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We consider the spontaneous radio emission of a metal plate placed in a magnetic field perpendicular to its 
surface, under the condition that a temperature gradient exists in a direction parallel or antiparallel to the 
field. If the electric conduction is effected by electrons from several (at least two) bands independently of the 
sign of their charge, then self-excitation of helicoidal or (in metals without a Hall current) Alfvtn waves sets in 
at easily obtainable magnetic field values and at sufficiently low temperatures of the order of several degrees. 
The nonlinear theory leads to the conclusion that the intensity of this emission at frequencies that can be of 
the order of lo9 to 10'' se-' in the case of Alfvh waves the intensity of this emission can exceed 1 W/cm2. In 
the case of helicoidal waves in bismuth, a power of the same order can be reached at frequencies 1@ s e - l .  

PACS numbers: 78 .70.G~ 72.15.He 

5 1. INTRODUCTION 

We investigate here  a new effect: radio emission 
f rom a metallic sample located in a magnetic field (on 
the order  of lo3-5 .lo4 Oe) witha cyclotron frequency 
that exceeds the average ca r r i e r  collision frequency 
at temperatures on the order of liquid-helium and a t  a 
small  temperature gradient (of the order of 1-2 OK/ 
cm). This emission takes place in a wide range of f r e -  
quencies, 102-10' Hz and reaches intensities 1-10 W/ 
cm2. The described phenomenon i s  observed only in 
metals  in which the electr ic  conduction is effected by 
electrons from severa l  bands, the ca r r i e r  charges be- 
ing of like or  unlike sign. Detailed est imates of this 
effect for different metals will be given in 85. The 
spontaneous radio emission can take place a lso  from 
semiconductors a t  nitrogen temperature. In this a r t i -  

Era  B'aexp(ikrz-io't--k"z+o"l) 

(the z axis i s  directed along VT). It was  shown in a 
preceding paper3 that the alternating current  propor- 
tional to VT is strong enough to change substantially 
the dispersion relation of the waves only if c a r r i e r s  
from a t  least  two bands participate in the conduction, 
and these c a r r i e r s  should be dragged by phonons. This 
dragging can be described by a "thermodynamic force" 
[ - x ( c ) ~ T ] a d d e d  to the usual forces  eE and ev x B/C 
[here X(E) i s  a quantity that can be called the dragging 
coefficient3]. A calculation s imi lar  to the ear l ie r  one3 
but with allowance for the presence of a constant mag- 
netic field B [in the approximation of the collision f re-  
quency v(E,)] leads to the following expression for  the 
alternating current  j' in the presence of c a r r i e r s  in 
bands a and b: * 

cle, however, we confine ourselves t o  metals. 
jf=oE'+o,[E'B]+q[BVT]+q,[B'[B'OTII, (1) 

The emission is the result  of self-excitation of c i r -  
cularly polarized helicoidal waves, and in metals  such where 
a s  bismuth also in Alfv& waves. Their spectrum and o=o.+ob, 0,=~,.+0ta, 

i va-io polarization a r e  altered by the presence of a tempera- q=c~-[Xo(&r)-u(EF) 1 [_ -- 

ture  gradient. The frequency w of the ~ l f v g n  waves 
I ( ~ , - i o ) ~ + < l ~ ~  m. (v.-io)'+ $2." 

eb 1 e. -- exceeds the average collision frequency v, and in this ~ s = c ~ [ % ( ~ ~ ) - x ~ ( ' ~ ) ]  [z (vb- i , )z+~z (~a-i,:)2+D.al ' (2) sense these a r e  high-frequency waves. 
en ~ n b  eB , a=- .  In earl ier  studies of thermomagnetic instability in 7 n.mbvb+n,,m.v. mc 

solids (e.g., Ref. 1) the situation considered was such 
that spontaneous radio emission was impossible. In the 
case investigated the magnetic field was weak and the 
cyclotron frequency was lower than the average ca r r i e r  
collision density. In that case, however, only convec- 
tive instability is produced without feedback, and can- 
not lead to emission (Ref. 2, Chap. 6). 

We consider for  simplicity a metal plate whose thick- 
ness  d is much l e s s  than that of the remaining dimen- 
sions, s o  that edge effects a r e  immaterial. The tem- 
perature gradient and the magnetic field a r e  perpendic- 
ular to i t s  plane. 

This expression cal ls  for two stipulations. F i rs t ,  we 
have assumed that k-v << w. This i s  permissible for 
helicoidal waves, for  which k *v << v and w << v, and we 
neglect both these quantities. For  Alfv& waves the 
frequency w >>k -v .  We shall  be interested hereafter 
only in situations in which (v - iw)' can be neglected 
compared with a2, so  that U, and 8, can be regarded a s  
independent of frequency. Maxwell's equations with 
allowance for  (1) leads to the dispersion relation 

Here b= *1 for  right-and left-circular polarization of ' *' IN THE OF the waves. The subscript z denotes the vector compo- 
BANDS nent, which can be ei ther  positive o r  negative. 

The alternating field of the electromagnetic wave is 
of the form *[E'BI=E'X B,  etc. 
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53. INSTABILITY OF THERMOMAGNETIC WAVES IN 
A BOUNDED MEDIUM 

If a right-circularly polarized wave is incident from 
the inside on a crystal  boundary in the positive direc-  
tion, then the reflected wave is left-polarized, and the 
rea l  part k' of i t s  wave vector turns  out to be negative. 
For helicoidal and ~ l f v &  waves "feedbackM i s  present 
in the entire instability region, i.e., the reflected wave 
also increases with time. Therefore the multiple r e -  
flections from the crystal  boundaries cause continuous 
amplification of the wave. This amplification, a s  we 
shall show later ,  is only slightly weakened by the radia-  
tion a t  the boundaries. The feedback couples the right- 
hand wave, which propagates in the positive direction 
(we shall call i t  "forwardw) and has  a complex wave 
vector k,+= ki+ + i k k  with a backward left-hand wave 
with wave vector k , - = k ; -  +ikl '_ .  These two waves 
form therefore one mode of the natural  oscillations of 
the crystal. The second mode i s  formed by a right- 
hand wave propagating in the backward direction with 
wave vector k,- to a left-hand wave in the forward di- 
rection with a wave vector k,, .  The spatial growth (or  
attenuation) ra tes  k:, and k;, of the waves of these 
two modes a r e  different. Therefore the field can be 
single-valued only for each mode separately. For  the 
f irst  mode ( r+  and I-) it is of the form 

4 4 1 -  exp[i(k,+-kl-)d] = I .  

Here 

is the reflection coefficient of the r+ wave at  the right- 
hand boundary and is connected with the change of the 
polarization; 

i s  the coefficient of the inverse transformation upon r e -  
flection from the left boundary. 

For the waves considered we have I k" I < <  I k' I ,  w' = w-, 
w " << w';  in addition, k j - =  ki+ with an e r r o r  much 
smaller  than k " / k f .  Finally c l k f l> :  w'.  It follows from 
these inequalities that 

and analogously for  9,-, with p <<I,  1 - IqI<< 1. 
lows therefore that 

It fol- 

i.e., the presence of radiation has  very  little effect on 
the spectrum of the wave vectors. The condition 
that the field of the mode r+, I- be of the same sign 
takes then the form 

1q7+1 141-I exp [ (kl-"-k,+")dl=l. 

This condition i s  very  close to the global instability 
condition.' This means  that the "coordinate enhance- 
ment" explktld of the forward wave be almost com- 
pletely cancelled by the "coordinate attenuation" 
exp(-lkyd) of the backward wave, s o  that on the 

average the coordinate amplification is practically non- 
existent. In the presence of instability, however, the 
self-excited field continuous to  grow with time like 
exp w"t until a stationary value is established (see 64). 

Following to Akhiezer and Polovin; we obtain the in- 
stability condition w"> 0 by substituting in (4) the value 
of k" obtained from (3). For  helicoidal waves, in the 
case  of electron and hole bands, the instability condi- 
tion for the r+ , I  - mode is of the form 

whence 

where w,  = c / d ,  B ,,,, = mcv/e.  In this  case  

k'=np/d<k:,=aw:dcl~ V T .  

In the case of two bands of the same type, the coeffi- 
cient q1 decreases  in the rat io $/n2 and the instability 
takes place a t  

Then 

k'=npld~k:.,=c-l (4nlo , I~oL) '~ .  

(We have taken i t  into account here  that a, a,, 7, and 
17, a r e  proportional t o  1/~'.) These inequalities can 
take place in metals a s  well a s  in semimetals. 

For  ~ l f v &  waves, in contrast to helicoidal, only the 
r +  , I  - mode is stable a t  

~v=~.ro+~brb, r=r.+rb. 

If one of the following inequalities is satisfied 

is satisfied, then 

71 1 Sov. Phys. JETP 5441, Oct. 1981 L. E. Gurevich and G. G. Zegrya 71 1 



Finally a t  52' << 9, a s  already mentioned, there i s  no 
feedback in a bounded medium. Since, however 
Ik:-( < ~ k k l ,  the backward wave is less attenuated 
than the forward one, so that the medium can serve a s  
an amplifier for waves propagating in the VT direction 
a t  %T,B,> 0 and in the -VT direction at %,B,< 0. 

We consider now radiation from the crystal into vacu- 
um. The attenuation of the field of the r+ wave upon 
reflection from the right-hand boundary is 

After a time A t =  2d/u,, (where u,, is the group veloc- 
ity of the wave packet), during which the packet propa- 
gates from one boundary to the other and back, the re l -  
ative field attenuation is 2s. Since I k" l << I k' I , w" 
<< W' and, for the considered waves, cJkf  I>> s', we 
have 

It is easily seen from (3) that kk  + k;- << 1 k;- 1. From 
the condition for the "quantization of the wave vectors 
k' it follows therefore that k A  +k;-= p/d, and there- 
fore 

It is convenient to introduce the decrement w,, which 
is equal to the mean value of the relative field attenua- 
tion per unit time: 

I AE' - *' x= - ma= -S * d 

In this case W, <<u,,/d and in real  situations for Alfvgn 
waves, and even more strongly for helicoidal waves, 
the inequality w, <<w" is satisfied. The radiation 
therefore does not stop the growth of the field, which 
continues with an effective growth rate y = W" - w, = w". 

The electric field of the wave that goes out to the 
vacuum is 

so that the density of the radiated energy is 

where S is the flux density incident on the boundary 
from the inside. 

54. NONLINEAR KINETIC THEORY 

The electromagnetic field of the self-exciting wave, 
which we shall assume to be monochromatic, produces 
an electric current that is determined from the solution 
of the nonlinear kinetic equation 

where E = Eo + E' (Eo is the thermoelectric field), B 
= Bo + B:(we shall leave out hereafter the subscript of 
B), and IV) is the collision integral. Since i t  is un- 
wieldy and there a r e  no detailed data on the kinetic co- 
efficients in the two-band model of 82, we assume the 
following approximations: 

b) the average-collision-frequency approximation: 

where fo(&) is the equilibrium distribution function-in 
this case we assume v= v(c,) to be the same in all the 
approximations; 

c) we shall not label the distribution function with the 
band numbers a and b. On the basis of the arguments 
in $2, vaf/ar can be neglected. 

We shall find i t  convenient to express the electric 
field E' of the wave in terms of the magnetic field B'. 
Since the wave is transverse, i t  follows that 

where k,= k/k. The waves a re  circularly polarized, 
and for a right-hand wave propagating in the k,> 0 di- 
rection we put 

B,'=B'cos ( k z - o t ) ,  B;=B1sin ( k z - o t ) ,  

so that Bf2 = B:' + Biz = const. We a re  interested in the 
condition under which a stationary amplitude sets  in 
and we therefore assume w = w'; next, on the basis of 
the arguments in $3, we can put k = k'. 

The wave equation is of the form 

B1=4ncrot j', j'=j,+j2+js. 

The current j, is linear, j, is quadratic, and j, is cubic 
in the alternating electric and magnetic fields. 

To find the stationary amplitude of the self -exciting 
wave it suffices to solve (6) up to third-order approx- 
imation. The current j, is inessential here, since it 
does not depend on the time, and we need only the cur- 
rents j, and j,. If VT = VT,, + 6 V T ,  where 6VT << VT,,, 
Maxwell's equations can be written in the form 

The distribution function can be represented in the 
form of the ser ies  

Here f ,(v) is the time-independent deviation from an 
equilibrium distribution in the presence of VT. When 
account is taken of the relation eE,= CYVT we have 

Next, f,, f,, and f ,  are  functions linear, quadratic, and 
cubic in the alternating fields. The system of equations 
for them is 

a) a quadratic isotropic carrier spectrum; To solve them it is convenient to set 
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f , ( ~ ,  Z ,  t )  =fri (v) cos r++fr2(v )  sin r+, 

$=kz-ot, r= l ,  2, 3. 

We have 

f l = v g ( ~ ,  9 )  =vg , (e )  cos ~ + v h , ( e ) ,  sin 9, (11) 
f2=Q"' ( ~ ) + v ~ ~ ( e ) + v , v , h ~ ?  ( e ,  2$) ,  (12) 

f,=O"' ( 6 ,  9, 39)  +vg3 ( e ,  9, 3V) 

+v,vmhl'~'(e, 9, 39)+v,vmv.hlm,(~,  9 ,  3+) ,  (13) 

where and d3' a r e  sca lars ,  g, a r e  vectors,  and 
h:: and h,, a r e  tensors  of second and third rank. The 
arguments 2$ and 3$ a r e  due to the fact that 

cos' ~ = ' / , ( l + c o s  2 9 ) .  sin 9 sin 2+='/, (cos $-cos 3$) ,  

and analogously for the other trigonometric functions. 

The solution of (10a) i s  compactly expressed in the 
complex form: 

g,.+ih,,=A,(s) (Q,Q+'+ioQ-')/QZ, 

g,,-ih,,=vA, (E) (Q2Q+'+2ioQ,Q-')/P6, 

The components of the current  j , ( 6 ~ ~ )  are1': 

j,.=GVT (q,B,B,'+B, Im q') cos 9, 

],U=6VT(q,BzB,'+ 5,' Im q')  sin +. 
For the parameters of the function fa ,  which enter  in 
(lOc), we have 

o+Q m o  8.4. ( 8 )  
h:;'+h::'= -2 -(3vP,' cos 29+2QaQ,S sin 2Q)- 

I 4 9 9  as ' 

I where 

The tensor components of h:2,' and h,, with z labels 
a r e  equal t o  zero. The current  j,, receives contribu- 
tions from the vector g, and from the components of the 
tensors h,,, hxyu + hmy + h,,; j,, i s  obtained by substitut - 
ing x -  y. The current  j,= j,(w) + j3(3w). A simple ex- 
pression based on ( 1 0 ~ )  and (13) yields 

According to Bogolyubov and ~ i t r o ~ o l ' s k ~ , ~  a s ta -  
tionary amplitude se t s  in when the d6resonantw pertur- 
bation having the wave frequency and equal to 
j,(w, 6VT) + j,(w, VT,,) in (7) vanishes. This condition 
leads to two equations that determine the stationary 
amplitude B ': 

Their solution is 

It can be shown that the presence of forward and 
backward waves in the nonlinear approximation makes 
no noticeable contribution to the resonant perturbation. 
For  helicoidal waves we can neglect in (15) the rat io 
W/SZ, and for  Alfve?~ waves o, = 0. 

8 5. ESTIMATE OF THE INTENSITY OF THE 
SPONTANEOUS RADIO EMISSION 

For  ~ l f v &  waves, according to (15), the stationary 
amplitude of the electr ic  field of the wave is 

o 
X [ I$ . . -~ ,vT . .  B+ -I.m,am-VT..lmq' I I ck. 

Therefore, by vir tue of (5), the flux density of the r a -  
diated energy is 

10 o + Q o 2  s.=- - z ~ * t i v ~ ( ~ q , ~ ~ + ~ ~ m q . ~ )  ( T ' j ' ( ~ - )  
Q.b 

Q, kvp 

0 
X [ I ~ o l - q l ~ ~ . .  B+ - Imo.--VT. lmq '  I I ck, 

For  a bismuth plate of thickness d =  0.5 cm, placed 
in a magnetic field B = lo3  Oe a t  a temperature T =  5 K, 
assuming in accord with Kopylov6 that x = 10-102, we 
obtain the est imates 7" 3 loz3, cry= 1012, ql= lP4, VTcr 
= 5 10-16 erg/cm (1.75 " ~ / c m ) .  Putting 6VT = O.lVT,,, 
we obtain from (16) a flux S,= 1-10 W/cmZ. This value 
does not contradict the second law of thermodynamics, 
since the heat flux under these conditions exceeds sub- 
stantially the radiated en erg^.^ 

F o r  helicoidal waves, 

Fo r  metals  such a s  A1 and Cu, a t  B = 5 X lo4 Oe, X =  1, 
and 6VT= O.lVT,, = 7 .10-17 erg/cm (0 .25"~ /cm)  we 
have Se=  5 .  lom3 w/cm2, and in the case of doped Bi 
(n++ n-) a t  B = 10,-lo4 Oe, under the s ame  temperature 
condition, a value S e a  1 w/cm2 can be obtained. 

The radiation frequencies a r e  determined from the 
equations of 63. For  Alfv& waves these frequencies 
a r e  of the order  of 10'-loi0 sec-'. For  helicoidal waves 
w-10'-lo3 sec-' in meta ls  and w- lo5-lo6 sec-' in 
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bismuth. Since self-excitation of either type of wave 
takes place, the actual radiation is determined by the 
highest field intensity. 

The radiation intensity depends on the magnetic field 
intensity B and by the supercriticality of the tempera-  
t u r e  gradient 6VT. Besides the intensity, these quanti- 
t ies  determine the "quantized" levels of the wave vec- 
tor  k ,  i.e., the quantum number p ,  and with them a lso  
the radiation frequency W .  We have therefore confined 
ourselves to order-of-magnitude estimates. 

In conclusion, we thank V.I. Pere l '  for a discussion 
of general instability theory, which was of help t o  us. 

')1n these and succeeding expressions for the currents we 
neglect terms of order  v / i l  <<I. 
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