximation in E 

by the formula (45); the current it= f,L1W,, is significantly 
higher than 4 if L>> A,. The rapid criticaleurrent oscillations 
that occur when tic/ > i g ~  are represented diagrammatically; 
the dashed line depicts their envelope, and is given by the 
formula (46). 
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of the fact that cu0 = @,=I .20* 0.5, we find from the ex- 
pression (46) the value zg=0.4 * 0.1 mA for the first  con- 
tact and the values 0.20* 0.08 and 0.17 * 0.06 mA for the 
second and third. 

We should, in estimating the correlation between the 
theory and experiment, take the following facts into ac- 
count: First, the theoretical approach used presup- 
poses that a fairly large (>>I) number of vortices a re  
concentrated in the Josephson junction, whereas the ex- 
perimental relation L =6XJ admits of the existence in the 
junction of only two-to-three vortices for those ic/zo val- 
ues a t  which the comparison was performed. Secondly, 
in computing the current i, from the formula (45), we 
did not take into consideration the pinning of vortices a t  
the junction edges, an effect which can, according to the 
formula (46), give corrections of the order of several 
tenths of a milliampere, and thus place the difference 
between the theoretical and experimental values within 
the confidence interval. 

Thus, the foregoing comparison of the results obtained 
in the present paper with the experimental data indicates 
a good agreement between them even for quite short 
junctions. 

In conclusion of the present section, let us mention the 
interesting situation (see Refs. 1 and 3) in which the 
transport current i s  fed to the junction along the x axis 
in a distributed fashion and the magnetic field, a s  in the 
above-considered case, i s  produced by a control cur- 
rent i,. Then the function j,(x) in the right-hand sides 
of Eqs. (1) and (15) i s  nonzero in some region of length 
L' < L. We shall assume that the linear critical Joseph- 
son current density p2(x) i s  this region i s  practically 
equal to i ts  maximum value. 

So long a s  the current i, satisfies the condition xlicl 
<io, the domains existing near the junction boundaries 
do not extend to the transport-current-injection region. 
Therefore, the distributed current j,(x) has no effect on 
the vortices in the domains, and the critical transport- 
current value io* i s  equal to jCWma,L1, which, for L'>> A,, 
i s  significantly higher than the current io found earlier 
(see Fig. 4b). When the current i, attains the value io/ 
x ,  the domain boundaries come up to the boundaries of 
the injection region. Then the transport current j, be- 
gins to exert on the vortices of one of the domains a 
Lorentz force that leads to the movement of the vor- 
tices through the Josephson junction. Consequently, in 
the zeroth approximation in E ,  the critical current 
(igka, is equal to zero when xli,l>io. But in this case 
also allowance for the barr ier  a t  a junction boundary 
leads to a finite critical current (ig)max that i s  again giv- 
en by the formula (46). As a result, there arises a de- 
pendence, depicted in Fig. 4b, of the critical current 
on the control current. Such a quasirectangular char- 
acteristic may be quite advantageous for a number of 
applications of distributed Josephson junctions. 

7. CONCLUSION 

In the present paper we have described a procedure 
for constructing an approximate solution cp to the non- 

linear differential equation (1) on the basis of the slow- 
ness of the variation of the coefficients of the equation. 
The problem then reduces to the abridged equation (15), 
which i s  essentially a recipe for the correct construc- 
tion of the function cp (x) from the known solution to Eq. 
(4). The abridged equation advantageously differs from 
the original equation (1) in that it is  asimpledifferential 
relation for the variable k, which i s  a slowly varying 
function of the coordinate x. It then turns out that the 
main characteristics of the vortex structure can be easi- 
ly obtained in their analytic forms with the aid of Eq. 
(15). A comparison of the obtained results [the formu- 
l a s  (45) and (46)] with the experiment of Broom et aL7 
shows that the expounded approach describes very well 
the properties of even relatively short Josephson junc- 
tions. 

Finally, let us  note that Eq. (15) allows us  to analyze 
a number of other properties of inhomogeneous distri- 
buted Josephson junctions. For example, we can easily 
find with i t s  aid the magnetization curves of junctions of 
complex shape, the remanent magnetization due to the 
capture of vortices on the relief of the junction. Furth- 
ermore, the approach developed in  the present paper 
can be used to describe the nonstationary processes that 
occur in inhomogeneous junctions even when the process- 
e s  a re  strongly damped. 

"1f the edges a r e  sharp  (i.e., if p falls abruptly to zero), then 
Eq. (15) i s  not directly applicable at  the points x=  0, L. But 
even in this case it is possible to describe the properties of 
the junction with the aid of Eq. (15) after an appropriate scal- 
ing of the boundary conditions. 
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