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Hydrodynamic flow of a collisionless nonisothermal plasma is considered. It is shown that jump

discontinuities are possible in such flows. The discontinuities have no finite width even though the applicable
Poisson equations contain a parameter with the dimension of length, namely the Debye radius. Such a
discontinuity can exist only under nonstationary conditions. It is shown that it is produced on the front of a
rarefraction wave. The velocity of the discontinuity increases with the time ¢, and the jump of the ion density
decreases in proportion to ¢ ~2. The discontinuity has the features of a caustic for the ions, and has no direct

analog in ordinary hydrodynamics.

PACS numbers: 52.30. +r

In ordinary hydrodynamics, a rarefaction wave is
bounded by weak discontinuities (Ref. 1, §101). Ina
plasma, as will be shown below, a rarefaction wave
has a jump discontinuity at the interface with vacuum.
The present paper is devoted to an investigation of this
phenomenon. It is important that the jump discontin-
uity appears in the hydrodynamics of a nonisothermal
plasma when full account is taken of the Poisson equa-
tion, i.e., in a system having a parameter with the di-
mension of length (Debye radius) and higher deriva-
tives. In ordinary hydrodynamics, when higher deriva-
tives are taken into account, the jump discontinuities,
as is well known, are always smeared out and acquire
a finite width.'*?

1. JUMP DISCONTINUITY IN NONISOTHERMAL
PLASMA

One-dimensional motion of a plasma with cold ions
is described by the system of hydrodynamic equations
jointly with the Poisson equation

aN  a
v v | eZ g
w et W @)
X
—a—z"—- —@IC(NZ-N.). (3)

Here N and v are the density and hydrodynamic velocity
of ions with charge eZ and mass M, N, is the electron
density, and ¢ is the potential of the electric field. The
electrons move much faster than the ions, therefore in
the lowest approximation in v/vy [vz, =(T,/m)"? is the
thermal velocity of the electrons] the electron distribu-
tion is quasistationary and is determined only by the
potential N, =N,(¢) of the electric field. In particular,
in the case of an equilibrium distribution of the elec-
trons in the field (Ref. 2)

N.=Noexp (e@/T.). (4)

A more general form of electron distribution, valid
only at arbitrary one-dimensional motions of a colli-
sionless plasma was considered in Ref. 3.

We consider the possible appearance in an non-
isothermal plasma of a jump discontinuity (jumps: of
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N, v, and ) that moves with velocity ». From (1)—(3)
we obtain the following boundary conditions on the dis-
continuity:

[(v—u)N1=0, [(v—u)*/2+epZ/M]=0,

5 ©

L ]=—4m(zuv1—[~.(q>)1>.

The square brackets denote here, as usual, the differ-
ence between the corresponding quantities taken on the
left (=) and on the right (+) of the discontinuity.

It follows from the relations in (5) that the ion velocity
v, the potential ¢, the electricfield intensity E = ~9¢/0x,
and the electron density N, are always continuous. The
ion density N, on the contrary, can have on the discon-
tinuity (5) an arbitrary jump, while the respective
derivatives 8E/ax and dv/dx of the field intensity and
of the velocity can have a jump determined by the jump
of N:

[N]=C,, v,=v_=u, (6a)
(2o (2] -5 o
[p]=[N.]=[v]=[E]=0. (6¢c)

The condition (6b) was obtained by differentiating Eq.
).

It follows from (5) and (6) that there is no particle
flux through the discontinuity surface, i.e., the con-
sidered jump discontinuity is not a hydrodynamic shock
wave as defined by Landau and Lifshitz (Ref. 1, §81),
but is a special kind of discontinuity that has no direct
counterpart in ordinary hydrodynamics.

We investigate now the conditions for the existence of
such a discontinuity. To this end we determine the
structure of the solution of Egs. (1)—(3) in the vicinity
of the discontinuity. We consider first stationary flow,
i.e., we assume that N, v, and ¢ depend only on £ =x
-ut. Integrating then the equations (1) and (2),

(v (&) —u) N (§) =lo, (v(8)—u)*/2+eZ(E)/M=vs/2,

and using the conditions (6) on the discontinuity, we
find that

1,=0, v(E)=u, @(&)==const.
It follows therefore that such a discontinuity is impos-
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sible under stationary conditions.

We consider therefore the vicinity of a nonstationary
discontinuity (6) that moves with velocity »(t). It is con-
venient to change from x and v to new variables £ and v,
connected with the moving discontinuity:

§=z—j udt, v=v—u, u=ul(t). (7
Equations (1)-(3) are then rewritten in the form

aN aN v, v, v, eZ
——tu—+N—7=0, —+v,———(E- =
PR 7t N 7 0 5t +v 3 7 (E—E(0,t))=0,
2 du eZ e

— = 4ne(ZN— = — =T

5t ~Ane(@N-Ne(9)), — =—rE0.1), E(.) 7t 8

It is natural to seek the solution of Egs. (8) in the vic-
inity of the discontinuity point £ =0 in the form of a
series in powers of £, Taking (6) into account, we have

N=N,()+N,®) &+ ..., v,i=v, () E+v.(t)E>+...,
E=E,(t)+E,(t)Et+ ... .

It follows then from (8) that

_ @lnN, ()

n E,=4ne(ZN,(t)—N.(0,t)),

u(t)= IEo(t)dt, V=

and the function N (t) is defined by the equation
d*N, ( dN, )’ 4ne*

—Np—=+ 2 —2) — =N (ZN,— =
o = 2 Ve (ZN=N. (0, 1) =0. (9)

The solution of Eq. (9) depends essentially on the form
of the function N,(0, t) =N,[¢(0, t)] that describes the
time variation of the electron density at the discontin-
uity point moving with velocity u(f) (7). In particular,
at N,(0, ¢) =const=N,, we have

No(t) =No/ (@ sin T+ZNoo/Neo), 1= (t+t,),
ty=Q7" arcsin [ (1—=ZNo/Nei) [a], Q*=4ne’N, /M,

Ny is the value of N, at the initial instant =0, and q is
a dimensionless constant. It is seen that the density
N,(t) becomes infinite at 7 =7 —aresin (ZN,,/aN,,).

If N,(0,¢)=N,,/(t/t,+1), then Eq. (9) is satisfied by
the quasineutral solution
No(t)=N,,/Z(t/t,+1).

In the case of a power-law dependence N,(¢) =N,,/t *
we have N(t) =N,,/t %, and a nontrivial solution of Eq.
(9) is possible when @ =2, Then

Nc(t) =N-o/tz, No(t) =Nao/tz, Non= ,o/Z+2M/4ne‘Z,
vy=—dln N,/dt=2/t, E,=2M/¢.

(10)

It is seen that in this case the electron and ion densities
are not equal on the discontinuity, and their ratio is a
constant quantity independent of time.

The relations obtained are not contradictory. A jump
discontinuity of the type considered can therefore exists
in principle in nonstationary plasma flow.

Let us compare this with ordinary hydrodynamics.
Jump discontinuities occur in ideal hydrodynamics des-
cribed by Euler’s equations, which do not contain any
characteristic spatial scales (Ref. 1, §81). When vis-
cosity and dispersion are taken into account, param-
eters with the dimension of length do appear, and the
Euler equations are correspondingly supplemented by
terms containing higher derivatives: the Navier-Stokes,
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Korteweg-de Vries, and other equations. The discon-
tinuous solutions vanish then and the discontinuities are
smeared out. The viscosity describes the characteris-
tic discontinuity smearing width (Ref. 1, §81). In the
presence of spatial dispersion, oscillations can arise in
the discontinuity region.?

Equations (1)-(3), which describe the flows of a
strongly nonisothermal plasma, contain a parameter
with the dimension of length (the Debye radius) and
higher derivatives. They have the character of hydro-
dynamic equations with dispersion, but without dis-
sipation, and reduce in the case of small perturbations
to the Korteweg-de Vries equation. The Debye radius
determines the characteristic scale of the oscillations
that are excited in the plasma. It is natural to expect
strong discontinuities to arise in this case only in the
approximation of hydrodynamics of the Euler type,
which does not contain the Debye radius. The corres-
ponding equations can be obtained from the complete
system by changing over to the quasineutral-plasma
approximation and by special averaging over the oscil-
lations (Whitham’s method?). The possible existence
and the process of formation of discontinuities (laminar
shock waves according to Sagdeev’s terminology®) in
the solutions of the averaged equations was investiga-
ted by Pitaevskil and one of us.® The solutions of the
complete equations are in this case, of course, con-
tinuous; they have an oscillatory structure in the vicin-
ity of the discontinuities.

We have seen above, however, that the complete
system of the plasma-hydrodynamics equations admits
in principle not only such oscillatory solutions, but
also real jump discontinuities that have no finite width,
despite the presence of higher derivatives and of a
characteristic parameter with the dimension of length—
the Debye radius. We shall prove below the existence
of strong discontinuities of this type by a concrete con-
struction of a stationary discontinuous solution on the
front of a rarefaction wave.

2. RAREFACTION WAVE

Let the plasma fill at the initial instant ¢ =0 the left
half-space, (x- —«), with vacuum in the right half-
space (x— +=). The initial interface between the plas-
ma and the vacuum can be regarded as either abrupt
or diffuse. In the course of time the plasma flows into
the vacuum. The corresponding flow is called a rare-
faction wave in ordinary gasdynamics. In an ideal gas
with an abrupt initial interface with the vacuum, the
rarefaction wave is self-similar, i.e., it is described
by functions that depend only on the ratio x/t. The point
x=0 corresponds to the position of an abrupt initial
boundary at =0 (see Ref. 1, §101). If the initial inter-
face is diffuse, then the flow becomes rapidly close to
self-similar. On the whole, a similar picture is ob-
served also in the flow of a nonisothermal plasma.

To describe the rarefaction wave in a nonisothermal
plasma it is convenient to change in Egs. (1)-(3) from
x and to the variables 7 and £, which are close to self-
similar:
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v=z/t, t=In (t/t.). (11)

Here ¢, is a certain characteristic time that will be de-
fined later on. Equations (1)-(3) take in the variables
(11) the form

N oN v av eZ 0q>
exp(—2§) 9’y

"l -b-“T-=—4ne (NZ—Ng(w))

It is natural to separate the self-similar solution, i.e.,
represent the functions N, v, and ¢ in the form

N=N,(v) (1+n,(1, £)),v=vs () +0,(7,}) ,@=q0 (1) + (T'/e) s (7, §). (13)
From (12) and (13) we have

ﬂ eZ 9,
(vo—7) +— M o+
Hence, taking (4) into account, we obtain the known self-

similar solution®

dN, dv,
(U,n""l') T+N.-F=O' ——=0, N.,Z—N.('Pu).

No(t) =N, exp (—1/s0—1), vo(t)=1+850, (14)
@o(t) =(T./e) (—t/so—1), N,=NoZ, so=(ZT./M)".

Equations (14) are valid only at 7 >-s,; at 7< = s, the
plasma is not perturbed, i.e
No () m=No, vo(7)=0, o(7)=0.

At 7 = -5, the solution has a weak discontinuity.

Using (4), we now rewrite Eqs. (12) for »n,, v,, and
$, in the form

an,
'—aE ——s—- (i+n,)+(s,+v,) ——'+(1+ .) '—‘—0
iv-‘+(s,,+v.) A4 ok z—‘;“’ =0,
: (15)
9%, —28,
S --”:fxp( ) e v,

e=4ne*N, M~ exp (—1)t.%.

It is seen that the variables 7 and ¢ enter in the right-
hand side of Eqs. (15) only in the combination 7 —2s,£.
It is natural to seek a particular solution of (15) in a
corresponding form. We then arrive in place of (15) at
the equations

(Vi—1) ﬂ+(n.+1) (-d—V_‘- V,) =0, (Vi—1) iV—‘+ Vo+28 d"‘ -
dy

d*, 1—28 26k a 6)
F-}-eexp( y) (ny+1—exp(y;))=0, V, =:—, y=—7
0 0

These equations describe a nonlinear wave traveling
along 7. Since the functions n,, v,, and ¥, of interest to
us constitute a strong perturbation of the self-similar
solution only in the vicinity of a wave front moving
towards positive values of 7, it follows that at sufficient-
ly large negative y there should be satisfied the condi-
tion

n—+0, V>0, ;=0 as y->—eo, 17

It is important that the first two equations in (16) have
a singularity at V,=1. Let V; =1 at the point y =y,.
From the requirement that there be no singularity in the
solutions at y =y, we obtain the following expansion in
the vicinity of y,:
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FIG. 1. Plots of ny, V4, and ¥, vs y, obtained by numerically
integrating Eqs. (16) and (17), at parameter values y,=~-3.46
and € =4.0 (solid line) and y,=-2.0 and € =4.0 (dashed line).
The dash-dot line shows the position of the jump discontinuity.

nen +6 ( Vo (—voi+24v,136)
T . (64vo)* (ve+12)

Vi=t+ (y—y.)+T°- (y—w)?,
Vo

d¢, 4v, .
- 1-2(y—u) m(y—yu),

(y=yn)*

Yi=P— (y—=1) — (y—u)%

Vo=¢ exp (—yo+¢a). no=In [ (vo+2) exp yo/e],
n=In (n,+1).

It is seen that a solution without singularities, arriving
at the point y,, is determined by two constants, ¥, and
€. Choosing ¢, to satisfy the condition (17) on the left of
the singular point, we continue next the solution into the
region y >y,. It is shown in Fig. 1 for y, =-3.46, £€=4.0
and for y,=-2.0, £=4.0.

The jump-discontinuity conditions can be satisfied at
the singular point y =y,. Indeed, the total flow velocity,
as follows from (13), (14), and (16), is

v=1ts0ts.V, (y), (18)

and the plasma velocity # at a given y is, according to
(11) and (16),

u=dz/dt=s.y+2s,t+2s,=5,[2+y+2In (t/t;) ], z=tyso+2s8t.  (19)

1t follows from (18) and (19) that the relation
u=v (20)

is satisfied aty =y,, where the value of y, is defined by
the condition

V.(yu)=i-

Consequently, the conditions (6) are satisfied at the
point y =y, and the solution admits of the jump discon-
tinuity shown by the dash-dot curve in Fig. 1. The value
of y, determines the position of the wave front. The
solution constructed to the left of the discontinuity
satisfies Eqs. (1)=(3). On the right of the discontinuity
we have N =0 and consequently Egs. (1) and (2) are
likewise satisfied here identically. The conditions (6)
are satisfied on the discontinuity. The potential and the
electric field intensity at the point y =y, are continuous.
To the right of the discontinuity, the solution of the
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Poisson equation (3) is continued uniquely with account
taken of the specified values of ¢ and E and of the
specified jump [8E/3x] on the discontinuity (6).

The structure of the solution in the vicinity of the
discontinuity is shown in Fig. 1. The value of N, at the
discontinuity point, as is clear from (11) and (14)-(16),
decreases with time in proportion to ¢ 2. The ratio of
the ion and electron densities is constant here in ac-
cord with (10). The velocity of the ion front (of the dis-
continuity), as seen from (19), increases with time in
proportion to 21In(t/¢,).

The condition (17) for the transition to the self-simi-
lar solution as y - - is satisfied in the general case
because of the onset of a weak discontinuity: the func-
tions »n,, v;, and J, vanish at a certain value y =y, at
which they have nonzero derivatives

dn,( )= dv,
dy W= dy

m(Y) =V, (5 =9 (32) =0, )= ) =p>0.
To investigate the structure of the weak discontinuity
of the self-similar solution, we must consider small
perturbations of N, v, and . In this case the system
of equations (1)—(3) reduces to the Korteweg-de Vries
equation.? The structure of a weak discontinuity in the
Korteweg-de Vries equation was considered earlier

in Ref. 7, where it was shown that oscillations can
arise in the region of the weak discontinuity, and the
region broadens slowly with time, Ax~¢'/3, and remains
local in terms of the self-similar variables T =x/t.

We now integrate numerically Egs. (1)-(3) for the
problem of plasma outflow into vacuum. We shall as-
sume that there are no jump discontinuities at the in-
stant £=0, and the plasma occupies a half-space with
a diffuse boundary, for example,

N, z<<-—a,
No(z)=\ Ny(1—=2/a), —a<z<O, (22)
0, z>0.

The result of the numerical integration of Egs. (1)-(3)
with initial conditions (22) is shown in Fig. 3. It is
seen that a jump discontinuity after a finite time &,

N/Ny, Ne/Ny
0,2

R~

/

1 [/
0.5 7.0 7.5 /s

FIG. 2. Structure of complete solution of the system of equa-
tions (12) in the vicinity of the jump discontinuity. The dashed
line shows the self-similar solution for the particle density
D= (To/47e Ngg) V2.
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FIG. 3. Ion and electron densities N and N, and the ion velocity
v as functions of 7/s;, obtained by numerically integrating
Egs. (1)—(3) with the initial condition (22). The dash-dot line
shows the solution of the self-similar problem. The numbers
on the curves are the values of the parameter ¢ Q.

~ /9, Q = (4m€2N,/M)*'? is produced on the leading front
of the rarefaction wave. There are no ions to the

right of the discontinuity: N =0. To the left of the
discontinuity the solution approaches rapidly the
quasineutral self-similar distribution (14). The front
velocity —the discontinuity velocity—increases logarith-
mically with time (cf. Ref. 8, Fig. 4) in accord with
(19). The constant ¢, determined from the numerical
solution is ¢,~3.3/Q, and £~4.0.") The electron den-
sity near the discontinuity decreases with time in pro-
portion to ¢ "2, The ion velocity v on the discontinuity
is equal to the front velocity u. The condition (21), as
seen from Fig. 3, is also well satisfied. Thus, the
main features of the asymptotic analytic solution deter-
mined above agree well with the results of the numeri-
cal calculation.

We examine now in greater detail the discontinuity-
formation process. At the initial instant £ =0 the ion
density in the vicinity of the front decreases in accord-
ance with the linear law (22). The distribution of the
electron density N,, of the ion density N, and of the
electric field intensity E is then of the form shown in
Fig. 4a. The electrons lead the ions and produce ahead
of the front a negative charge that holds back the elec-
trons and accelerates the ions, It is important that in
this case the electric field intensity is not monotonic:
E(x) has a maximum at the point x, at which the ion
and electron densities become equal (Fig. 4a). It is
this feature which leads subsequently to a gradual
steepening and to the onset of a strong discontinuity on
the leading front of the rarefaction wave.

Indeed, it follows from (2) that the total change of the

ion velocity is

dv  eE d 4 ]

aT M ar ot er
Consequently, the ion velocity v increases fastest near
the point x,, where the field E is a maximum. On the
other hand at points x> x,, the velocity v increases more
slowly with time. But this means that the ions from the
region of x, gradually catch up with the ions that were in
front at the initial instant. Therefore the wave front
becomes ever steeper with time. This is seen from
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FIG. 4. Ion and electron densities N and N,, the ion velocity v,
and the electric field intensity E (dashed line) vs (x— xz)/D,
at various instants of time [t=0.1/R, (a), t=5/2, (b), t=6/Q,
(©), £=7/2 (d), =10/ ()] near the wave front, obtained by
numerically integrating Eqs. (1)—(3) with initial condition (22).
At the point x,, the ion and electron densities are equal. The
scale on the E(x) curve of Fig. 4d differs from the others by a
factor 10—the electric field near the toppling point increases
sharply prior to the toppling of the wave.

Figs. 4b, c, d, which show the time variation, obtained
from the numerical calculation of the leading front hav-
ing the form 4a at the initial instant.

At the instant ¢ =¢,~7/Q the profile of the wave topples
over and an abrupt jump of the ion density—a jump dis-
continuity—is formed on the leading front x of the rare-
faction wave. The point x, where the field is a maxi-
mum catches up with the leading-front point x (see Fig.
2); there is a substantial jump of the derivative dE/dx
at x=xg (6)

Zm(th) =2 (t).
This means that the ion velocity increases most strong-
ly with time on the wave front x. The velocity behind
the front increases more slowly, so that the steepening
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stops at t2¢,. There are no ions ahead of the front,
and the electric field is weaker here: E< E(xg). The
ions therefore cannot move ahead of the front, so that
the jump discontinuity on the wave front is not smeared
out and is preserved with further motion of the plasma
(Figs. 2 and 4e).

We note that Egs. (1) and (2) are valid for cold ions—
the kinetic straggle of the ion velocity is completely
neglected in them. As shown in Ref. 9, the effective
ion temperature decreases rapidly in the direction of
the plasma expansion (the x axis):

T ~Ti exp(—21/s,).

Using (11) and (16), we obtain in the region of the
rarefaction-wave front

T/ ~Ti(tolt)*.

Allowance for the kinetics can therefore not lead to a
considerable smearing of the front (see Ref. 3).

The situation can change when plasma oscillations
are excited. The oscillations are not one-dimensional
and lead to scattering of the ions, and hence to an in-
crease of their effective temperature along the x axis.
Ion collisions can have a similar effect. This should
lead to a broadening of the leading front of the rare-
faction wave. It appears that effects of this type were
observed by Eselevich and Fainshtein in a laboratory-
plasma experiment.°

The rarefaction wave plays an essential role in ion-
ospheric aerodynamics—it describes flow of plasma
around bodies.?*}! In particular, the structure of the
perturbed region behind a half-plane around which a
rarefield plasma flows with supersonic velocity v,

V> S0,

(23)

is described in the quasineutral approximation by the
self-similar solution (14). When the complete Poisson
equation is taken into account, as seen above, this
solution is valid only over limited distances—up to the
region of the jump discontinuity. Using the results ob-
tained here, it is easy to verify that the boundary xp of
the leading front is defined under condition (23) by the
expression
. So So 2
xp=2z~;°—1n (:;-—o a\) s
(24

Do=(Tf4ne*Neo) ", so=(T/M)",

a=0.3.

Here, as usual,®'!! z is the coordinate along the plasma
flux advancing towards the half-plane, and x is the co-
ordinate in a direction perpendicular to the flow and is
reckoned from the edge of the half-plane (the plasma
moves along the z axis and spills over behind the half-
plane along the x axis). Equation (24) is identical with
Egs. (11) and (19), the xz(z) curve is shown in Fig. 5 by
the solid line. The ion density experiences a jump dis-
continuity at x=xg(z). At x< xz(z), near the discontin-
uity, the ion density is noticeably higher than the elec-
tron densities (11), (13), and (14) (see Fig. 3). This
region is hatched in Fig. 5. It goes over next rapidly
into the quasineutral zone described by the self-similar
solution (14).3:%!
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FIG. 5. Picture of flow around a half-plane (solid line) and
around a plate of width 2R, (dashed lines), both perpendicular
to the flow of a rarefied supersonic plasma. 'The hatches mark
the region where the ion density is noticeably higher than the
electron density. R;=400D,.

The dashed line in Fig. 5 shows the picture of the flow
of the plasma around a flat plate of width 2R, perpen-
dicular to the flow. The plasma then spills over on
both sides. In that region behind the body which is
bounded by the jump discontinuities (24) and

¥4
z.,—ZR,,—Zz—:—ln(vn 5. )

there are no ions. This is the “region of maximum
rarefaction” in the definition of Refs. 11 and 12, It is
seen now that it has a sharp and not a diffuse boundary.
Behind the body, the collision of the plasma streams that
spill over from the two direction near the axis x=R,
can lead to excitation of ion-sound waves. The Landau
absorption for this wave is mainly by the electrons.

It is possible that it is this absorption which causes the
rise of the electron temperature in the wake behind the
body, as observed in the ionosphere by Samir et al.'?

The authors thank L. P. Pitaevskii for a helpful dis-
cussion of the work.
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DWe note that the values of the constants ¢, and € vary with
the character of the boundary conditions as x ~— +%« and
with the form of the function N (¢) in Eq. (3), i.e. with the
form of the electron distribution function (see Refs, 3 and 8).

L. D. Landau and E. M. Lifshitz, Gidrodinamika sploshnykh
sred (Hydrodynamics of Continuous Media), Gostekhizdat,
1953, §§81, 101.

2v. I. Karpman, Nelinelnye volny v dispergiruyushcikh sredakh
(Nonlinear Waves in Dispersive Media), Nauka, 1973 §§
13-15.

3A. V. Gurevich and L. P. Pitaevski‘f, in: Voprosy teorii
plazmy (Problems of Plasma Theory), M. A. Leontovich, ed.,
No. 10, Atomizdat, 1980, p. 3.

4G. B. Whitham, Proc. Roy. Soc. A20, 798 (1965).

°R. Z. Sagdeev, in: Voprosy teorii plazmy (Problems in
Plasma Theory), M. A. Leontovich, ed. No. 4, Atomizdat
1964, p. 20.

6A. V. Gurevich and L, P. Pitaevski‘i', Zh. Eksp. Teor. Fiz.
65, 590 (1973) [Sov. Phys. JETP 38, 291 (1974)].

TA. V. Gurevich and L. P. Pitaevskii, in: Proc. 12th Internat.
Conf on Phenomena in Ionized Gases, Vol. 1, Eindhoven,
1975, p. 273.

8A. V. Gurevich and A. P. Meshcherkin, Zh. Eksp. Teor. Fiz.
80, 1810 (1981) [Sov. Phys, JETP 653, 937 (1981)].

SA. V. Gurevich, L. V., Paruskaya, and L. P. Pltaevsku, tbid.
49, 647 (1765) [21, 449 (1966)]. .

10y G. Eselevich and V. G. Fa‘i'nshtein, ibid. 79, 870 (1980)
[62, 441(1980)].

HA. V. Gurevich, L. P. Pitaevski;, and V. V, Smirnova, Usp.
Fiz. Nauk 99, 3 (1969) [Sov. Phys. Usp. 12, 595 (1970)].

2Ya. L. Al'pert, A. V. Gurevich, and L. P. Pitaevskii, Iskuss-
tvennye sputniki v razrezhennoi plazme (Artificial Satellites
in a Rarefied Plasma), Nauka, 1964.

13y, samir, R. Gordon, L. Brad, and R. Theis, J. Geophys.
Res. 84, 513 (1979). B. E, Troy, E. J. Meier, and U. Samir,
ibid. 80, 993 (1975).

Translated by J. G. Adashko

A. V. Gurevich and A. P. Meshcherkin 693



