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A complete system of equations describing the capillary deformation of solids in the presence of crystallite 
boundaries and other two-dimensional defects, free surfaces, or interfaces between different solids is derived. 
The coefficient of capillary reflection of sound from stacking faults and the energy of interaction between the 
point defects and the growth steps on a crystal surface are calculated. 

PACS numbers: 68.25. + j, 61.70.Ey, 61.70.Ph, 61.70.Yq 

There occur in solids, in contrast to liquids, two dif- 
ferent types of capillary phenomena,'-4 corresponding 
to the presence in these bodies of two different types 
of particle motion. In the first  case we have phenomena 
of the type of the establishment of the equilibrium shape 
of crystals, o r  the influence of interfaces on particle- 
number- related phase equilibrium. The decisive role 
in this case i s  played by the slow diffusion processes 
of reconstruction of the shape of the solids and by the 
value of the surface e n e x v  at a boundarv. -- 

The phenomena of the second type, which are  the sub- 
ject of the present paper, a re  connected with the possi- 
bility of elastic deformation associated with a given 
shape of a solid in the undeformed state. We have in 
mind the consideration, within the framework of the 
macroscopic elasticity theory, of capillary effects of 
the Laplace-pressure type in the presence of interfaces 
between different solids, crystallite boundaries, all 
kinds of two-dimensional defects, or ,  finally, free sur- 
faces of solids. The main quantities that characterize a 
surface in the present case are  the surface mass and 
the derivatives of the surface energy with respect to the 
elements of the strain (or stress) tensor, in particular, 
the surface elastic s t ress  tensor introduced by Herr- 
ing.3 It i s  important to emphasize that the processes of 
reconstruction of the shape of a solid a re  extremely 
slow. If we consider the system during a significantly 
shorter period of time, i.e., a period during which it, 
in fact, behaves like a solid, then the problem of the 
computation of the capillary elastic strains makes sense 
for solids of arbitrary, and not just equilibrium, shapes. 

Although capillary deformation i s  a relatively weak ef- 
fect [at equilibrium i ts  magnitude i s  of the order of the 
ratio of the interatomic distance to the characteristic 
dimensions of the sample (see Ref. 3)], i t  plays a de- 
cisive in a number of Capillary deforma- 
tion is the dominant mechanism underlying the fairly 
long-range interaction between surface point o r  linear 
defects and irnpurit ie~."~ Capillary striction effects 
play an important role in two-dimensional phase transi- 
tions on crystal ~ u r f a c e s . ~ " ~  

The surface s t ress  tensor is defined in Ref. 3 a s  made 
up of the derivatives of the surface energy with respect 
to the elements of the strain tensor, and has then in the 
general case five independent elements. Treating the 
surface strains a s  if they arose in some effective film 
on the surface, Marchenko and Parshins arrived a t  the 
correct conclusion that the surface s t ress  tensor has 

only three independent elements. But they, like Herr- 
ing,3 did not clarify the exact thermodynamic meaning 
of this tensor. In the present paper we give the exact 
definition of the surface s t ress  tensor, derive a com- 
plete system of dynamic equations for the determination 
of the capillary strains, and consider several examples 
of their application. 

1. SURFACE DYNAMICS 

The problem of the determination of the effect of capil- 
lary phenomena on the elastic properties of solids 
amounts to the problem of the elucidation of the bound- 
ary  conditions for the equations of volume elasticity 
theory a t  an interface between solids o r  at the surface 
corresponding to a two-dimensional lattice defect. The 
form of these conditions can be established on the basis 
of the momentum conservation law. Let v be the mass 
of material on a unit surface area. This quantity can be 
positive o r  negative, depending on whether the defect in 
question i s  a region of compression o r  one of rarefac- 
tion. The time derivative of the surface momentum 

j d ~ v i i i ,  (1 ) 

where ui i s  the displacement vector of the medium and 
the integral i s  evaluated over the surface in question, 
should, on account of the conservation of momentum, 
be equal to the sum of the momentum fluxes arriving at 
the surface from the contiguous media 1 and 2: 

( 1 )  jds(0::' -0,- ). (2 ) 

Here u ~ * ~ ) = x ~ ~ ; ~ , ) u ( , ' , . ~ )  i s  the volume s t ress  tensor, 
which coincides up to i t s  sign with the momentum flux 
tensor, ~::;2,) is the elasticity tensor, uik i s  the strain 
tensor, and ui,=uiknk, ni being the unit vector, directed 
from the medium 1 to the medium 2, along the normal 
to the surface. 

We shall denote by the symbols Air,Aik the tangential 
parts of the vectors and tensors A,,A,,, i.e., 

o r  the vectors and tensors Bit, Bilk, which by themselves 
satisfy the conditions B, tni=O, B, $n,=O. Then integrals 
of the type 

~ ~ S V ~ ~ A ~ . , ,  

where V,= a/&,- nin,a/ax,, evaluated over an arbitrary 
surface, reduce to contour integrals with the boundary 
of the surface a s  the contour. It i s  therefore clear that, 
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for the integrals (1) and (2) to be equal, i t  i s  necessary 
that the difference between the integrands be equal to 
some two-dimensional divergence: 

The tensor g,,~ i s  the surface stress tensor, the ele- 
ment gik coinciding up to its sign with the flux of the i-th 
component of the momentum along the k-th direction on 
the surface. Kompaneets and one of us" have shown in 
connection with the problem of surface phenomena in 
superconducting liquids that the condition for the con- 
servation of angular momentum (in the linear approxi- 
mation under consideration here) imposes on the tensor 
dim the following limitations: 

so that the tensor indeed has only three independent ele- 
ments. 

The quantities v and gik# entering into Eq. (3), like 
most surface quantities, are, generally speaking, arbi- 
trary as  a result of the ambiguity in the choice of the 
surface dividing the media under consideration. Let us 
suppose that the original interface shifts in the direc- 
tion of the normal n through a small (of the order of the 
interatomic distance) distance 5, and let us find how the 
quantities v and gikf then transform. The values of 
on the new surface are  equal to 

Expressing the normal derivatives of a',ip2) in terms of 
V , ~ U ~ ~ ~ ~ )  and iii with the aid of the volume equations piii 
= auik/axk, where P i s  the volume density, substituting 
the result into (5), and using (3), we find 

where 

We can now neglect the small contribution of the sur- 
face, i.e., assume that the condition (3) with v = g i k ~ = O  
i s  fulfilled, when we substitute the stresses aik into the 
first of the formulas (6). Then we find in accordance 
with (4) that 

If tb surface under consideration i s  a boundary between 
bodies with different densities, then we can choose 5 
such that the surface mass i s  equal to zero. But in the 
case of crystallite boundaries o r  other plane defects in 
the crystal, the surface mass v does not depend on the 
choice of the surface. 

To elucidate the thermodynamic meaning of the tensor 
(2 )  g,,), let us note that the expression Vhfgia* - i n  +ain 

i s  a force applied to a unit area of the surface. This 
force i s  determined by the variational derivative, 

of the total energy of the system with respect to the com- 
ponents of the displacement vector at the boundary. 
Here the total energy i s  equal to the sum of the ordinary 
volume energy E ,  and the surface energy 

where a i s  the energy per unit surface area. By neglect- 
ing the effects of the thermal-expansion type, we do not, 
distinguish between energy and free energy. In contrast 
to Shuffleworth2 and H e r r i ~ ~ g , ~  we shall assume, as  i s  
usually done in the theory of elasticity, that the integra- 
tion in the formula (8) i s  performed over a singular sur- 
face in the undeformed solid. Let us emphasize that, in 
the presence, as  a result of capillary effects, of singu- 
la r  surfaces, the crystal i s  inhomogeneously deformed 
in its equilibrium state. The term "undeformed solid" 
implies the absence of this deformation as  well. 

The quantity a depends on the state of the contiguous 
media, i.e., in our case on the values of u!,',) and u(,:). 
But these twelve parameters cannot, naturally, be con- 
sidered to be independent arguments of the function 
a(u!,:),ui:'). The point i s  that, since the contribution of 
the surface to all phenomena i s  small, we should assume 
that a i s  defined only for those values of the variables 
u!:) and u',:) that can be realized when the surface ef- 
fects are  neglected. In the latter case, on account of 
the continuity of the displacement vector, we have u$$, 
= u ~ ~ R ) ~ = u ~ ~ ~ ,  and, moreover, if in lace ofu,, we intro- 

(1)- P2) duce the stresses sin, then a,, - a,, =ain. The variables 
uikl and a,, can be considered to be independent. 

The displacement vector i s  no longer continuous 
across the boundary when the surface effects are taken 
into consideration. The difference A,=U:')- u!,') i s  some 
function of the variables u, $ 8  and ain , and can, in the 
linear approximation, be written in the form 

The coefficients aikl,~ and b,, can be expressed in terms 
of the u, I ,? and a,, derivatives of the surface energy a. 
To find this relation, let us note that the surface ener- 
gy a, considered as  a function of the variables uikl and 
Ai, satisfies the obvious relation 

so that the following thermodynamic identity i s  valid: 

The quantities gir: which are, by definition, equal to 
the uikl derivatives of CY at constant A,, coincide, a s  we 
shall show below, with the elements of the surface 
stress tensor. Let us introduce the new thermodynamic 
potential z= cu- oinAi, which satisfies the identity 

From i t  we immediately obtain a formula of the form 
(9) with 

where the index 0 indicates that the derivatives are  
evaluated at a,, =uikc=O. Since for ui k # = O  the surface 
energy a as  a function of Ai should have a minimum at 
Ai=O, the quantities b,, satisfy the conditions for the 
quadratic form bikai,a, to be positive definite for all gin. 

Similarly, we obtain for g,%* the expression 
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in which 

Using the given relations, we can proceed in the for- 
mulas (1 1) and (1 3) directly to the derivatives of a. We 
shall not, however, write out the corresponding obvious, 
but more unwieldy formulas. 

Let us now write down the variation of the total surface 
energy: 

The variation of the volume energy i s  equal to 

(15) 
The variational derivative of the sum E,+E, with respect 
to ui coincides with the expression (7), which proves the 
above-stated assertion that the quantities (12) a re  equal 
to the elements of the surface s t r e s s  tensor. 

The Eqs. (3), (9), and (12) together with the volume 
equations of elasticity theory constitute a complete sys- 
tem of equations determining surface dynamics. 

2. REFLECTION OF SOUND FROM STACKING 
FAULTS 

The equations obtained can be used to compute the re- 
flection and transformation of acoustic waves incident 
on a plane, two-dimensional lattice defect of the stack- 
ing-fault type. A characteristic of this case lies in the 
fact that the density and the elastic compliance coeffi- 
cients have exactly equal values on the two sides of the 
singular surface, and therefore in the absence of capil- 
lary effects sound passes through the surface without 
any changes. Let 

be the displacement vector in the incident wave, where 
A, i s  the amplitude and ei i s  unit polarization vector. 
Allowance for the capillary effects leads to the appear- 
ance in the expression (16) for the displacement a small 
correctional term. Au, that is ,  in  order  of magnitude, 
equal to the ratio of the interatomic distance to the wave- 
length of the sound. If the wave impinges on the surface 
from the medium 1, then Au'l) i s  a sum of three re- 
flected waves. A d 2 )  i s  also a sum of three waves, one 
of which corresponds to the change in the coefficient A, 
in the transmitted wave and the other two correspond to 
the conversion of the incident wave into other types of 
acoustic waves. All the six waves have the same fre- 
quency w and tangential wave-vector components kit a s  
the incident wave. The amplitudes of all the waves a re  
determined by the six equations (3), (9) a t  the defect 
surface: 

where A U : ~ . ~ )  = x ~ , , , ~ A u ~ ~ '  ') /ax,. Here we have taken into 
account the fact that the small AU'"~) te rms can be neg- 
lected when we substitute the displacement vector into 
those terms of Eqs. (3) and (9) which are  connected with 
the contribution of the surface. 

Let us give the solution to Eq. (17) for the simplest 
case in which the defect plane i s  perpendicular to a 
principal symmetry axis of the crystal, and the sound 
i s  normally incident on the surface. When the incident 
wave i s  a longitudinal wave, there arise, on account of 
the symmetry of the problem, only transmitted and re- 
flected longitudinal waves. The amplitude A of the re- 
flected wave i s  given by the formula 

where cJ i s  the velocity of the longitudinal wave and the 
z axis i s  oriented along the normal to the surface. 

A similar formula gives the corresponding ratio for 
transverse waves: 

where c,  i s  the velocity of the transverse wave. 

3. INTERACTION BETWEEN SURFACE POINT 
DEFECTS 

The presence on the crystal surface of point defects 
(surface vacancies, additional and impurity atoms) 
changes the surface energy and, thereby, the surface 
s t r e s s  tensor. As a result, there ar ises  in the interior 
of the crystal a strain that effects a long-range interac- 
tion between the point defects. To compute the interac- 
tion energy, let us  assume that two types of point de- 
fects a r e  distributed over the free surface of a crystal 
of arbitrary shape. Their  contribution 6 0  to the energy 
pe r  unit surface area  i s  equal to 6a=&(')na, where a 
=1,2,  &'") i s  the energy of the defect of the type a,  and 
n, i s  the number of defects per unit surface area. The 
corresponding change in the surface s t ress  tensor i s  
given by the formula 

6g,,,,=~:4:.?2. , (2O) 

where &I$ = (a&/~~, .~ . )u , , .  On the free surface, the quan- 
tities ui.,. at fixed zero s t resses  o,, constitute a com- 
plete set  of variables on which the surface energy 
depends. 

Let 6ui be the change that occurs in the displacement 
vector a s  a result of the presence of the defects. The 
corresponding change in  the total surface energy E, is ,  
on account of (14), equal to 

where the integration i s  performed over the closed sur- 
face of the crystal. The defect-defect interaction ener- 
gy is given by the quadratic-in n,-part of the total en- 
ergy. Separating these quadratic terms from the last 
expression, we obtain the surface part  of the interaction 
energy 

The quadratic-in n, -part of the volume energy is  given 
by the relation 

where the bu,, a r e  the s t resses  corresponding to the dis- 
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placement du,. Since, on account of the Eqs. (3), the 
quantities 60," and 6gikp a re  connected in the present 
case by the formula 

the total interaction energy, which i s  equal to the sum 
of the expressions (21) and (22), can be written in the 
form 

6E= - - dS6ui60in. ' 4  (24) 
2 

Let us introduce the Green tensor G,,(r, r3 that deter- 
mines the solution to the volume equations of elasticity 
theory for a crystal of a fixed shape corresponding to 
prescribed forces applied to the surface. Then the quan- 
tities 6u, and 6ui, a re  connected by the relation 

6ui ( r )  = 4 dSGck(r, r ' ) 6 4 , ( r 1 ) ,  

whose substitution into (24) yields, after simple trans- 
formations with the use of (23) and (20), the formula 

The Green tensor increases in inverse proportion to 
I r - r'l a s  r'- r'. Therefore, the integral (25) diverges 
a t  small r- r'. This divergence is, however, quite un- 
important for the problem, of interest to us  here, of de- 
termining the defect-defect interaction energy for large 
lr- r'l. 

As can be seen from the formula (25), the interaction 
energy U,, for two point defects of the types 1 and 2 
located respectively at the points r and r' on the surface 
i s  equal to 

U L I ( ~ ,  r') =-l/,~i~~.~k.rnrV~.Vrnr'[Gik(r, r') +Gki(rr,  r ) ]  . (26) 

If the distance between the defects i s  not too great, then 
the crystal surface can be considered to be plane. Then 
in the elastically isotropic case we can use for the tan- 
gential-with respect to the surface- components of the 
Green tensor the well-known (see Ref. 12, 0 9) expres- 
sion 

where R = r -  r', p and v each assumes two values in the 
plane of the boundary, E i s  Young's modulus, and o i s  
Poisson's ratio. Furthermore, we can set ~ 2 ' ~ )  
x6,1,1. As a result, the interaction energy (26) assumes 
the following simple form: 

(1) (1) U,, ( R )  =e ,  e, (1-6 t ) lnERS.  (27) 

As in the case of volume point defects (see Refs. 13, 
03), the interaction i s  inversely proportional to the 
cube of the distance, and identical defects repel each 
other. 

4. INTERACTION BETWEEN THE GROWTH STEPS 

We can similarly compute the energy of interaction be- 
tween parallel straight-line growth steps on a plane 
atomically-smooth, free basal plane of a crystal. If 
the original crystal surface coincided with the plane z 
=0, then the new equation for the undeformed surface 
in the presence of steps parallel to the y axis has the 
form z= ~ ( x ) ,  where the function 5(x) satisfies the con- 

dition al;/ax=l(n+n-), I being the step height and n+(n-) 
the number of positive (negative) steps per unit length 
along the x axis. Since the energy E per unit length of 
the steps does not depend on the sign, the change in the 
energy per unit surface area i s  equal to 6a=&(n++n-).  
The nonzero elements of the step-related part  6gia1 of 
the surface s t ress  tensor have the form 

where g,, i s  the surface s t ress  at the original plane 
crystal face and c,, =a&/au,, . 

Equations (3) assume in the present case the form 

where the subscript i takes on the values x and z .  

As in the preceding section, the defect-defect interac- 
tion energy i s  given by the formula 

in which L i s  the step length along the y axis and 624, 
i s  the lattice displacement vector due to the presence 
of the steps. It can, in principle, be found by solving 
the volume equilibrium equations for fixed 6oi,. The 
result for the case of an elastically isotropic crystal i s  
given in Landau and Lifshitz's book (Ref. 12, 8 8): 

- (1-20) ( x - x ' )  
(x--2')  '+ y2 60.. ( x ' )  1. 

These formulas contain integrals that diverge in y. The 
divergence, however, disappears when we differentiate 
the equality (31) with respect to x. As a result, we ob- 
tain 

where loc denotes quantities locally connected with the 
s t resses  6o,, at the point x, and of no interest to us. 

We find from the formulas (28)-(30) and (32) by means 
of simple transformations the following expression for 
the nonlocal part of the interaction energy: 

1-0' dxdx' =L- j  - [ ~ , ' ( n + + n - )  (n+'+n-') +g,ZL2(n+-n-) (n+'-n-') 1 .  
n E  (z-x')'  

The corresponding interaction energy for two steps 
located at a distance x from each other is ,  depending on 
the signs of the steps, given by the formulas 

2L 1-o2 u++ ( x )  =U--  ( x )  = - n - Ex' ( ~ , , Z + l ~ g _ " ,  

2L 1-o2 u+- ( I )  = - n - EX' ( ~ 2 - 1 ~ g n 2 ) .  

That part of the interaction energy U ( x )  which i s  pro- 
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portional to c$ can be obtained through a simple inte- 
gration of the result (27) of the preceding section if we 
treat a step as  a set of point defects located along a 
straight line. The terms proportional to 1' describe a 
specific interaction that distinguishes steps from simple 
line defects. As can be seen from (33), and as has been 
pointed out by Marchenko and P a r ~ h i n , ~  this interaction 
i s  responsible for the fact that the interaction between 
steps of opposite signs does not have a fixed sign. 

We express our gratitude to I. E. ~ ~ z a l o s h i n s k i ~ ,  S. V. 
lordanski;, I. M. Lifshitzt V. I. Marchenko, A. Ya. Par- 
shin, and L. P. Pitaevskii for a useful discussion. 
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