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It is shown that the order parameter in a spin glass with random anisotropic exchange is stable with respect to 
Gaussian fluctuations. At all temperatures below the phase-transition temperature, the correlator of these 
fluctuations is proportional, at small momenta k ,  to l/k 2; this means that a gapless critical mode is present in 
the system and indicates that the ground state of the system is degenerate. 

PACS numbers: 71.25.Mg 

1. INTRODUCTION anisotropic exchange, spin is not conserved, and that 

It has been shown by the author' that in a magnetic 
material with random anisotropic and nonrandom iso- 
tropic exchange, a spin-glass phase exists. This r e -  
sult was derived in the approximationp - =, where p 
i s  the number of components of the spin. This approxi- 
mation is one of the numerous modifications of self- 

. - 

there can be no spin waves in such a system. There- 
fore the indicated gapless mode is evidently connected 
with a degeneracy specifically characteristic of dis- 
ordered systems with "frustration. "' Previously, such 
degeneracy has been studied only numerically. In our 
case, it can be studied analytically. 

consistent field theory. On the other hand, in use of The presence of a gapless mode in the system i s  the 
self -consistent field theory it is  always necessary to principal result of the present paper. 
clarify the question of the stability of the solution with 
respect to fluctuations of the self-consistent field. We 
remark that the question of fluctuations in the spin- 
glass problem is at present very urgent. The fact i s  
that in all the spin-glass theories so  far studied, it 
turns out that the order parameter i s  unstable with re -  
spect to fluctuations of the self-consistent field (see, 
for examples, Refs. 2-6). Therefore the construction 

In concluding this section, we note that systems with 
random anisotropic exchange a re  encountered quite of- 
ten. For occurrence of such exchange, two conditions 
must be satisfied: the presence of an interaction that 
does not conserve spin, and randomness. The simplest 
examples of this type a re  dipole forces in an amor- 
phous ferromagnet and a random rotating anisotropy. 

of a spin-glass theory in which the order parameter i s  
stable with respect to fluctuations is a very interesting 2. DERIVATION OF AN EFFECTIVE HAMlLTONlAN 
problem. 

The present paper is  devoted to this question. In our 
problem, fluctuations occur in subsequent orders in 
l /p  (in Ref. 1, the zeroth order in l /p  was studied). 
Therefore for study of the problem of fluctuations, a 
systematic expansion in l /p  will be constructed. For 
this purpose, we shall use the method of replicas (see, 
for example, Ref. 4)  and shall introduce an effective 
Hamiltonian. If one sets the first  variation of this Ham- 
iltonian with respect to the field variables equal to zero, 
one obtains equations for these variables. We shall 
show that these equations a r e  completely equivalent to 
the equations of Ref. 1. We note that such a procedure 
corresponds to the self-consistent field approximation. 
We shall then construct the Hamiltonian for the fluc- 
tuations of the field variables. It turns out that the per- 
turbation-theory series in this Hamiltonian gives the 
l /p expansion. 

We choose the Hamiltonian of a magnet with random 
anisotropic and nonrandom isotropic exchange in the 
following form1: 

Here mp a r e  the spin variables (i enumerates the 
sites, a, the components), J:: i s  the random exchange 
integral, v i ,  is the nonrandom, T i s  the temperature, 
h i s  an interaction constant, and a is a constant. The 
random matrix J y i  has a Gaussian distribution: each 
J:: is  a statistically independent quantity with a Gaus- 
sian distribution function, 

We shall further study in detail Gaussian fluctuations I 
(J:: J:: )= - I,,{6,,6,,n6,:6sa+6,,m6,i6a~6~I). 

P 
(2) 

of the fields. It is found that a t  all  temperatures below 
the critical, the correlator describing these fluctuations For what follows, we shall find it convenient to use the 
contains a gapless mode. This means, f irst ,  stability method of replicas. In this case,  the averaging over 
of the system with respect to fluctuations (for instability J:: is carried out by a standard method (see, for ex- 
there is  a negative g a ~ ~ - ~ ) ,  and second, the presenceof ample, Ref. 4). A s  a result, we obtain the Hamiltonian 
a certain degeneracy (the same a s  in an ordinary or- for n spin variables my,, ( p  = 1 . . . n). We must r e -  
dered ferromagnet). We note that in a system with member that we a r e  interested in the limit n - 0. After 
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standard manipulations, we get the following Hamilton- 
ian Hc: 

This Hamiltonian is  inconvenient in that the large pa- 
rameter p i s  not explicitly separated in it. In order 
to  separate it, we apply a method used in Ref. 10 for an 
ordered ferromagnet and in Ref. 11 for the problem of 
the motion of an electron in a random potential. We use 
the formula 

-- P-1 Pa-1 

Here ( I / K ) ~  i s  the matrix inverse to Kk,  and IKI is the 
modulus of the determinant of the matrix Kk. Applying 
formula (4) to the terms of fourth order in m:,, in (3), 
we get the following Hamiltonian: 

Here (1/1),, i s  the matrix inverse to IiA; t i , ,  and QiuY 
a r e  new field variables, integration over which is  car-  
r ied out with weight exp{-He/ T}. Such an integration 
is implied everywhere hereafter. We omit the constant 
factors that ar ise  when formula (4) i s  used, because 
they cancel out in the calculation of the mean values. 
We note that Qiu, is a symmetric tensor. 

The Hamiltonian (5) i s  quadratic in the fields m:,, . 
It i s  therefore possible to integrate over them. Then 
the large parameter p i s  separated out in explicit form. 
The Hamiltonian for the remaining variables-the ten- 
sor  c i , ,  diagonal in the indices IJ and v,  and the sym- 
metric tensor Q,,,-is conveniently represented in the 
following form: 

HCIT=p@ (i, Q ) ,  
- -  2 TZ 1 

@ ( E , Q ) = ~ ~ s ~ ~ + -  x (f) i k ~ r u ~ u v + - ~ ~ l ~ ~ ,  
i p  .LP" 

2 

In (6) we have used hats to designate matrices in ikpu 
space. Hereafter we shall find it convenient to suppose 
that there in in the system a random magnetic field hi, 
that has a Gaussian distribution and interacts with the 
mp according to the formula hiam,,. In this cas_e, only 
a varies in (6). There results a correction to A of the 
following form: 

In (7), Auy is  a tensor whose elements a re  a l l  unity. 
We note at once that 

where n is the dimensionality of "replica" space; we 
a r e  interested in the limit n -  0. We note that the Ham- 
iltonian in (6) i s  not invariant with respect to rotation 
in replica space, since (6) contains the diagonal tensor 
$. This is  a consequence of the fact that the last term 
in (3) has cubic symmetry, not spherical. Formula (6) 
gives the effective Hamiltonian that we need. 

3. EQUATIONS OF THE SELF-CONSISTENT FIELD 

A s  usual, the equations of the self-consistent field a re  
obtained by varying the Hamiltonian with respect to the 
field variables i and Q and setting the derivative equal 
to zero. Then we get from (6) and (7) 

S-ince i s  expressed in terms of the diagonal part of 
Q, (9) i s  an equation for the operator 6.  We note first  of 
of all that for  a stationary solution, GIii and Gi  a r e  in- 
dependent of the si te i. Therefore all  the operators in 
(9) depend only on the indices p and v. We get for them 
the following operator equations: 

where e(k) ,  v(k), and I(k) a r e  the corresponding func- 
tions in the momentum representation, d" i s  the volume 
of the elementary cell, and is  the unit matrix in r e -  
plica space. 

It is  evident from (10) that if we solve (10) by pertur- 
lxition theory wit! respect to h2, then in consequence of 
(8) the operator Q will be expressed in terms of 2 and 
k Therefore we shall seek a solution in the form 

- 2 1 ,  - h -  
E , = ~ i + ~ i ,  Q = - ( G , E + ~ s ) ,  E=L-P,E, P @ = G ~ + ~ .  (11) 

T2 4 

As was shown in Ref. 1, q is an Edwards-Anderson pa- 
rameter.  Expressions for 6 and $ a r e  obtained from 
(10) and the expression for 6, in (11). If we substitute 
these expressions in the equation for e (k )  in (lo), use 
(8), and take into account that in our case n - 0, we get 

Substituting (12) in the expression for do in (10) and 
equating coefficients of the operators 8 and h, we get 
the following equations for the parameters Go and q: 

a a 

A2=nA, (8) Equations (13) coincide with the corresponding Eqs. (4) 
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of Ref. 1 [for a random magnetic field, it i s  necessary 
in these equations to replace ~ ~ ( k  = 0) by no in the ex- 
pression for P, ] ,  These equations were studied in detail 
in Ref. 1. Here, therefore, we note only the following 
important fact. It follows from the equation for q in 
(13) that when h = 0, there a r e  two possibilities: either 
q=O, or 

Therefore at all temperatures below the critical, the 
condition (14) i s  satisfied. 

We note also the physical meaning of the operator 
G(k). In disordered systems there a r e  two types of 
two-particle correlators: 

where (. . . ), and (. . . ), denote thermodynamic and 
configurational averages. It i s  easy to show that the 
diagonal part of G determines the first correlator, the 
nondiagonal the second. Since the coefficient of E is 
equal to the difference of the diagonal and nondiagonal 
parts, it determines the irreducible correlator (the $if- 
ference of the first  and second). The coefficient of A 
determines the second correlator, which, a s  is easily 
shown, coincides with the function K ( r )  in Ref. 1. 

Thus we see that the correlation-function operator 
contains all the necessary information about two-par - 
ticle averages. 

4. THE HAMlLTONlAN FOR THE FLUCTUATIONS 

We denote$? solution of Eqs. (10) and (11) for 6 and 
by go and?,, and we set 

Then after uncomplicated calculations we obtain the fol- 
lowing expression for a: 

In (IT), the trace is taken both over the coo~dinate and 
over the operator indices. The ope_rator (G),,, i s  the 
Fourier transform of the function G(k), which i s  deter- 
mined by the solution of Eq. (10). The quantity @(G,k) 
determines the Hamiltonian for deviations of the field 
variables from their solution in the self-consistent field 
approximation, $ and I?. We note that @(&,a) in (17) is  
correct bothfor T > T, and for T < T,. The only difference 
i s  that when T < T,,an Edwards-Anderson param- 
eter q o c c ~ s  and G is no longer proportional to the unit 
operator E. 

In the expression for a($, k) ,  the expansion begins 
with terms quadratic in the fluctuations. Since, as is 
evident from ( 6 ) ,  Hc-p@, it i s  not difficult to show that 
if, in the calculation of the correlators, we take the 

quadratic part of @ a s  the zeroth approximation and cal- 
culate the remaining terms by perturbation theory, then 
we obtain an expansion in the parameter 1/p, which thus 
plays the role of an effective interaction constant. This 
can be seen also by another method: by making the sub- 
stitution of variables p\k2 - Q2 and pR2 - R2. Then the 
parameter l/p occurs in different degrees together with 
terms of higher order. 

In the present paper, we shall restrict  ourselves to 
study solely of Gaussian fluctuations determined by the 
quadratic part of (17). In concluding this section, we 
shall write this part of @ in the explicit form 

5. CALCULATION OF THE CORRELATORS OF 
GAUSSIAN FLUCTUATIONS 

We introduce the two correlators 

D,,,(r,--r,)  =(Y,,Y,,), D,,,,,,(r.-r ) = ( R  , R,,,), (19) 

where the averaging i s  carried out with weight 
exp{-pa($, k)}. On substituting (18) in (19), we get, 
after uncomplicated but unwieldy calculations, the fol- 
lowing expressions for the Fourier transforms Dly,(k) 
and D2,,,p(k): 

h  
- - l i ( k ) ~  

1 

2 E + l / z h ~ f i  ( k )  t 

.. 
I I (k )=  

R(k)  
E-4T-V(k )  b ( k )  ' 

In (20), the operators k, fI, i, and h act in a space _that 
is the direct product of the two replica spaces, and E 
is the unit operator in such a space. In this space there 
is  a subspace in which the replica indices coincide. ' 

The operator & i s  the unit operator in this subspace. It 
projects operators on this subspace. For example, the 
operator 

i s  the projection of the operator fi on this subspace, a s  
is evident from the last line of (20). It must be noted 
first  of all that the correlators Dl and D, a r e  inversely 
proportional to p. This i s  quite natural, since for p - the fluctuations a r e  absent. 

We shall now calculate the operator fi. Fo_r tkis pur- 
20s: it i s  convenient to introduce operators El,E,, and 
A,, A,, which act in spaces whose direct product i s  our 
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complete space. For example, (Efi,),Yp = Then 
obviously We then get from (121, on taking (8) 
into account, the following expression for 0:  2n,(l+'izini) i,i2 )&, 

x ( ~ - ' )  { r i z e +  t+i/s(ni+zn) 
fi-ni~+n,(~,A,+Ehi) +nZt& 

-1 U(k) 
L&L- - 

T' IIl(k) =Kim ( I - ~  K I ( W  ] * ni+2n, U(k) - -  
+ - eAiA2e l+'/,h(II,+211z) T1 

" 1. (26) 
[~+~/,a(n,+zn,) 1% 

The function K,(k) was defined in (13). We note a t  once 
the following fact. As i s  evident from (14), for h = 0 
and T < Tc the operator fi is very singular a t  small k. 
As i s  evident from (22), II,(k) -k", II,(k) -k4, II,(k) 
-k-'. This fact also leads, a s  weAshall see,  to the 
occurrence of a gapless mode in D,. 

It is easy to show that the field * i s  not critical, 
since in the critical region 8, - 1/h, - 0. Therefore we 
shall restrict  ourselves to study solely of the correla- 
tor D,. Taking into account that 

we get, after uncomplicated calculations, the following 
expresssion for D,: 

PA 
Ds.u= (a), , 

U(k) +- I I z  CBC 
P ( i+i/2ml) [i+*/a(n,+zn,) I 

The general formula (24) i s  quite unwieldy. To make it 
easier to understand, we separate Ij, into four parts: 

0,-(E-&)bl(E-L) + (E-L)Bz&+tbr(E-t) +fibat. (25) 

The meaning of this decomposition i s  very transpar- 
ent.- From the definition of in (20) it i s  clear that 
i&L i s  the projection of the operator-& on the sub- 
space W =  v ,  X=p. This means that LD& describes 
tFe c o r r e ~ t o r s  of the diagonal components of k, while 
(E -L)~),(E -i) describes the nondiagonal. The other 
two operators describe the correlation?f tke d i a g o ~ l -  
and nondiagpnal-compo_nents. Since L(E - L ) = (E - L )L 
=0, while L2=Land (E -L)'= (k -L), we easily get 
from (24) 

In the derivation of (26) we have taken into account 
that2 commutes with i and that L&.t = 2L, while i 2 i  
=4L. If we substitute (22) in (26), we get explicit ex- 
pressions for all the correlators. But the expression 
obtained i s  very unwieldy and hard to examine. There- 
fore we shall consider only special cases. We shall not 
be interested in random magnetic fields; therefore we 
shall hereafter set h=O. Then for T >  Tc, It,= n,=O, 
and we get from (22) and (26) 

Since (14) is  satisfied when T = Tc, therefye- near Tc 
and at small kc, a s  is  evident from (271, ~ D J .  i s  finite 
but (2 - L ) ~ , ( E  -i) is  large. This means that the non- 
diagonal matrix elements R,, a r e  a critical mode. 
Since (14) i s  satisfied everywhere when T < T,, there- 
fore at k =0 ,  a s  follows from (22) and (26), (& -L)B& 
and i 8 t  a r e  finite, but ( 2  -i)fi,(k -i) becomes in- 
finite. At small k this correlator is 

It i s  evident from (28) that the critical correlator i s  
proportional to l/k2 a t  all  T < Tc; this signifies the pre- 
sence of a gapless mode. 

Physically, this means the following. In analogy to 
Ref. 12, one can show that for P f v, A f  p 

(29) 
where x,, is the local susceptibility. In (29) it i s  un- 
derstood that different indices a r e  not equal to each 
other; for example, in D2,,,.YC, p f p and p # v. From 
(28) and (29), by taking into account the explicit form of 
H and B, we get the following expression for the Four- 
ier  transform DR(k): 

Thus a t  all T <  Tc, the generalized susceptibility DR(k) 
-k-'. This i s  completely analogous to the behavior of 
the ordinary suceptibility in a ferromagnet, and it i s  an 
indication that there i s  a degenerate ground state in the 
system. 

We note that the gapless mode appears only in the ab- 
sence of a random magnetic field, which leads to the 
appearance of a gap and thus removes the degeneracy 
of the ground state. 
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In conclusion, we should like to mention the following 
important fact. As we have already said, the correla- 
tor D, is  not critical. Therefore to calculate the non- 
Gaussian fluctuations it is necessary to take into ac- 
count only the correlator D,. On the other hand, a s  is  
evident from (ZO), the correlator D, i s  proportional to 
I ( k ) .  Therefore if one considers a situation in which the 
ferromagnetic volume u is  small but the random aniso- 
tropic exchange has a large radius R,, then in the cal- 
culation of the non-Gaussian corrections the expansion 
will go not according to the parameter I/&, but accord- 
ing to the parameter l/pRi. Thus p enters only a s  a 
multiplier. Therefore such an expansion i s  equivalent 
to the corresponding expansion in the usual Ising spin 
glass. This fact was mentioned in Ref. 13. 
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