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A nonlinear theory of the kinetic instability (KI) that arises in a highly nonequilibrium system, and in the 
course of which the wave attentuation is negative in some region of k space because of the state of 
nonequilibrium of the system, is constructed. The amplitude of the secondary waves (Sew) increases in this 
region. The effect of the three- and four-wave scattering on the limitation of the KI is investigated in the 
approximation of a prescribed degree of nonequilibrium of the system. If the three-wave interaction processes 
involving the Sew are allowed, then the dominant mechanism underlying the limitation of the Sew amplitude 
is the growth of the total decrement of the Sew as the number of these waves increases, the negative 
contribution to the decrement being compensated for by this growth. If the three-wave processes are 
forbidden, then the limitation of the KI is due to the four-wave processes, and the amplitude of the Sew is 
then limited at a higher level. The shape of the Sew packet is determined. 

PACS numbers: 03.40.Kf 

INTRODUCTION 

In a recent work the present authors, Melkov, and 
Lavrinenkol theoretically predicted and experimentally 
detected the kinetic instability of the highly nonequili- 
brium state of parametrically excited spin waves (PSW) 
in a ferrite. This instability i s  caused by the decrease 
to zero of the decrement of the spin waves (SW) not con- 
nected with the parametric pump. A negative contribu- 
tion to the decrement arises a s  a result of the four- 
magnon SW-scattering processes in whichthe highly non- 
equilibrium PSW participate. Beyond the kinetic-insta- 
bility threshold, the occupation numbers of the "secon- 
dary" spin waves (SeSW) increase exponentially in time, 
and there arise the problems of finding 1 )  the nonlinear 
mechanisms that limit the development of the kinetic in- 
stability and 2) the steady state of the PSW system in a 
situation in which a particular limiting mechanism pre- 
dominates. 

It should be said that the decrement of the waves may 
turn out to be negative not only in the ferrites, but also 
in antiferromagnets located in a strong microwave field, 
in a two-stream plasma under conditions of beam insta- 
bility, and in a number of other cases in which the medi- 
um i s  in a state far  from thermodynamic equilibrium, 
Thus, the following general statement of the problem 
arises: To the kinetic equation describing the evolution 
of the wave occupation numbers nk must be added the 
negative decrement, rk, arising a s  a result of the state 
of nonequilibrium of the medium: 

When the departure from equilibrium i s  appreciable, 
the quantity rk can exceed the decrement yi  of the 
waves a t  equilibrium for some k .  In the instability re- 
gion, where ye - rk < 0, the occupation numbers nk in- 

power of the source i s  proportional to the number n; of 
available particles. But in the parametric excitation of 
waves the principal role i s  played by the phase rela- 
tions in the *k pairs. First ,  they lead to a situation in 
which the parmetric waves a re  excited in a narrow, 
pump-frequency (w,) defined region in the vicinity of the 
resonance surface: wk + w - ~  = w,. Secondly, they give 
r ise  to quite an effective "phase" mechanism for limiting 
the number of parametric waves, which mechamism i s  
thoroughly analyzedin Ref. 2. In the "kinetic"-instability 
problem (1) considered here, the phase relations in 
the system of waves a re  absolutely unimportant, and we 
must study other, weaker mechanisms that lead to the 
limitation of the number of waves. 

Bearing in mind the experimental situation concerning 
the magnetic dielectrics, we shall in the present paper 
be interested in the limiting case in which the super- 
criticality is not very high, i.e., in which Irk - yiJ 

5 y;, and the deviations of the nk from the thermody- 
namic-equilibrium values of n i  a re  large only in the 
vicinity of the instability region. Then, depending on 
the specific nature of the problem, one of the following 
different cases can arise: a )  rk-7; f irst  vanishes at 
a pair of points *ko; b) in the case of axial symmetry 
the vanishing occurs on the circle k, = 0, I k,l= k, 
o r  on the pair of circles: kg=* k,O , I k,(=ko; c )  in the 
case of spherical symmetry this occurs on the sphere 
\kl=k,. More complicated i s  the k=O case, in which 
the secondary-wave distribution is not universal for a 
given symmetry of the problem. At very high super- 
criticalities (i.e., a t  rk >> yi), there ar ises  an energy 
flux along the spectrum from the pump region to the re- 
gion of effective attenuation, and the problem, a s  a rule, 
reduces to the problem of describing the scaling-invari- 
ant Kolmogorov spectrum of a weak wave t u r b ~ l e n c e . ~  

crease rapidly, and i t  i s  necessary to find the new 
steady state for t'*, the rate of relaxation to it, etc. In $1 of the present paper we derive the kinetic equa- 

tion for  the waves, and compute the kinetic-instability 
It should be said that the expression r k n k  for the threshold. A quite nontrivial answer (i.e., one for which 

source in Eq. (1 ) outwardly resembles the expression rb f y i o  at the threshold) is obtained in the case in 
for the parametric pump: hVksin(vk +cp -k - cp,)nk, which the elastic scattering of the waves on the static 
where the cptk a re  the phases of the waves with vectors inhomogeneities is important: see the formulas (1.21), 
* k  and cp, is the phase of the pump. In both cases the (1.23), and (1.25). 
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In 82 we formulate for the "secondary"-wave (Sew) 
occupation numbers N k  = n k -  n nonlinear equations that 
take into account the fact that the N k  are  different from 
zero only in the vicinity of the instability region, and 
presuppose that jNkd3k is small compared to  jn id  3k 
over the k-space region that makes a significant contri- 
bution to the wave attenuation. 

In $3 we briefly consider the limitation of the kinetic 
instability a s  a result of the increase of the decrement 
of the secondary waves a s  their number increases: 

An important characteristic of the mechanism underly- 
ing the limitation of the nonlinear attenuation of the 
waves i s  the singularity of the Sew distribution function 
Nk: if we neglect the thermal fluctuations, then Nk 
will be nonzero only at some points of k space or on 
some lines or surfaces (depending on the symmetry of 
the problem) whose positions a re  determined from the 
stability condition 

The steady-state Sew distribution function Nk i s  then 
determined from the balance condition 

A nontrivial situation ar ises  in the theory when it  be- 
comes necessary to take the thermal fluctuations into 
account. Then there arise in the case of weak nonlinear 
attenuation corrections to the formula (4) that depend on 
the symmetry of the problem [see (3.15) and (3.19)]. If, 
on the other hand, the nonlinear attenuation i s  strong, 
then the Sew distribution undergoes a cardinal recon- 
struction, and the formula (4) is not even approximately 
valid. Instead of it, see (3.12), where N a f i .  

As the supercriticalities rise, the Sew numbers N k  
increase, so that not only the interaction of the Sew 
with the thermal waves, but also their collision with 
each other, becomes important. The four-wave pro- 
cesses, 

in which only the Sew participate do not remove energy 
from the Sew system, and therefore cannot, one would 
think, limit the kinetic instability. But the Sew-scat- 
tering processes (5) lead to the broadening of the Sew- 
distribution function Nk beyond the limits of the insta- 
bility region, and a s  the supercriticality increases, the 
width of the distribution function N k  increases in such 
a way that the net energy balance i s  satisfied: 

This condition determines the dependence of the width 
of the function Nk on the supercriticality: the total num- 
ber  should be such that the processes (5) ensure the re- 
quired width of Nk. 

In 64 we present a quantitative theory of the above-de- 
scribed "collision" mechanism of kinetic-instability lim- 
itation. The simplest case i s  the one in which the pmb- 
lem has spherical symmetry, and yi - rk first  vanishes 

on the sphere of radius k,. In this case 

Here N is the total number of Sew and x,  i s  the charac- 
teristic width of the k-modulus distribution: 

where T i s  the mean value of the matrix element of the 
four-wave interaction describing the processes (5) of 
Sew scattering on the sphere of radius k,, 

i s  the group velocity of the Sew, and 

We a re  not able to solve exactly the obtained integral 
equations (4.18) and (4.23) for Nk in the lower- symme- 
t ry  cases in which y i -  I'k vanishes on a line (axial sym- 
metry) o r  at a pair of points *k,, Nevertheless, we de- 
termine the asymptotic shape of the Sew packet, and de- 
rive interpolation formulas, (4.20) and (4.24), that ap- 
proximately describe the Sew distribution in the entire 
k space. 

If the kinetic-instability threshold i s  attained at the 
point ko=O, o r  if the value of ko i s  so small thatthe width 
no of the packet a t  some supercriticality i s  comparable 
to, o r  exceeds, k,, then the Sew distribution becomes 
nonsymmetric with respect to k - k,. In this case the 
shape of the Sew packet is not universal: i t  depends 
only on the symmetry of the problem, and to determine 
it we must know the dispersion law for the waves and the 
dependence of yk-  rk on the wave vector in the region 
of small k. In Subsec. 4.4 we derive an approximate ex- 
pression for the distribution of Sew with the dispersion 
law 

o,=oo+akz (12) 

under conditions when yr is a linear function of k: 

(the isotropic-ferromagnetic model). A characteristic 
feature of this distribution i s  the exponential decrease 
of Nk with increasing frequency: 

The experimentally studied situation-the kinetic ex- 
citation of SW under the action of PSW-differs from the 
above-discussed cases in two important characteristics: 
first, the SW spectrum i s  anisotropic, and therefore the 
SeSW can interact with eachother inside a narrow cone'; 
secondly, the elastic scattering of the SeSW by the PSW 
is not weak. In 85 we take these facts into account with- 
in the framework of the following crude model: the sur- 
face wk=const for  the secondary waves i s  the two por- 
tions cut out of a sphere by a cone of angle of taper 6, 
(Om<< 1)  and the elastic scattering is of the greatest pos- 
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sible intensity. As a result, the SeSW turn out to be iso- 
tropically distributed inside the cone Bc 8,. The distri- 
bution of the SeSW over the absolute k values coincides 
with the expression (71, which was obtained in the fully 
isotropic case, but the number of SeSW turns out to be 
higher than (8) by a factor of Om-'. 

§ 1. THE KINETIC INSTABILITY 

1.1 The choice of the collision term. As indicated in 
the Introduction, we shall, in constructing the theory, 
proceed from the kinetic equation (I), in  which the col- 
lision term J,,, consists, generally speaking, of terms 
describing the two-, three-, and four-wave processes: 

The two-wave processes a r e  the processes of elastic 
scattering of the waves by the random static inhomogene- 
ities. In the case of point defects having a concentration 
c (Ref. 4) 

If the kinetic instability of the waves i s  due to their in- 
teraction with the parametric waves having the same fre- 
quency, then the elastic scattering of the Sew arises a s  
a result of the four-wave processes, when "before" and 
"after" were with respect to one arametric wave. The 
corresponding expression for J(:'will be derived below 
in Subsec. 1.4. 

The inelastic three-wave processes, if they a re  allow- 
ed by the energy and momentum conservation laws, 
make, a s  a rule, the main contribution to the thermody- 
namic-equilibrium establishment process and, conse- 
quently, to the logarithmic decrement yk{IVk) of the 
waves: 

Below a significantly different role will be played in the 
theory by the three-wave processes of Sew decay: 

and combination of a Sew with another Sew o r  a therm- 
al wave: 

ot+ot.=oh+t.. (1.5) 

The expressions for the departure and arrival terms, 
Yknk and a@, respectively, of the kinetic equation have 
the standard form, and we give them primarily in order 
to introduce the notation. In the processes (1.4) 

~ M = X  I V L , ~ Z ~ ~ ( ~ , + ~ Z +  1)6 (or-o,-a,) 6 (k-k,-kz)dk, dk,. (1.6) 

In the processes (1.5) 

so that 

r3 (k) = ~ 3 d  (k) +rat (k), (1.8) 

Q,(k) =@~a(k) +Qre(k), (1.9) 
m a d =  l V ~ . ~ ~ l ~ n , n ~ 6  ( o ~ - o ~ - a ~ ) 6  (k-kl-kz)dkldkz, (1.10) 

The four-wave processes a re  also important in our 
problem. This i s  because, first, the three-wave pro- 

cesses may be forbidden, o r  their matrix elements may 
turn out to be anomalously small, as, for example, in 
the case of spin waves in ferro- and antiferromagnets. 
Secondly, and this i s  the main thing, i t  i s  precisely the 
four-wave scatteringprocesses (5) in whichonly the Sew 
participate that lead to the collision mechanism, of in- 
terest to us here, of kinetic-instability limitation. As 
we shall see  in 84, the intensity of these processes will 
be sharply increased because of the narrowness of the 
Sew packet. As i s  well known, in the scattering pro- 
cesses (5) 

(1.13) 
1.2. The kinetic-instability (KI) threshold. If elastic 

scattering of the Sew does not occur, and J:?'=O, then 
the kinetic-instability threshold i s  determined from the 
condition for the vanishing of the total decrement, name- 
ly, from the equation 

where the superscript 0 attached to Y, and Y, indicates 
that these quantities a re  computed inthe thermodynamic- 
equilibrium spectrum. 

nt=nrO= [exp(Aor/8) -w 
(8 i s  the temperature). If, on the other hand, J::) + 0, 
then the situation becomes complicated, and the equation 
for  the determination of the KI threshold turns out to be 
an integral equation: 

dnrldt=(rr-Tro)nr-n~f 1g.r-12(nr-nr,)6(or-or.)dW, (1.16) 

The solution to this equation i s  singular: Nk is nonzero 
on a constant-frequency surface: 

Here k, i s  the radius of this surface at the point with 
the angular coordinate S2 and u ,  i s  the group velocity. 
In the simplest case, in whichgkkl can be assumed to 
be constant over the surface (1.17), it follows from 
(1.16) that 

N.=<Nn>rd.f (Q)/(rOof ~ d e f - ~ a ) .  

Here ( ) denotes averaging over the solid angle: 

<f ,- 1 
0 --jfpdQ, 4n (1.19) 

Ydcf(S2) is the static-inhomogeneity-induced-damping con- 
s t i t  of the waves: 

rdef (B) =4nZcI gI Z k n Z l ~ ~ .  r d e f = ( ~ d a l  (B) ). 

The KI threshold i s  easily determined from (1.18): 

It is useful to investigate some limiting cases of this 
formula: 

1) In the case of spherical symmetry, in which there 
is no dependence on SZ, the KI threshold i s  determined 
from the condition y 0 = r ,  into which ydrl does not enter. 
The reason for this is simple: in this case the scatter- 
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ing by the defects does not remove energy from the Sew 
system. 

2) For y,,p-->lrn- y ,O1, i.e., in the case in which the 
elastic scattering i s  intense, i t  follows from (1.8) and 
(1.21) that 

It can be seen that, in the first  approximation, the elas- 
tic scattering leads to the isotropization of the Sew dis- 
tribution function No ,  with the result that the threshold 
i s  given by the condition ((y%) = ((r,)), where (( )) denotes 
averagingover the angles withthe weight y,,, (S2)/ydcl . The 
right-hand side of (1.23) arisesfrom corrections toN, 
not written out in (1.22). 

3) If the system does not possess spherical symmetry, 
and ydc, i s  small, then in the f i rs t  approximation 

where r,and y: a r e  the minimum values of r, and y $ 
on the surface (1.17). The corrections to (1.24) depend 
on the symmetry of the problem. For  example, in the 
presence of axial symmetry, when (Y: - r:) has i t s  
minimum value at the equator: 

1.3 The prethreshold heating. In the kinetic equation 
(1.16), we have neglected the arrival terms from the 
three- and four-wave processes. In a state close to the 
state of thermodynamic equilibrium, 

Naturally, equilibrium here is assumed not for all k, 
but only in the region of k space which makes the main 
contributionto the integrals (1.10), (1.11), and (1.13) 
for 4~ ,  and a,. In the particular case in which ~!u2,'=0, 
we obtain from (1.16) and (1.27) an expression for the 
Sew occupation numbers before the onset of the kinetic 
instability: 

The deviation of Nk from zero i s  due to the thermal fluc- 
tuations. In the linear-in Nk-approximation (with allow- 
ance for  J::;), Nk becomes infinite a t  the KI threshold. 

1.4. The kinetic instability of spin waves in ferro- 
magnets. This phenomenon has been experimentally ob- 
served,' and therefore i t s  investigation i s  of special in- 
terest  to us. The SW spectrum in a ferromagnet has the 
form 

where o,= 4?rgM, g i s  the gyromagnetic ratio, M i s  the 
equilibrium magnetization, a is the lattice constant, w 
=@,/I5 (8, i s  the Curie temperature), Bk i s  the arlgle 
between the wave vector k and the constant magnetic 
field H, and o, is the gap in the SW spectrum: 

N, being the demagnetization factor. It was found that 
there a re  excited minimally damped SW lying near the 
bottom of the spectrum. In determining the SeSW wave 
vector, we should bear in mind that the decrement of the 
long SW behaves like 

r.-ro+r, ( k l )  -', ~ ~ = 2 n ' K o y *  

where 1 i s  the sample dimension and K is the space fac- 
tor  of the cavity resonator. The correction y,(kl)* de- 
scribes the radiation damping of the SW. As k increases, 
the damping intensifies a s  a result of the three-magnon 
coalescence p r o c e ~ s e s . ~ ' ~  These processes turn out to 
be allowed for SW with k 2- k,, 

k , = o J 2 u , ~ ~ k - ,  
(1.32) 

where k,,,,, i s  the wave vector a t  the Brillouin-zone bound- 
ary. Thus, i t  is to be expected that the SeSW wave vec- 
tor  k,  will be close to k,. In the experimentally studied 
situation k, = 3X103 crnm1. It i s  not difficult to determine 
on the basis of the dispersion law (1.29) the angle of tap- 
e r ,  e,, of the cone in which SeSW can exist. Indeed, the 
waves with B=0 and wave vector k, can be elastically 
scattered through an angle that i s  smaller than Om, and 
is given by the condition wko:,,= w,,~, , , .  From this we ob- 
tain 

Om= (20 .doM)  "aka= lo-'. (1.33) 

Since the three-magnon interaction processes involv- 
ing the SeSW are  forbidden by the conservation law, the 
kinetic equation for these waves has the f ~ r m ~ ' ~  

dnr/2dt+ 7!0' (nk-ntO) +2nJ I Trl,2tl'[nmr (n, 
(1.34) 

Here &') is the SW-relaxation rate due to the inferac- 
tion with the other quasiparticles and T,,,,, i s  the ma- 
tr ix element of the four-magmn interaction. We shall 
assume that the SW distribution nk under conditions of 
parametric excitation is the totality of the thermodynam- 
ic-equilibrium distribution and the narrow PSW 
packet dk: 

where w, i s  the pump frequency, 51, is the solid angle a t  
the surface wk=wp/2, k ,  and v ,  a r e  the radial wave- 
vector and group-velocity components in the direction 
52. As a result, we obtain the following linearized kine- 
tic equation fo r  the SeSW occupation numbers Nk: 

where y\ is the total SW-relaxation rate in the absence 
of PSW, 

Here uk =(aka-,) i s  the anomalous PSW correlator. The 
PSW wave vector kp>>%, the SeSW wave vector k, being 
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oriented along the magnetic field.' In this case the ef- 
fect of the PSW on the SeSW i s  described by the matrix 
elements To, k1 +kl:k:kn, enteringinto the expression (1.38) 
for r and To,k;o,k~ entering into the expression (1.39) 
fo r  J!?!, k' and L1'being PSW wave vectors. The quantity 
To, kr+km,k;ke i s  investigated in Ref. 1 : in the experimen- 
tally investigated region of the parameters To, kCk~,k;r - 1 . 4 ~ 2 .  As to the matrix element To, k~,o,k~, which de- 
scribes the elastic scattering of the SeSW by the PSW, 
i t  i s  not difficult to compute it in the usual fashion. I* 
the experimentally studied region we have 

In particular, for Or=a/2, 

TO, . /I ,  0 ,  n/*-T1=-ng2. 

The rate of elastic scattering of the SeSW by the PSW 
i s  given in accordance with (1.39) by 

where np i s  the total number of PSW and A8 i s  the angu- 
l a r  dimension of the PSW packet. Comparing Y,,,, (1.42), 
with the r, value computed in Ref. (I), we obtain 

(1.43) 

The quantity kdk, is of the order of the order of lom2; 
therefore, in the parameter region of interest to us y,,, 

zr,* 
Let us now determine the effect of the elastic scatter- 

ing of the SeSW by the PSW on the KI threshold. In the 
presence of elastic scattering, the threshold is found 
from the formula (1.21). Here we should bear in mind 
that the SW spectrum (1.29) i s  anisotropic, and that the 
allowed values of the angle lie in the cone 8 8,, the 
SeSW wave vector vanishing on the surface of the cone: 

k ( 0 )  =k, ( 0 , ~ - - 0 ~ )  '". (1.44) 

Thus, in accordance with (1.311, the decrement of the 
SeSW becomes infinite at 8 = 8,. Nevertheless, we can 
establish on the basis of (1.21) that the KI threshold 
changes little when ~ ~ ( k l ) - ~ / r , ~ ,  <<I, i.e., that 

$2. THE NONLINEAR EQUATIONS FOR THE 
SECONDARY WAVES 

Let us substitute into the basic kinetic equation (I), 
(1.1)-(1.13) nk in the form 

nt=n2+Nr (2.1) 

and take into account the fact that np is the solution to 
the equation for rk=O. As a result, we obtain for Nk the 
nonlinear equation 

d~~/2dt=rtnt~+(rt -~t~)~t+l :bt ; '  {Nt)-ytNLNt+nUhNL. (2.2) 

Here y i i s  the decrement of the waves under conditions 
of the equilibrium distribution (1.15); J describes the 
elastic scattering of the Sew, and is given by (1.2), ykNL 
i s  the constant of the nonlinear damping of the Sew; and 

@gL is the k-dependent part of the arrival terms a, and 
'@4 - 

It is natural to assume at the initial stage of the investi- 
gation that Nk i s  nonzero only in the vicinity of the in- 
stability region / k]=  ko. Then, for Ik/ = ko, only the fol- 
lowing processes will make contributions to ykNL: 

1) the coalescence of two Sew to form a thermal wave 
[see (1.7)]: 

2) the coalescence of two Sew to form two thermal 
waves [see (1.12)]: 

3) the processes in which a t  least three Sew partici- 
pate: 

The following addends remain in the arrival terms in 
the vicinity of the instability region: 

*$(k)  =2 j 1Th1.2,1zNln20n,06 (or+o,-oz-os)  6(k+k,-k,-k,)dk, dk, dk,, 

(2.7) 
and, finally, 

(2.8) 
The remainingcontributions to yNL and GNL drop out in 

w of interest to us  be- the vicinity of the surface oh= ,o 

cause of the conservation laws. 

The analysis of the relative magnitudes of the various 
terms in Y NL and aNL requires the consideration of the 
specific form of the dispersion law and the matrix ele- 
ments V and T. But in the general case we a re  forced 
to limit ourselves to the roughest estimates. If the co- 
alescence processes (2.3) a re  allowed, then yZL # 0: 

y,,NL=qs.N, q S c = n ~ 2 / k o v .  (2.9) 

The four-wave processes (2.5) a re  always allowed, but 
their contribution contains a temperature smallness: 

Here n&k; is the total number of thermal waves in a 
sphere of radius ko and T i s  the characteristic value of 
the matrix element T,,,,, in this region. For example, 
for spin waves in a ferromagnet, v = w,(~/~M)", T 
=ag2, and 

The processes (2.5) a re  also always allowed, and, in 
contrast to (2.3) and (2.6), the expression for TZL con- 
tains the square of the total number N of the Sew: 

v~ .NL=~, .Wz ,  i~,=nT2ik0v.  (2.12) 

In this case 

, .NL/g,.NL=N~~zboko3, 
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It can be seen that, if the coalescence processes (2.3) 
a re  allowed and the magnitude of the three-wave matrix 
element V i s  not anomalously small, then T = V/k0v, 
and the nonlinear damping predominates at all admissi- 
ble values of N. The yzL damping i s  comparable to it 
when TN-kov, i.e., a t  the limit of applicability of the 
kinetic equation. We shall not be interested in such 
large N. If, on the other hand, the processes (2.3) a re  
forbidden, then, as can be seen from (2.13), either 9 2  
o r  y,,NL will predominate, depending on the value of N. 

Let us now estimate the arrival terms in the kinetic 
equation. From (2.6) and (2.8) i t  follows that 

It is  useful to compare these expressions withthe corre- 
sponding thermodynamic equilibrium values: 

Here k:ny and k;n: a re  the total numbers of thermal 
waves in those regions of k space which respectively 
make the dominant contributions to the integrals (1.11) 
and (1.13). For spin waves, we have in the experimental 
situation of interest to us 

(D,,"LIQa,0=M/16nk03nho, (2.16) 

If the number of Sew and, along with it, the ratios 
(2.15) and (2.16) a re  small, then the quantities *EL 
and 9zL can be neglected. They a r e  also unimportant 
in the opposite case, for then the main contribution to 
@, will be made by the quantity &zL. Indeed, if Nk 

6(uk- wkJ, then the quantity 5ZL i s ,  in accordance 
with (2.8), also proportional to a delta function, i.e., i t  
i s  infinitely large in the region where N,* 0, i.e., in 
the region of interest to us. If, on the other hand, the 
width of the function Nk i s  finite, and i s  equal to Auk, 
then i t  follows from (2.8) that 

so that the assumption zzL >> a', except in the region 
of the smallest N values, i s  quite plausible. We shall 
prove i t  in 84 in the course of a self-consistent esti- 
mation of Auk. Thus, we can assume that in the entire 
range of N 

In conclusion of this section, let us note that there can 
exist still other mechanisms of nonlinear damping that 
a re  connected with the deviation of nk from the equili- 
brium distribution for k far  from the instability region 
(see, for example, Ref. 6). But the consideration of 
their effect falls outside the limits of the present paper. 

53. LIMITATION OF THE KINETIC INSTABILITY BY 
NONLINEAR DAMPING 

At the initial stage of the investigation of Eq. (2.2) we 
shall allow for only the nonlinear dependence Y ~ { N ~ ) :  

yt {Nt) -yk"+yrXL. (3.1) 

The role of the nonlinearity in the arrival terms @iL 
will be considered in the following section. For  simpli- 

city, we shall also neglect the elastic scattering, i.e., 
J:$.  Its role amounts primarily to the isotropization of 
Nk and the corresponding rise, described in 81, in the 
KI threshold. 

3.1. Strong nonlinear damping. Let us first  consider 
the case in which the Sew-coalescence processes a re  
allowed and the nonlinear damping (2.3) i s  strong in ac- 
cordance with the estimate (2.10). For  the gap-contain- 
ing square-law spectrum (12), this means that the SeW- 
wave vectors k ,  are  not too small: 

2ako2>oo. (3.2) 

Thus, in our approximation we have an integral equa- 
tion, which follows from (2.2): 

where $ = e. To elucidate the qualitative charac- 
t e r  of i t s  solution, let  us neglect the dependence of yfL 
and rk on k in the region where rk * 0, and integrate 
(3.3) over k. We find that roughly 

Here k; i s  the volume of the region where r, f 0: 

rk,SnIo= rkntOdk, (3.5) 

and ny a re  the characteristic values of rk and ni in 
in this region. We also used the approximate expres- 
sion (2.10) for g:. Going over in (3.4) to the dimen- 
sionless variable 

z=q3 .~ /yo ,  (3.6) 

we obtain 

z (i+x-l'/yo) =Arlyo. 

The nature of the solution to this equation i s  determined 
by the magnitude of the dimensionless parameter A, 
which has the simple meaning: 

A=qs.n:k,SlyO. 

If A << 1 (because, for example, of the fact that the 
region where q3, i s  defined i s  anomalously small, a s  
obtains in the vicinity of the point beyond which the 
process i s  allowed), then the thermal fluctuations can 
be neglected, i.e., we can set A=O. Then x = (r - yO)/yo, 
o r ,  in the original variables, 

Allowing fo r  the fact that A i s  nonzero, we find from 
(3.7) that x =  (r - y0)/yo+Ar/(r  - yo), o r  

Estimates show that the quantity A can easily attain 
the value one and even exceed it. For  example, for spin 
waves in ferromagnets 

For  A >> 1 the solution (3.7) has the form 

As can be seen, the dependence of N on J? does not 
have a critical threshold character. The limitation of N 
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essentially occurs a t  the prethreshold stage because of 
the nonlinear damping of the "preheated" Sew. 

3.2. Weak nonlinear damping. If the nonlinear damp- 
ing i s  weak, then the limitation of the number of Sew 
occurs a t  a higher level, and the thermal fluctuations 
a r e  significantly less important. In particular, the Nk 
packet will be concentrated near the surface where yk 
- rk has i t s  minimum value. In the case of spherical 
symmetry, we find from (3.41 that 

where Y," i s  given by the formula (lo), and the approxi- 
mate formula (2.13) for the nonlinear-damping constant 
has  been used. Integrating (3.13) over the modulus of k, 
we obtain a cubic equation for  the determination of the 
dependence of N on r,: 

Beyond the KI threshold we have in  the case in which ro 
> y: the equation 

where A, is a parameter characterizing the role of the 
fluctuations : 

For  long spin waves in a ferromagnet with the disper- 
sion law (3.2) 

For  A, << 1, the width of the Sew packet i s  small. 
From (3.13) i t  follows that 

In a narrow region around the threshold (when (I?, - YE\ 
< ~ , y ' )  the width of the Sew packet i s  not small, and 
the expansion (3.13) of the formula (3.4) i s  no longer 
valid. 

In the case of axial symmetry the role of the thermal 
fluctuations will be even less  important; in particular, 
the correction to the total number N has an exponential, 
and not a power-law, smallness with respect to the pa- 
rameterd , .  In place of (3.15) we find from (3.4) the 
approximate equation 

yoO+qN--ro= (rk!,"ko2+y,") exp [- ( r , - ~ , " ) ~ r ~ , ] .  (3.19) 

54. THE "COLLISION" MECHANISM OF KINETIC 
INSTABILITY LIMITATION 

As shown in the preceding section, a s  the supercriti- 
cality increases, the Sew-packet width due to the therm- 
a l  fluctuations decreases in accordance with (3.18), 
while the number of Sew naturally increases: qN= ro 
- y:. This means that the arrival  term sf:, in ac- 
cordance with (2.19), rapidly increases and becomes 
equal to the thermodynamic equilibrium value Go. This 
occurs when 

If the limitation of the number N occurs a s  a result of 

the nonlinear zk damping (and this mechanism i s  al-  
ways present), then the characteristic number N given 
by (4.1) i s  attained when 

where the small parameter A, i s  of the order  of A: 

In experiments on the kinetic excitation of SW in ferro- 
magnets 

so that the characteristic AY/Y -lo-'. At higher super- 
criticalities, we can neglect the thermal fluctuations, 
and discard all the arrival  t e rms  except st:. Of the 
nonlinear-damping mechanisms, we shall explicitly take 
only the zk damping into account. The remaining 
terms, if they a re  important in comparison with the 2: 
term, will be considered to be included in yk (i,e., we 
shall assume that y, = yi +xf + . . . ). AS a result, Eq. 
(2.2) can be  rewritten in the form 

dNt/2dt= (rk-yt)  ~~i-1,';:' {Nk)-T,.NLNk+n@,.NL(k), (4.5) 

where J!$, z,", and 3;; a r e  given by the expres- 
sions (1.2), (2.5), and (2.8). 

4 .1 .  The case of spherical symmetry.  This i s  the 
easiest case to analyze, since Nk does not depend on the 
orientation of k, so that J;~'=O. Choosing Nk in the 
form 

so that 

and performing the angle integrations in (2.5) and (2.8), 
we obtain in place of (4.5) the equation 

Here Y~~~~ i s  given by the expression (lo), 

r.,,=yo+7 r,NL-ro, 
(4.9) 

F'=nT2/(kou), f ,,NL=FzNz. (4.10) 

As shown in Ref. 7, the only stable solution to Eq. (4.8) 
is 

where the effective width, u,, and the integrated magni- 
tude of the packet a r e  determined from the conditions 

Here there occurs an exact compensation of the 2: 
nonlinear damping term by the corresponding 5:; 
arrival term, so that (4.13) can be rewritten [with al- 
lowance for (4.9) and (4.10)] in the form 

Thus, the effective increase of the decrement of the 
Sew by the amount yLku;/2 occurs because of the broad- 
ening of the Sew packet a s  a result of the four-wave pro- 
cesses of scattering of the Sew by each other. Let us, 
using (4.12), (4.131, and (4.10), represent (4.14) i n  the 
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form 

I',=r,+ l/zvr.NL. (TN)Z/kov=2n-'(fo-yo). (4.15) 

This means that the efficiency of the collision mechan- 
ism of kinetic-instability limitation coincides to within 
a numerical factor (equal to $ in the spherically syrnme- 
tric case) with the efficiency of the linear-damping mech- 
anism when the arrival term 5;: i s  "cut off." 

4.2. The axial-symmetry case. We shall consider this 
case under the assumption that yk - rk first vanishes at 
the equator, i.e., when k,=O, lkll=ko. If the rk - yk an- 
isotropy at the surface i s  not too high, so that 

~uax(rt-rt) -min I rr-rr 1 Grd.,, 
(4.16) 

then the elastic scattering leads to the isotropization of 
Nk over this surface, and the theory can be constructed 
in the same way as  in the spherically symmetric case. 
It i s  only necessary to replace I', - Y, in all the formu- 
las by the quantity rk- yk averaged over the w k =  wko sur- 
face, i.e., by (rk - yk). If, on the other hand, there i s  
no elastic scattering, then the Sew packet will be con- 
centrated near the equator. Choosing Nk in the form 

Nk=(2nkoZ)-'N(x, x ) ,  %=I kl -k., x=cos 0, (4.17) 

we obtain in place of (4.5) the equation 

We were not able to find the stable exact solution to this 
equation. But, by analyzing the solution for large val- 
ues of the arguments x and x ,  we obtained for the Sew 
distribution an interpolation formula that i s  qualitative- 
ly valid in the entire k space.' In the dimensionless 
variables 

i t  has the form 

where 

The total number of Sew i s  accordingly equal to 

It should be noted that the efficiency of the collision 
mechanism of KI limitation i s  somewhat higher in the 
axially symmetric case than in the spherically symme- 
tric case: 

4.3. If the KI threshold i s  attained at a pair of points 
k k,, and if the elastic scattering i s  weak, then the Sew 
distribution i s  localized beyond the threshold near these 
points. To study this distribution, i t  i s  convenient to go 
over to the spherical coordinates in k space after orient- 

ing the z axis along k,. If the problem i s  isotropic in 
the (x,  y) plane, then the kinetic equation in this case 
has the form 

3T2/4xkov 
N(x* = - r, , ,+~u11xz/2+y,eff(~-~)  N x (4.23) 

The corresponding interpolation formula obtained by us 
for the Sew distribution from the analysis of the limiting 
cases has the form 

1 7u"ko27ee" 
) (  rell k0v ) " 

where 

q=(ru"12r.ll)"x, E = ~ ~ ~ " ( I - x ) I ~ , , , ,  ?.,-A~-I. (4.25) 

The total number of Sew in this case i s  

It should be noted that the formula (4.24) i s  not valid 
in the region t2 /q< 1, where the asymptotic behavior of 
the preexponential factor i s  not scaling invariant. But 
the number of waves in this region i s  small compared 
to N, and, for the majority of estimates, the formula 
(4.24) can be used. 

4.4. Small-k Se W distributions arise if the KI thresh- 
old i s  attained at the point k,=O, o r  if k, i s  so small that 
the distribution width no becomes greater in absolute 
value than k, as  the supercriticality increases. Here we 
limit ourselves to the consideration of the simplest mod- 
el, namely, the isotropic-ferromagnet model. In this 
case the dispersion law for the Sew i s  the square-law 
spectrum with a gap (12), and the decrement of the long 
Sew i s  a linear function of the modulus of k [see (13)].4,5 
The Sew distribution function Nk then depends only on 
Ikl, and the kinetic equation with allowance for (2.5) and 
(2.9) assumes, after the angle integrations have been 
eerformed. the form 

F ,  .,, .,, .,=min {(e'"+e,'"), (e,"+er'h))-max {I e'h-s,'hl, Isl'-srKI). 

Our approximate solution to this equation i s  given in 
the Introduction: the formula (14). The total number of 
Sew i s  

#5. THE DISTRIBUTION OF Sew WITH AN 
ANISOTROPIC DISPERSION LAW I N  THE PRESENCE 
OF STRONG ELASTIC SCATTERING 

It has been experimentally observed1 that the kinetic 
instability of SW in a ferrite leads to the formation of a 
narrow packet of Sew with frequencies close to the bot- 
tom of the spectrum. In this case it follows from (1.29) 
that the surface of constant frequency i s  
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i.e., the cross section resembles the "figure eight." It 
should, however, be borne in mind that the damping of 
the SW intensifies as  k - 0  [see (1.31)], and therefore the 
waves are mainly concentrated near the poles of the sur- 
face, where it  can be approximated by portions of a 
sphere with 8s O,=[(wko- w,)/~w,]'~. As shown in 81, 
large amplitude PSW give rise not only to kinetic insta- 
bility, but also to elastic scattering, and, what i s  more, 
the rate y de f  of this elastic scattering is not low compared 
to rk. Since the effective relaxation rate i s  determined 
by the difference I ~ k -  rkI, it  can be assumed that re, 
5 ydef always, and that, in particular, at low supercriti- 
calities I ' e r r " ~ ~ ~ ~  We shall also assume that the quan- 
tities rk, Y k ,  yGNL, and ydefdo not depend on the angles 
inside the cone 0 6,. Thus. the kinetic equation as- 
sumes the form 

where N(n, x )  has been introduced in accordance with 
(4.17): 

i "  " 
N(x) = - j N (x, z)dz, Az= j &=zm=0k/2. 

Az 0 

(5.3) 
0 

The functionf(x) arises as  a result of the averaging of 
64+k1 - k, - k,) over the angles within the cone: 

and F i s  given by the formula (4.10). Integrating (5.2) 
over x, we obtain 

Equation (5.5) coincides in form with (4.8) to within 
the subsitution F2-F2f. AS a result, the total number 
of waves increases by a factor off - I h ,  but the shape of 
the packet coincides with the shape described by (7). 

In order to determine the experimentally measurable 
dependence of the number of Sew on the parametric- 
pumppower, we must also take into account the reaction 
of the SeSW on the form of the distribution function and 
the attenuation of the PSW. 
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