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An analysis is made of the dynamics of a crystal in a random field. This is done for the case when the field 
creates vibrations in a medium with which the crystal is interacting and also in the case of a static field. It is 
shown that in a short-range field of vibrations of a medium a crystal does not become unstable because of the 
anharmonicity of the interaction allowed for in all orders of perturbation theory. In a long-range field of 
vibrations a crystal is found to be unstable. A static short-range random field destroys the long-range order 
even if allowance is made for the anharmonicity. The results are used to analyze the stability of certain 
specific systems. 

PACS numbers: 63.70. + h 

Imry and Ma1 showed that a s tat ic  random field de- atom from a lattice s i te  is governed by a random force 
stroys an ordered state with a continuum symmetry in li calculated allowing for  the umklapp processes:  
systems of dimensionality 2 Q d  Q 4 .  The instability is 
due to the fact that in the range of smal l  wave vectors it=-iC (Gfk) Vo+r 

k the susceptibility of the system obeys x k-Z (see,  for  0 

(G is the reciprocal lattice vector); clearly, ( 1  &)2) i s  
example, Ref. 2) and if the correlation function 

approximately constant in the range of low values of k 
( ( hkI2) of the random forces h, does not decrease in the 

even in the limit kV, - 0. It was this  type of instability 
limit k -0, the mean square of the fluctuations of the 
order  parameter  diverges a s  k-4. This instability was which was considered by   ark in^ in the case  of a vortex 

lattice. He allowed only for linear (in respect  of the known before the appearance of the paper by Imry and 
displacements) t e rms  in the Hamiltonian of the interac- ~ a '  (Larkin3 considered "meltingv of a lattice of vor- 
tion with the field. However, if a crystal  mel t s  and the 

tices in a type II superconductor in a random field). It 
r m s  displacement diverges, i t  is necessary to allow for  

applies directly to the pinning of charge density waves the nonlinearity of the interaction, i. e . ,  for  the depen- 
in the case of interaction with defects4*= and to the de- 

dence of the force acting on an atom on the displace- 
struction of the long-range order  formed in a crystal  

ment of the atom. In principle, this may a l te r  the r e -  
by electrons localized a t  impurities. ' 

sult  in the case  of a short-range field since the poten- 
The problem of destruction of the long-wave order  t ial  var ies  over distances which a r e  short  compared 

in a crystal  in a random field is interesting also in with the lattice constant. 
connection with several  other systems.  One can men- 
tion here,  for  example, crystals  formed by atoms ad- 
sorbed on a glass substrate and a lso  Wigner crystals  
formed by electrons o r  holes in the bulk o r  on the su r -  
face of a semiconductor o r  on the surface of liquid 
helium (Wigner crystals  of the lat ter  type had recently 
been discovered experimentally7). 

An analysis of the stability in a random field will be 
made below allowing for  the nonlinearity of the inter- 
action. It will be shown that if the field crea tes  vibra- 
tions in a medium, the anharmonicity makes a crystal  
stable if the interaction with the medium is of the 
short-range type. The frequency of these vibrations 
can be infinitesimally low and the temperature can be 

It is important to s t r e s s  that in al l  these systems a high. If the interaction with the medium is of the long- 
random field creates sources external to the crystal. range type, a n  instability should appear. In the case  of 
One of these sources is in the form of vibrations of a a static short-range field the anharmonicity of the in- 
medium with which the crystal  i s  interacting. Fo r  ex- teraction does not suppress the divergence of the r m s  
ample, in the case of Wigner crystals  in semiconductors displacement and the system has a short  correlation 
the interaction is with the fields of phonons and defects radius r, (in general, it is necessary to allow for  the 
in semiconductors. We shall use a very general model anharmonicity in calculating this radius). 
t o  analyze the interaction with crystals  of static random 
fields and of fields created by phonons o r  other vibra- 
tions of a medium with which the crystal  is interacting. 

The results  of Imry and Ma1 can be applied to crystals  
directly only in the case of long-range random poten- 
t ials  V(r) and i t  is essential that the correlation function 
(I VkI2) should diverge a s  kZ (otherwise the correlation 
function of the forces (1 kVk(2) tends to zero  in the limit 
k -0). However, a crystal  may be unstable also in the 
case of a short-range field V(r). We must  bear in mind 
that the Fourier  component of the displacement of an 

At f i r s t  sight i t  might appear that if sr,' >urn (s is the 
velocity of sound in a crystal  and w, is the characteris-  
t ic  frequency of the vibrations of a medium), there 
should be no difference between a static random field 
and a field created by the vibrations of the medium. 
However, the results  of the action of these fields on a 
crystal  differ basically. Physically, this is due to the 
possibility of some tuning of the vibrations of the me- 
dium to the vibrations of the crystal  and particularly 
due to the fact that a "polaron jacketH with the lattice 
period appears in the medium and i t  stabilizes the crys-  
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where tal  if the interaction is unharmonic. Formally, the 
difference is due to the different procedures of averag- 
ing over a random external field and over a field 
created by the vibrations of the medium (see Sec. 3). 

1. ABSENCE OF MELTING IN THE CASE OF A 
SHORT-RANGE POTENTIAL OF THE INTERACTION 
OF A CRYSTAL WITH VIBRATIONS OF A 
CONTINUUM 

We shall consider the specific case when a medium 
whose vibrations a r e  created by a random field is con- 
tinuous and isotropic (in our case, the structure of the 
medium is unimportant). The general form of the 
Hamiltonian of the system is 

H,=C H,, Ha= C V ,  exp(iqr,) c,, 

Here, ekj is the polarization vector of a crystal vibra- 
tion branch j with a wave vector k; qj  and b, a r e  the 
annihilation operators of the crystal and continuum of 
vibrations, respectively; R n  is the coordinate of the 
n-th lattice site. It is interesting to consider the sys- 
tems for which the wave vector q may exceed the re- 
ciprocal lattice period a,' and, consequently, the scat- 
tering of the crystal vibrations by the continuum of 
vibrations may be accompanied by the umklapp pro- 
cesses. Therefore, expansion of H, a s  a ser ies  in 
q. (r, - R,) will not be made. 

The crystal dynamics a t  T#O is governed by the 
Green function 

G t j ( a n )  =<xt,I ~ - t , ) ) ~ ,  

b (2 
on- ZrnT, ((AIB)),=- d z ( A  (- iz )B(O))exp i@.l., h= i /T .  

0 

In the zeroth approximation with respect to V,, we 
have 

(01 G~~ (a,) = - 2 m k j l ~ t j ~ Z l ( ~ n Z + ~ ) .  (3) 

The absence o r  occurrence of melting in the weak 
interaction case depends on the nature of the diver- 
gence of G k I  in the range of small values of k .  Gene- 
rally speaking, the divergence should be strongest for 
the transverse modes which have the highest suscepti- 
bility in the zeroth approximation2: G:~)(O) = k". Since 
we shall consider the relevant vibration branch, we 
shall omit the index j .  

The equation for G, can be obtained allowing for the 
interaction (see Appendix 1) by differentiating Eq. (2) 
on the left and right of T .  This equation is 

l t ( o . )  =z ( q e t ) 2 ( ~ q ) +  (qe t )  (q1et)  <Hq. ( - k )  I H, ( k )  >,, 
q % 

H .  ( k )  =z Vqcq exp (iqr,+ikR,), Hq=Hq (0). (5) 

It is clear from Eq. (4) that ( G,(w,) - G:O'(wn) I = wi4 in 
the limit w, - 03, and the correction to G,(w,) which is 
the only one diverging a s  k - 0 and w, - 0, may appear 
only for n=O. We shall show that in the case of a 
short-range interaction with the continuum vibrations 
this correction increases in the limit k -0 a t  least a s  
k2w2,(Akl4 for all perturbation theory orders in H i .  
Therefore, since for acoustic phonons we have 
w,lA, 1 2 =  const, it follows that G,(O) = k", a s  in the ab- 
sence of the interaction, and no melting takes place. 

According to  Eq. (4), the correction to G,(O) is de- 
termined by the function Jk(0). In the calculation of 
Jk(0) i t  i s  convenient to separate the term with q' = iq: 

(1) (1) 
Jk(o)=lk + l k  , 

I,"= (qet)Z[<Hp)-<H-q(-k)-Hq(-k) IHq(k ) )O] ,  
P 

(6) 
I:"= z ( s e t )  (q'er) <Hq, (-k) IHq(k) )),, 

P'I' 

(a primed summation sign means that q' # *q). Bearing 
in mind the equality obtained in Appendix 2 

we can write down the expression for J:" in the form 

J:" = z (qek)2[<H-q-~qI~,))O-~~Hq(-k)-~,(-k) I H , ( ~ ) ) ) ~ ] .  (6a) 
, 

Clearly, J:" = 0. For finite k in the lowest order in 
V,, we have 

1 

J!')=- z I v , I z ( ~ ~ ~ ) z ~  exp (-iqR,,) [I-exp(-ikR,,) ] drcp(o,, T )  

It i s  clear from Eqs. (6a) and (8) that of the function 
IV, 1'~;' does not diverge in the limit q - 0, then for 
small values of k ,  we have 

where N is the number of atoms in a crystal. 

Cancellation of the terms in 3:') not proportional to 
k2 is due to the fact that in addition to a random vibra- 
tion field a crystal is subjected by the medium to some 
regular field described by the term - (H,) in Eq. (6). 
This field i s  due to the reaction of the medium on the 
crystal. It is clear from Eqs. (6)-(9) that the term in 
question hardens the crystal and this effect compen- 
sates the "softening" influence of the fluctuation field 
due to the vibrations of the medium. The coefficient 
C in Eq. (9) is exponentially small in the case of a 
short-range interaction with the medium: 

where a, is the lattice constant and ( u ~ ) ' ' ~  i s  the r m s  
displacement of an atom in the crystal'' [if the interac- 
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tion decreases steeply beginning from some value 
q =g, such that a,' << G, << (2) - ' I2 ,  then C i s  smal l  com- 
pared with the parameter  (~,a,,)-'<< 1 ,  but this small- 
ness  may be nonexponential; it should be pointed out 
that in the case of Wigner crystals  in semiconductors 
o r  on the surface of helium there is no such reduction 
in the interaction on increase in q and the exponential 
estimate applies to C]. 

It i s  easy to calculate Jp) in the higher o rde r s  in HI 
and to show that the renormalization of C in the case  of 
a weak interaction is smal l  and the t e rms  not propor- 
tional to k2 do not appear. This result  is evident in the 
case when the total number of the vibrational degrees 
of freedom of a crystal  is much smal ler  than of the 
medium with which i t  interacts  and the medium ac ts  a s  
the crystal  thermostat (this is true,  for  example, in 
the case of Wigner crystals  formed on the surface of 
helium). Then, i t  is sufficient to allow for the reac-  
tion of the medium only in the lowest perturbation 
theory order and to ignore in Ji1) the t e rms  -NI v,I4 
compared with the t e rms  - 1  VqI2. The t e rms  with high- 
e r  powers of H, then result  mainly in "clothing" of the 
Green functions cp(w,,, T) of phonons in the crystal ,  
i. e .  , they cause a slight renormalization of q,. A 
somewhat more cumbersome (but still  elementary) 
analysis i s  required to allow for  the reaction of the 
medium in the higher o rde r s ,  because the Green func- 
tions ((c, ( c,,)), have singularities a t  q = G (G is the 
reciprocal lattice vector). These singularities cor re-  
spond to a periodic (with the crystal  period) relief 
which appears in the medium a s  a result  of the interac- 
tion. It follows from physical considerations that such 
a relief should not result  in melting of the crystal. 

It follows from Eq. (6) that calculation of 5:) reduces 
to determination of a Green function of the type 

where L is an operator that does not contain c,,; in 
general, i t  can be described by the following expres-  
sion, which is accurate apar t  from a numerical coef- 
ficient, 

In the equation of motion for  this Green function 

=x (net) {<[L,H,+H-,I IH,(k))),+([L,H,(k) I ) )  (11) 
I 

the second term on the right-hand side can be transfor- 
med a s  follows using Eq. (A. 2.1): 

It follows from Eq. (12) that the right-hand side of 
Eq. (11) vanishes a t  k = 0. The second te rm on the 
left-hand side of Eq. (11) represents  a Green function 

of the same type a s  the f i r s t  t e rm,  and for  this second 
te rm we can derive an equation analogous to  Eq. (11). 
This  gives an infinite chain of homogeneous equations 
for  k=O and this chain has  a trivial solution for  al l  
o rde r s  in V,. Consequently, we have J:' = 0 when 
k=O. 

If k is small ,  we can est imate 5:) in the same way a s  
has been done for  J:'); clearly, we have J:) k2, i. e .  , 
Eq. (9) describes not only Jt), but a l so  the whole of 
Jk(0). It follows that the correction to Gk(0) is indeed 
proportional to kZ and in the case  of a short-range 
random potential ~ ,Vqc,e iqr  i t  contains an exponentially 
smal l  factor  exp(- $qka;). 

2. DYNAMICS OF A CRYSTAL IN THE CASE OF A 
HARMONIC INTERACTION WITH VIBRATIONS OF A 
CONTINUUM 

If H, in (1) is expanded a s  a s e r i e s  in displacements 
of atoms in a crystal  from their  equilibrium positions 
and only the linear t e rms  a r e  retained in the expansion, 

then in the approximation of a single vibration branch 
( j  =1) we readily find the Green function of Eq. (2): 

According to Eq. (14), a medium softens the normal 
modes of a crystal  and causes the acoustic mode fre-  
quency to vanish a t  k = k,, where 

If the interaction is of a short-range type and if the 
polarization operator n,(0) is dominated by the umklapp 
processes (G #O), i t  follows that IIk(0) in the limit k - 0 
is independent of k and does not vanish, s o  that Eq. (15) 
has  a nontrivial solution. This resul t  is in conflict with 
the result  of the preceding section and i s  incorrect. 
It is obtained because the higher t e rms  of the s e r i e s  in 
xkj a r e  dropped unjustifiably from Eq. (13). In fact, if 
an r m s  displacement from a lattice s i te  becomes com- 
parable with the lattice constant, then the whole ser ies  
should be included in the expansion of Hi in t e rms  of 
G(r, - R,) when G # 0. In particular, the t e rms  in the 
polarization operator (14) not proportional to k2 cancel 
out if in addition to Eq. (13) we include in H, the t e rms  
-xkxek. The  Green function can again be calculated ex- 
actly. It is described by Eq. (14) where nt(w,) is r e -  
placed with f i t ( ~ , ) ,  

and i t  does not have divergences in the case of a short- 
range interaction. ') We have pointed out above that the 
te rm (H,) in Eq. (4), which results  in cancelling in 
Jt(0)  of the t e rms  not proportional to k2, is precisely 
due to the t e rms  -xkx, in Hi.  

We shall now consider the case  when the coupling to 
the continuum is of the long-range type, i. e . ,  when 
(V,1'wi1 diverges in the limit q -0, It is then that Eq. 
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(13) can be reduced to just the term ignored. It then follows from Eqs. (6) and (17) that 

which describes the harmonic interaction of the long- 
wavelength longitudinal vibrations of a crystal with the 
vibrations of a continuum [the f i rs t  term in Eq. (13) is 
unimportant in the long-wavelength limit; this becomes 
clear if the summation with respect to R, is replaced 
with integration and i f  allowance is made for the fact 
that we can assume that V, = 0 when q = 0 if the total 
number of particles is conserved]. It should be noted 
that Eq. (13a) is valid also in the absence of a long- 

In a short-range field with a finite correlation radius 
we have J;') - XNJ in the limit k - 0, and we also find 
that J>O. Since J;) contains terms only of the fourth 
o r  higher orders of V,, i t  follows that in the case of a 
sufficiently weak interaction the value in the long- 
wavelength limit is J,(O) - ANJ. 

range order. The quantity J describes the characteristic distance 
r, in which the system retains a short-range order.  In the case of a long-range interaction in a system of 
The parameter r, can be estimated by equating3 the coupled modes we can expect an instability described rms difference between the atomic displacements at a 

by Eqs. (14) and (15). This instability does not disap- 
distance to the lattice pear when the unharmonicity of the interaction is al- 

lowed for: going over to integration with respect to R, 
in Eq. (8), we obtain 

I:" -N2ka(I VqIZo;') q,r; which gives, subject to Eqs. (4) and (18), 

hence, it follows that if I V,12wi1 diverge in the limit r.-ao(m2s'laozJ) rc)aO (19) 
q - 0, then J, decreases' i n  th; limit k - 0 more slowly 

(m is the mass  of an atom in the crystal). than k2, and longitudinal acoustic phonons a r e  unstable. 

The nature of the instability in Eqs. (14) and (15) in 
the case of a long-range interaction with the vibrations 
of the medium differs from the nature of the instability 
in a long-range static field. In the case considered 
here a new periodic structure is clearly established in 
the system. The internal anharmonicity of a crystal 
and of the continuum vibrations is important for the 
formation of this structure. 

3. INSTABILITY OF A CRYSTAL 
SHORT-RANGE FIELD 

IN A STATIC 

The dynamics of a crystal in an external field is de- 
scribed by the Hamiltonian (1) where the second term 
should be dropped from H, and in Hi the operators c, 
should be replaced with random c numbers (they can be 
included in V, and the parameters V, may be regarded 
a s  random). Averaging over realizations of a random 
field will be denoted by the symbol (. . .), ,: 

Since averaging is applied to the ratio of traces of 
two operators (in the case when the random field 
creates vibrations of the continuum, calculation of a 
trace includes effectively averaging over the field re- 
alizations), it follows that the relationships given by 
Eqs. (7), (12), and (A. 2. 1) a r e  not satisfied even in a 
Gaussian static field. Therefore, in J,(O) described 
by Eq. (4) the terms not proportional to k2 do not can- 
cel and we have G,(O) a k-4 in the limit k - 0, which 
means that the crystal is unstable and the long-range 
order is destroyed (by melting) due to the divergence 
of the rms displacement. 

We shall estimate J,(O) in the simplest case when 
the random field is Gaussian (with the zero average 
value) and a l l  the averages (H,,, . . . , H,), , in which the 
same vector *q  is encountered more than twice can be 

It follows from Eq. (19) that the correlation radius a t  
rc increases on increase in the rigidity of the system 
(on increase in the velocity of sound s )  and on reduction 
in the fluctuation intensity 3 for a short-range random 
field (a similar result was obtained by Larkin3 for a 
vortex lattice). The dependence of r, on s2 and J is a 
power law with the exponent governed by the dimension- 
ality of the system d (d = 4 i s  the critical dimension- 
ality'-'). It is clear from Eqs. (18) and (19) that the 
anharmonicity of the interaction with a random field 
does not stabilize a crystal if the field has no dynamic 
degrees of freedom. However, allowance for the an- 
harmonicity is very important in the case of random 
potentials with a small correlation radius p ,  << A (A is 
the r m s  displacement of an atom relative to i ts  equili- 
brium position in a glassy system formed a s  a result 
of pinning in a crystal). In this case we can calculate 
J in Eq. (18) by assuming that ( V ,  l 2  = const and by re-  
moving a short-wavelength divergence of the sum with 
respect to q by a factor of the exp(-$q2A2) type. 
Without allowance for the anharmonicity the expression 
for J would have been approximately ( ~ / p , ) ' + ~  times 
greater and the transition to the limit of a 6-correla- 
ted potential (p, - 0) would not have been possible. 

An estimate of r, described by Eq. (19) can be ob- 
tained on the basis of considerations similar to those 
used in Ref. 6. The deformation of a crystal for which 
the r m s  difference between displacements of atoms a t  a 
distance r, i s  equal to a, is related to the loss of the 
elastic energy. In a volume of < this loss is 

(maid is the density of the crystal and a,/r, is the de- 
formation per unit length). The r m s  gain in the energy 
in the same volume due to the alignment with the 
short-wavelength random field is - [ J ~ ( Y , / ~ , ) * ] ' / ~  [Jg 
is a typical value of the square of the work done by a 
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random force in displacing an atom by a, and i s  
the number of atoms in the volume rz] .  We obtain Eq. 
(19) by equating the energy loss to the energy gain. 

4. CONCLUSIONS 

The instabilities in a random field considered above 
do not have a field threshold. The interaction deter- 
mines only the correlation radius in a static external 
field and the characteristics of a superstructure in the 
case of a long-range interaction with vibrations of a 
medium in which a crystal is interacting. The internal 
anharmonicity of the crystal does not influence the 
presence o r  absence of an instability (in contrast to the 
anharmonicity of the interaction with the field) because 
the instability relates to long-wavelength modes and 
their unharmonicity is weak. 

As pointed out earl ier ,  interesting examples of crys- 
tals interacting with a random field a r e  Wigner crystals 
o r  charged density waves. It is clear from the above 
results that since both Wigner crystals and charged den- 
sity waves interact with defects in the main crystal, 
they always melt (or, more exactly, become pinned). 
Similarly, a random field created by a glassy substrate 
results in "meltingu of an adsorbed monolayer. The 
resultant correlation radius depends, in accordance 
with Eq. (19), on the concentration of defects and on the 
interaction parameters. In the case of a short-range 
random field the correlation radius r, for Wigner crys- 
tals in a semiconductor may be related to the momen- 
tum relaxation time ~ ( p )  of a free electron scattered 
by  fluctuations of the random field. The order of mag- 
nitude of the correlation radius is given by 

where m* i s  the effective mass  of an electron and 
p, -E/A [A is the r m s  displacement of an electron rela- 
tive to its equilibrium position in a glassy system 
formed a s  a result of pinning of Wigner crystals; at 
low temperatures we have A - (Ea, / rn*~)~ '~] .  It fol- 
lows from the above estimate that, in particular, in 
the case of metal-insulator-semiconductor systems 
which a re  of great current interest the correlation 
radius may be several times greater than the average 
distance between electrons in an inversion layer of a 
semiconductor. It should be noted that pinning of Wig- 
ner crystals (or charged density waves) appears be- 
cause defects in the main crystal act a s  an external 
field in relation to Wigner crystals: these defects a r e  
not matched to Wigner crystals (in contrast to the usual 
situation of a crystal with impurities where self-match- 
ing occurs and, therefore, the long-range order is re -  
tained-see Ref. 8). 

In the case of electrons on the surface of liquid 
helium a random field creates capillary waves (rip- 
plons). Under the experimental conditions of Ref. 7 
the random field is  of the short-wavelength type and the 
occupation numbers of ripplons a r e  large. The energy 
spectrum of a system of bound electrons and ripplons 
differs considerably from the spectrum of noninteract- 
ing subsystems. However, the relative change in the 
static correlation function of the displacements in an 

electron crystal i s  very small for low values of k; it 
is proportional to the constant C in Eq. (9) and amounts 
to  less  than lo-=. The experimentally observed7 crys- 
tallization of electrons does in fact confirm the conclu- 
sion of our investigation that a short-range interaction 
with the vibrations of a continuum does not melt a 
crystal. 

The author is grateful to M.  A. Ivanov, B. I. Shklov- 
skii, and A. L. kfros for discussing the problem of in- 
stability of a crystal in a static random field, and to 
M. A. Krivoglaz for discussing the paper a s  a whole. 

APPENDIX 1 

The equation of motion for the k-th component of the 
displacement of an atom in a crystal from its  lattice 
site is 

dZxk, ( 5 )  ------ + w $ x ~ , ( T )  = - 2 i ~ ~ , l A t , l ~  ( q e k j ) H q ( - k ,  T) ( A .  1. 1) 
dz" C 

[the operator Ha(-k) is defined by Eq. ( 5 ) ] .  Going over 
in Eq. (A. 1. 1) to imaginary time -ir ,  multiplying the 
right-hand side by x,,(O), averaging, and integrating 
with respect to T with a weight exp(iw,r), we obtain the 
following expression for the Green function Gk,(w,): 

(A. 1.2) 

[G,,(o,)-G:;' (a,) ] ( O , ~ + ~ ~ ~ ) = - ~ ~ O ~ , I A ~ I ~ ~  ( p e t , ) U H q ( - k )  I z - ~ , ) ) , , .  
9 

Writing down the Green function on the right-hand side 
of Eq. (A. 1. 2) in the form 

a 

< H , ( - k )  I+-~ , ) ) . - -  J drexp(io,z)<H,(-k,O)~-~,(iz)) (A. 1.3) 
0 

and using once again Eq. (A. 1. I), we obtain 

+ C (q'er,)  < H q ( - k )  I H , . ( ~ )  )),I. (A. 1 .4)  
q ,  

Equation (4) follows directly from Eqs. (A. 1.2) and 
(A. 1.4). 

The first  term in Eq. (A. 1.4) is proportional to the 
derivative a ~ , ( - k ) / a x ~ .  Since Ha(-k) i s ,  in i ts  turn, 
proportional to aH,/ax-,, it i s  clear that (H,) is  due to 
terms of the .xkn-kcq type in Hi. The presence of such 
"non-Wick" (but very important) terms makes it impossi- 
ble to use the standard technique in the calculation of 
Gk(d,). 

APPENDIX 2 

We shall show that for an arbitrary operator L not 
containing operators c, and c,, we have the equality 

( L N , ) = ( ( H - , - H ,  I LH,)) , .  (A. 2.1) 

We shall do this by introducing an auxiliary Hamilton- 
ian 

H 1 = H -  H,, 
L 2  

(A. 2.2) 
a=*, 

and writing down the left-hand side of Eq. (A. 2.1) in 
the form 

1 

e r p ( - i H r )  Tr  r r p  [- jdiz R..(-ir) ] LIY~ 1, 
0 D 

I 735 Sov. Phys. JETP 54(4), Oct. 1981 



R,, (-ir) =exp(Hfr) Ha, exp (-H'T), 

Z=Tr [exp (-AH) 1, 
(A. 2.3) 

where T, i s  the operator of a chronological ordering 
along the imaginary axis. 

Since the operator H, is proportional to c,, and H' 
contains c, only in the form of the combination bibq, 
i t  follows that Eq. (A. 2.3) contains contributions of the 
odd terms of the expansion a s  a ser ies  of the exponen- 
tial function associated with &,, and the general form 
of the (2 + 1)-th term of the ser ies  is 

2"+1 x ad=-1, at , .  . . ,a2.+,=*i. (A. 2.4) 

The right-hand side of Eq. (A. 2. l) .can be transfor- 
med similarly: 

)I 

x ( T ~ ,  exp [- j dr, ~ ~ ~ ~ ( - i ~ ~ )  1) [H-q t-ir)-Rq(-i~j I 
1 a 

X(T. exp [-I dr2 z Hmq ( - id ] )  UI.). 
0 (i 

(A. 2.5) 

In Eq. (A. 2.5) the general form of the (2 + 1)-th term 
of the ser ies  in 4, is 

'2"-l 

x [R-q (-it) -Hq (-ir) 1 j dr,,, . . . 5 dr,. 
0 0 

x R,m+,q(-i~m+l). . . RaZnq (-irZn), (A. 2.6) 

and if in eachbracket we select the term H - q ( - i ~ )  then 
Ciai = 0, whereas i f  we select &(-ir), we have 
ciai = -2. 

We shall assume that a certain sequence of numbers 
{a,} (i= 1, .  . . ,2n + 1) is selected in Eq. (A. 2.4), i. e .  , 
a sequence of signs of the vector q in the product of the 
operators &(-ir); we encounter the "+" sign n times 
and "-" sign n + 1 times. Clearly, we can select in Eq. 
(A. 2.6) the same sequence of signs of q for each value 
of m.  In the summation with respect to rn in Eq. 
(A. 2. 6) (for a fixed sequence of signs) the operator 

Hg(-ir) in the brackets is used n + 1 times, whereas 
the operator H,(-ir) is used n times. Since these 
operators occur with different signs, the expressions 
(A. 2.4) and (A. 2.6) a r e  equal and this proves the 
relationship (A. 2. 1). 

It should be noted that although V,m 52-lf2 (52 i s  the 
volume of the system), the terms - 1  v,I2" with n > l  in 
Eq. (A.2.1) can be of the same order a s  the term -IVql2 
in the limit S-2 - m  because Hq contains a sum of the 
atoms in a crystal, which results in cancellation of the 
factor 52-" in 1Vq12n. 

' ) ~ c c o r d i n ~  to Eq. (a), the value of \ u2) should be calculated 
allowing only for short-wavelength fluctuations. This i s  
particularly important in the case of two-dimensional (2D) 
systems when the temperature correction to the r m s  dis- 
placement due to long-wavelength fluctuations diverges. The 
exponential fall of the contribution to 561) due to large values 
of R,, justifies the use of the Harniltonian (1) in describing 
the influence of the interaction with the continuum of the 
vibrations of a 2D crystal. 

')'I'his important example can be used to demonstrate the 
validity of the general treatment given in Sec. 1 and, in 
particular, the correctness of Eq. (9) for J,(O) [if q= 
<< ((rn- R , , ) ~ ) ' / ~ I .  We can also see  that stabilization of a 
crystal  i s  due to the fact that (cq) * 0 for  q=G, i.e., a 
periodic relief with the same period a s  the crystal  appears 
in the medium. - 
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