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Hydrodynamic flow of a collisionless nonisothermal plasma is considered. It is shown that jump 
discontinuities are possible in such flows. The discontinuities have no finite width even though the applicable 
Poisson equations contain a parameter with the dimension of length, namely the Debye radius. Such a 
discontinuity can exist only under nonstationary conditions. It is shown that it is produced on the front of a 
rarefraction wave. The velocity of the discontinuity increases with the time t ,  and the jump of the ion density 
decreases in proportion to t  -'. The discontinuity has the features of a caustic for the ions, and has no direct 
analog in ordinary hydrodynamics. 

PACS numbers: 52.30. + r 

In ordinary hydrodynamics, a rarefaction wave is N, v, and cp) that moves with velocity u. From (1)-(3) 
bounded by weak discontinuities (Ref. 1, P 101). In a we obtain the following boundary conditions on the dis- 
plasma, a s  will be shown below, a rarefaction wave continuity: 
has a jump discontinuity a t  the interface with vacuum. [ (u-u)N]=O, [ ( ~ - u ) ~ / 2 + e q Z / M ]  =o, 
The present paper is devoted to an investigation of this (5 
phenomenon. I t  is important that the jump discontin- [ % ] = - 4 n e ( z [ ~ l - [ N . ( c p ) l ) .  
uity appears in the hydrodynamics of a nonisothermal 
plasma when full account is taken of the Poisson equa- The square brackets denote here,  a s  usual, the differ- 
tion, i.e., in a system having a parameter with the di- ence between the corresponding quantities taken on the 
mension of length (Debye radius) and higher deriva- left (-) and on the right (+) of the discontinuity. 
tives. In ordinary hydrodynamics, when higher deriva- 

I t  follows from the relations in (5) that the ion velocity tives a r e  taken into account, the jump discontinuities, 
a s  is well known, a r e  always smeared out and acquire u ,  thepotentialcp, the electric field intensity E = -acp/ax, 

a finite width.ls2 
and the electron density Ne a r e  always continuous. The 
ion density N ,  on the contrary, can have on the discon- 
tinuity (5) an arbitrary jump, while the respective 

1. JUMP DISCONTINUITY IN  NONISOTHERMAL derivatives 8E/ax and av/ax of the field intensity and 
PLASMA of the velocity can have a jump determined by the jump 

One-dimensional motion of a plasma with cold ions of N: 
is described by the system of hydrodynamic equations [ N ]  =C,, V, =u-=u, 
jointly with the Poisson equation 

4ne'Z 
a~ a [ $ I  - 4 n e ~ c . .  [(az] -7 CO, - + - (Nu) -0, 
at a2 

(1) 
[cpl-[N.1-[vl=[El=O. 

Here N and v a r e  the density and hydrodynamic velocity 
of ions with charge eZ and mass M, Ne is the electron 
density, and cp is the potential of the electric field. The 
electrons move much faster than the ions, therefore in 
the lowest approximation in u / v ,  [vTe = ( ~ ~ / m ) l "  is the 
thermal velocity of the electrons1 the electron distribu- 
tion is quasistationary and is determined only by the 
potential N, =Ne(cp) of the electric field. In particular, 
in the case of an  equilibrium distribution of the elec- 
trons in the field (Ref. 2) 

N.-N, exp (ecpIT.). (4) 

A more general form of electron distribution, valid 
only a t  arbitrary one-dimensional motions of a colli- 
sionless plasma was considered in Ref. 3. 

We consider the possible appearance in an non- 
isothermal plasma of a jump discontinuity (jumps of 

The condition (6b) was obtained by differentiating Eq. 
(2). 

It follows from (5) and (6) that there is no particle 
flux through the discontinuity surface, i.e., the con- 
sidered jump discontinuity is not a hydrodynamic shock 
wave a s  defined by Landau and Lifshitz (Ref. 1 ,  9811, 
but is a special kind of discontinuity that has no direct 
counterpart in ordinary hydrodynamics. 

We investigate now the conditions for the existence of 
such a discontinuity. To this end we determine the 
structure of the solution of Eqs. (1)-(3) in the vicinity 
of the discontinuity. We consider f i rs t  stationary flow, 
i.e., we assume that N, u, and cp depend only on 5 = x  
-ut. Integrating then the equations (1) and (2), 

and using the conditions (6) on the discontinuity, we 
find that 

It follows therefore that such a discontinuity is impos- 
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sible under stationary conditions. 

We consider therefore the vicinity of a nonstationary 
discontinuity (6) that moves with velocity u(t). I t  i s  con- 
venient to change from x and v to new variables .$ and u, 
connected with the moving discontinuity: 

e = Z -  5 u a t ,  U,=v-u ,  u = u ( ~ ) .  (7) 

Equations (1)-(3) a r e  then rewritten in the form 

It is natural to s eek  the solution of Eqs. (8) in the vic- 
inity of the discontinuity point e = O  in the form of a 
s e r i e s  in powers of 5 .  Taking (6) into account, we have 

It follows then from (8) that 

~ ( t )  = J ~ , ( t ) d t ,  ",=- d ln No ( t )  
dt , ES=4ne (ZN.  ( t )  -N. (0, t )  ), 

and the function N,(t) is defined by the equation 

The solution of Eq. (9) depends essentially on the form 
of the function Ne(O, t) =N,[~(O, t ) ]  that describes the 
time variation of the electron density a t  the discontin- 
uity point moving with velocity u(t) (7). In particular, 
a t  Ne(O, t )  = const =Neo we have 

N,(1) =No,/ (a sin 7+ZNe0/N.,), T = Q  ( t + t , ) ,  

t.=Q-' arcsin [ (1-ZNooIN.,)Ia],  Q2=4ne'N,,/M, 

No, is the value of No a t  the initial instant t = 0 ,  and a is 
a dimensionless constant. It is seen  that the density 
No(t) becomes infinite a t  T = II  - arcs in  ( zN, , /~N, , ) .  

If Ne(O, t )  =~,,/(t/t ,  + I ) ,  then Eq. (9) is satisfied by 
the quasineutral solution 

In the case of a power-law dependence N,(t) = ~ , , / t  a 
we have ~ , ( t )  =N,/t a, and a nontrivial solution of Eq. 
(9) is possible when a! =2. Then 

N. ( t )  =N.olt; No ( t )  =NooltZ, No,=Ne,IZ+2M/4neZZ, 

v , = - d l n  Nold t -2 / t ,  E,=2M/t2.  
(10) 

I t  is seen that in this case  the electron and ion densities 
a r e  not equal on the discontinuity, and their ratio i s  a 
constant quantity independent of time. 

The relations obtained a r e  not contradictory. A jump 
discontinuity of the type considered can therefore exists 
in principle in nonstationary plasma flow. 

Let  us compare this with ordinary hydrodynamics. 
Jump discontinuities occur in ideal hydrodynamics des - 
cribed by Euler's equations, which do not contain any 
characteristic spatial sca les  (Ref. 1, 881). When vis- 
cosity and dispersion a r e  taken into account, param- 
e ters  with the dimension of length do appear, and the 
Euler equations a r e  correspondingly supplemented by 
te rms containing higher derivatives: the Navier-Stokes, 

Korteweg-de Vries,  and other equations. The discon- 
tinuous solutions vanish then and the discontinuities a r e  
smeared  out. The viscosity describes the characteris- 
t ic  discontinuity smearing width (Ref. 1 ,  881). In the 
presence of spatial dispersion, oscillations can a r i s e  in 
the discontinuity region.' 

Equations (1)-(3), which describe the flows of a 
strongly nonisothermal plasma, contain a parameter 
with the dimension of length (the Debye radius) and 
higher derivatives. They have the character  of hydro- 
dynamic equations with dispersion, but without dis- 
sipation, and reduce in the case  of smal l  perturbations 
to the Korteweg-de Vries equation. The Debye radius 
determines the characterist ic  sca le  of the oscillations 
that a r e  excited in the plasma. I t  is  natural to expect 
s trong discontinuities to a r i s e  in this case  only in the 
approximation of hydrodynamics of the Euler type, 
which does not contain the Debye radius. The corres-  
ponding equations can be  obtained from the complete 
sys tem by changing over to the quasineutral-plasma 
approximation and by special averaging over the oscil- 
lations (Whitham's method4). The possible existence 
and the process of formation of discontinuities (laminar 
shock waves according to Sagdeev's terminology5) in 
the solutions of the averaged equations was investiga- 
ted by ~ i t aevsk i ;  and one of us.6 The solutions of the 
complete equations a r e  in this case,  of course, con- 
tinuous; they have an oscillatory s t ruc ture  in the vicin- 
ity of the discontinuities. 

We have seen  above, however, that the complete 
system of the plasma-hydrodynamics equations admits 
in principle not only such oscillatory solutions, but 
a l so  rea l  jump discontinuities that have no finite width, 
despite the presence of higher derivatives and of a 
characterist ic  parameter  with the dimensionof length- 
the Debye radius. We shall prove below the existence 
of s trong discontinuities of this type by a concrete con- 
struction of a stationary discontinuous solution on the 
front  of a rarefaction wave. 

2. RAREFACTION WAVE 

Let the plasma fill  a t  the initial instant t = O  the left 
half-space, ( x -  -m), with vacuum in the right half- 
space (x- +-). The initial interface between the plas- 
ma and the vacuum can be regarded a s  either abrupt 
o r  diffuse. In the course of t ime the plasma flows into 
the vacuum. The corresponding flow is called a r a r e -  
faction wave in ordinary gasdynamics. In an ideal gas 
with an  abrupt initial interface with the vacuum, the 
rarefaction wave is self-similar ,  i.e., i t  is described 
by functions that depend only on the rat io x/t. The point 
x=O corresponds to the position of an  abrupt initial 
boundary a t  t = O  (see Ref. 1, $101). If the initial inter- 
face is diffuse, then the flow becomes rapidly close to 
self-similar. On the whole, a s imi lar  picture is ob- 
served  also in the flow of a nonisothermal plasma. 

To describe the rarefaction wave in a nonisothermal 
plasma i t  is convenient to change in Eqs. (1)-(3) from 
x and to the variables T and 5, which a r e  close to self- 
s imilar:  
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Here to is a certain characteristic time that will be de- 
fined la te r  on. Equations (1)-(3) take in the variables 
(11) the form 

I t  is natural t o  separate the self-similar  solution, i.e., 
represent  the functions N, v ,  and cp in the form 

N--NO(r) ( l + n l ( r ,  g)),v=vo(r)+rll(r,E),cp=cpo(~)+(T./e)tp, t ) .  (13) 

From (12) and (13) we have 

dtio dv, dv eZ avo ",-T - + N o - -  0, ( v )  + -  - 0 NaZ--N*(cpo). 
( .  ) d~ dr dr M ~ T  

Hence, taking (4) into account, we obtain the known self- 
s imi lar  solution3 

Equations (14) a r e  valid only a t  T a- so; a t  7 < - so the 
plasma is not perturbed, i.e., 

At 7 =-.so the solution has a weak discontinuity. 

Using (4), we now rewrite Eqs. (12) for  n,, v,,  and 
4, in  the form 

an, 0, an, avl - - - ( l+n , )  + (so+v,) -+ ( l+n , )  - = 0, a& sr 8% ar 

e=4ne2N.JP1 exp ( -1)  toz. 

It is seen that  the variables T and 5 enter  in the right- 
hand side of Eqs. (15) only in the combination T - 2s05. 
I t  i s  natural to seek a particular solution of (15) in a 
corresponding form. We then a r r ive  in place of (15) a t  
the equations 

These equations describe a nonlinear wave traveling 
along 7. Since the functions n,, v,,  and JI, of interest  to 
us constitute a strong perturbation of the self-similar 
solution only in the vicinity of a wave front moving 
towards positivevalues of T, i t  follows that a t  sufficient- 
ly la rge  negative y there should be satisfied the condi- 
tion 

I t  is important that the f i r s t  two equations in (16) have 
a singularity a t  V,  = 1. Let  Vl = 1 a t  the point y =y,. 
From the requirement that there be no singularity in the 
solutions a t  y =y, we obtain the following expansion in 
the vicinity of y,: 

FIG. 1. Plots of ni, V1, and vs y, obtained by numerically 
integrating Eqs. (16) and (17), a t  parameter values yp=-3.46 
and & =4.0 (solid line) and y,=-2.0 and & =4.0 (dashed line). 
The dash-dot line shows the position of the jump discontinuity. 

vo=e exp ( -yo+$,) ,  no=ln [ (vo+2) exp y,leI, 

n=ln ( n , + l ) .  

I t  is seen that a solution without singularities, arr iving 
a t  the point y, , is determined by two constants, q0 and 
E .  Choosing 4o to satisfy the condition (17) on the left of 
the singular point, we continue next the solution into the 
region y 2 y,. I t  is shown in Fig. 1 for  y, = -3.46, & =4.0 
and for  y, =-2.0, & =4.0. 

The jump-discontinuity conditions can be  satisfied a t  
the singular point y = y,. Indeed, the total flow velocity, 
a s  follows from (13), (14), and (16), is 

u=r+so+sov , (y ) ,  (18) 

and the plasma velocity u a t  a given y i s ,  according to 
(11) and (16), 

I t  follows from (18) and (19) that the relation 

is satisfied a t  y =y,, where the value of y, is defined by 
the condition 

Consequently, the conditions (6) a r e  satisfied a t  the 
point y =y, and the solution admits of the jump discon- 
tinuity shown by the dash-dot curve in Fig. 1. The value 
of y, determines the position of the wave front. The 
solution constructed to  the left of the discontinuity 
sat isf ies Eqs. (1)-(3). On the right of the discontinuity 
we have N = 0 and consequently Eqs. (1) and (2) a r e  
likewise satisfied here  identically. The conditions (6) 
a r e  satisfied on the discontinuity. The potential and the 
electr ic  field intensity a t  the pointy = y ,  a r e  continuous. 
To the right of the discontinuity, the solution of the 
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Poisson equation (3) is continued uniquely with account 
taken of the specified values of cp and E and of the 
specified jump [ a ~ / a x ]  on the discontinuity (6). 

The s t r u c t u r e  of  the solution in the  vicinity of the 
discontinuity is shown in Fig. 1. The  value of N, a t  the  
discontinuity point, as is c l e a r  f r o m  (11) and (14)-(16), 
decreases  with t i m e  in proportion to t -2. The  ra t io  of 
the ion and electron dens i t i es  is constant h e r e  in  ac -  
cord with (10). The velocity of the  ion front  (of the d i s -  
continuity), a s  s e e n  from (19), inc reases  with t ime  in 
proportion t o  2ln(t/t,). 

The condition (17) f o r  the t ransi t ion to the self-s imi-  -2 -1 B I 2 J v s / s ,  

l a r  solution a s  y - -m is sat isf ied in  the genera l  c a s e  FIG. 3.  Ion and electron densities N and N ,  and the ion velocity 
because of the onset  of a weak discontinuity: the  func- u a s  functions of T/s,,, obtained by numerically integrating 
tions n,, v,, and Q, vanish a t  a cer tain value y = y ,  a t  Eqs. (1)-(3) with the initial condition (22). The dash-dot line 
which they have nonzero derivat ives shows the solution of the self-similar problem. The numbers 

on the curves a re  the values of the parameter t n , .  
dn,  d V i  dlp 1 

n t ( ~ i ) = V l ( ~ , ) = $ i ( ~ i ) = O ,  - ( Y , ) = -  ( Y , ) = -  (y l )=p ,>O.  
dy d y  d y  

T o  investigate the  s t r u c t u r e  of t h e  weak discontinuity = 7/52, 52 = (47re '&,/~)~ '~ is produced on the  leading front 

of the se l f - s imi la r  solution, we  m u s t  consider  s m a l l  of the  rarefact ion wave. T h e r e  a r e  no ions to  the  

perturbat ions of N, v, and cp. In  this  c a s e  the  s y s t e m  
r igh t  of the discontinuity: N =O. To  the left of the 
discontinuity the  solution approaches rapidly the of equations (1)-(3) reduces  to the Korteweg-de Vr ies  
quasineutral  se l f - s imi la r  distribution (14). The f ron t  

equation.' The s t r u c t u r e  of a weak discontinuity in the 
velocity-the discontinuity velocity-increases logarith- Korteweg-de Vr ies  equation was considered e a r l i e r  
mically with t ime  (cf. Ref. 8, Fig. 4) in accord with 

in  Ref. 7,  where  it  was shown that oscillations can  
(19). The  constant to determined f r o m  the numerical  a r i s e  in the region of the weak discontinuity, and the  
solution is t,=3.3/52, and &=4.0.') The electron den- 

region broadens slowly with t i m e ,  A x -  t "3, and remains  
s i t y  near  the discontinuity d e c r e a s e s  with t ime  in pro- 

local in t e r m s  of the se l f - s imi la r  var iab les  7 =x/t. 
portion to  t -'. The ion velocity v on the  discontinuity 

We now integrate numerically Eqs. (1)-(3) f o r  the 
problem of plasma outflow into vacuum. We shal l  a s -  
s u m e  that there  a r e  no jump discontinuities a t  the in- 
s tant  t = 0 ,  and the p lasma occupies a half-space with 
a diffuse boundary, f o r  example, 

The resu l t  of the numerical  integration of Eqs. (1)-(3) 
with initial conditions (22) is shown in Fig. 3. I t  is 
s e e n  that  a jump discontinuity a f te r  a finite t i m e  t, 

FIG. 2. Structure of complete solution of the system of equa- 
tions (12) in the vicinity of the jump discontinuity. The dashed 
line shows the self-similar solution for the particle density 
Do = ( ~ , / 4 r e ~ ~ , ~ ) ' ~ ~ .  

is equal to the  front  velocity u. The condition (21), a s  
s e e n  f rom Fig. 3 ,  is a l s o  well satisfied. Thus,  the 
m a i n  fea tures  of the asymptotic analytic solution de te r -  
mined above a g r e e  well with the  resu l t s  of the  numeri-  
c a l  calculation. 

We examine now in g r e a t e r  detai l  the discontinuity- 
formation process .  At the  initial instant t = O  the ion 
density in  the  vicinity of the front  d e c r e a s e s  in  accord-  
ance  with the l inear  law (22). The  distribution of the 
electron density N,, of the ion density N, and of the 
e lec t r ic  field intensity E is then of the  fo rm shown in 
Fig. 4a. The  e lec t rons  lead the ions and produce ahead 
of the front  a negative charge that  holds back the elec-  
t r o n s  and acce le ra tes  the ions. I t  is important that in 
this c a s e  the e lec t r ic  field intensity is not monotonic: 
E ( x )  has  a maximum at the  point x, a t  which the ion 
and electron densi t ies  become equal (Fig. 4a). I t  is 
this  fea ture  which leads subsequently to  a gradual  
steepening and to the onset  of a s t rong  discontinuity on 
the leading f ron t  of the rarefact ion wave. 

Indeed, i t  follows f rom (2) that  the total change of the 
ion velocity is 

- a du eE d a +"-. 
-=- --- 
dt M '  dt  Bt dx 

Consequently, the ion velocity v increases  fas tes t  near  
the point x,, where  the field E is a maximum. On the 
o ther  hand a t  points x >  x, the velocity v increases  more  
slowly with time. But  this means that the ions from the 
region of x, gradually catch up with the ions that were  in 
f ron t  a t  the initial instant. Therefore  the wave front  
becomes e v e r  s t e e p e r  with time. This  is s e e n  f rom 
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FIG. 4. Ion and electron densities N and N,, the ion velocity v ,  
and the electric field intensity E (dashed line) vs ( x -  +)/Do 
at Various instants of time [t=O.lBo (a), t = 5 h i o  (b), t=6 /n0  
(c), t = 7 B 0  (d), t = l o p O  (e)l near the wave front, obtained by 
numerically integrating Eqs. (1)-(3) with initial condition (22). 
At the point x,  the ion and electron densities are equal. The 
scale on the E(r) curve of Fig. 4d differs from the others by a 
factor 10-the electric field near the toppling point increases 
sharply prior to the toppling of the wave. 

Figs. 4b, c, d ,  which show the t ime variation, obtained 
from the numerical calculation of the leading front hav- 
ing the form 4a a t  the initial instant. 

At the instant t = t ,= 7 / ~  the profile of the wave topples 
over and an abrupt jump of the ion density-a jump dis- 
continuity-is formed on the leading front xF of the r a r e -  
faction wave. The point x, where the field is a maxi- 
mum catches up with the leading-front point xF (see Fig. 
2); there is a substantial jump of the derivative dE/dx 
a t  x = x, (6) 

zrn ( I r )  = ~ r  ((t*). 

This means that the ion velocity increases most strong- 
ly with time on the wave front x,. The velocity behind 
the front increases more slowly, s o  that the steepening 

stops a t  t 2 t , .  There  a r e  no ions ahead of the front, 
and the electr ic  field is weaker here: E< E(x,). The 
ions therefore cannot move ahead of the front, so  that 
the jump discontinuity on the wave front  is not smeared  
out and is preserved with further motion of the plasma 
(Figs. 2 and 4e). 

We note that Eqs. (1) and (2) a r e  valid f o r  cold ions- 
the kinetic s traggle of the ion velocity is completely 
neglected in them. As shown in Ref. 9, the effective 
ion temperature decreases  rapidly in the direction of 
the plasma expansion (the x axis): 

Using (11) and (16), we obtain in the region of the 
rarefaction-wave front 

Allowance f o r  the kinetics can therefore not lead to a 
considerable smearing of the front (see Ref. 3). 

The situation can change when plasma oscillations 
a r e  excited. The oscillations a r e  not one-dimens ional 
and lead to  scat tering of the ions, and hence to a n  in- 
c rease  of their  effective temperature along the x axis. 
Ion collisions can have a s imi lar  effect. This should 
lead to a broadening of the leading front of the r a r e -  
faction wave. I t  appears that effects of this type were 
observed by Eselevich and ~ a j n s h t e j n  in a laboratory- 
plasma experiment.1° 

The rarefaction wave plays an  essential role in ion- 
ospheric aerodynamics-it describes flow of plasma 
around bodies.3s11 In particular, the s t ruc ture  of the 
perturbed region behind a half-plane around which a 
rarefield plasma flows with supersonic velocity vo 

is  described in the quasineutral approximation by the 
self-similar  solution (14). When the complete Poisson 
equation is taken into account, a s  s een  above, this 
solution i s  valid only over limited distances-up to the 
region of the jump discontinuity. Using the results  ob- 
tained here ,  it is easy to verify that the boundary x, of 
the leading front is defined under condition (23) by the 
expression 

Here, a s  usual,3q11 z is the coordinate along the plasma 
flux advancing towards the half-plane, and x is the  co- 
ordinate in a direction perpendicular to the flow and is 
reckoned from the edge of the half-plane (the plasma 
moves along the z axis and spills over behind the half- 
plane along the x axis). Equation (24) is identical with 
Eqs. (11) and (19), the xF(z) curve is shown in Fig. 5 by 
the solid line. The ion density experiences a jump dis-  
continuity a t  x =  x,(z). At x<  x,(z), near the discontin- 
uity, the ion density is noticeably higher than the elec- 
tron densities ( l l ) ,  (13), and (14) ( see  Fig. 3). This 
region is hatched in  Fig. 5. I t  goes over next rapidly 
into the quasineutral zone described by the self-similar  
solution (14).3.11 
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FIG. 5. Picture of flow around a half-plane (solid line) and 
around a plate of width 2Ro (dashed lines), both perpendicular 
to the flow of a rarefied supersonic plasma. The hatches mark 
the region where the ion density is  noticeably higher than the 
electron density. Ro =400Do. 

The dashed line in Fig. 5 shows the picture of the flow 
of the plasma around a flat plate of width 2R, perpen- 
dicular to the flow. The plasma then spil ls  over on 
both sides. In that region behind the body which i s  
bounded by the jump discontinuities (24) and 

there a r e  no ions. This is the "region of maximum 
rarefaction" in the definition of Refs. 11 and 12. It i s  
seen now that i t  has a sha rp  and not a diffuse boundary. 
Behindthe body, the collision of the plasma s t r eams  that 
spi l l  over from the two direction near the axis  x =R, 
can lead to excitation of ion-sound waves. The Landau 
absorption for  this wave is mainly by the electrons. 
I t  i s  possible that i t  is  this absorption which causes the 
r i s e  of the electron temperature in the wake behind the 
body, a s  observed in the ionosphere by Samir et aL.13 

The authors thank L. P. ~ i t a e v s k f i  fo r  a helpful dis-  
cussion of the work. 

')we note that the values of the constants t o  and C vary with 
the character of the boundary conditions a s  x - + and 
with the form of the function N e ( q )  in Eq. (3), i.e. with the 
form of the electron distribution function (see Refs. 3 and 8). 
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