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We provide a relativistic Lagrmgian for a hot magnetized plasma in arbitrary motion. This manifestly 
wvariant Lagrangian can serve as a useful basis for relativistic geometrical optics. It gives rise to a conserved 
pseudophoton current, also called wave vector action, and allows for a wvariant treatment of nonlinear 
wave-wave interactions. 

PACS numbers: 52.30. + r, 52.35.M~ 

5 1. THE RELATIVISTIC EIKONAL METHOD 

Generally one cannot solve Maxwell's equations exact- 
ly for waves propagating through an inhomogeneous me- 
dium. The problem becomes even more complex if one 
wishes to do this for a medium in accelerated motion o r  
in curved space-time, as i s  for example necessary if 
one wishes to describe wave propagation through a pul- 
sa r  magnetosphere o r  through the accreting gas of a 
black hole. The standard treatments using plane wave 
solutions to describe wave propagation in a homogene- 
ous plasma in a flat space time' a re  no longer applic- 
able. In the geometrical optics appro~imation,~ where 
the wavelengths A are  small in comparison with the "in- 
homogeneity scale" 1, a refined version of Hamilton's 
theory of rays,3 first described by ~ e i n b e r ~ , ~  leads to 
radiative-transfer equations which determine the change 
in wave vector, polarization state, and intensity. 

i'=&'ldl=aDlakt, 

r t ' = ~ . # = - a ~ i a ~ , ,  k1,>=k ,,., (1.2) 

and $(x) i s  then given by 

rp (2) = 5 k,il dl. (1.3) 

Locally the waves described by (1.1) a re  therefore 
plane waves, and the long-range effects of the medium 
and the geometry are  taken into account by propagation 
laws. The most general way of describing wave propa- 
gation would certainly be that of phenomenological elec- 
t r o d y n a m i c ~ ~ ' ~  where one uses the induction tensor 61Pb 
together with the field tensor 

6Pb=hAb"-6An,b. 

The tensor 6EPb satisfies the field equation 

4n .. 
6 P b ,  = -I.,, (1.4) 

In this eikonal method one ignores internal reflection. 
A proof does not exist, but the general conjecture i s  and i s  related to 6Fab by the permeability four-tensor. 
that the amplitudes of the reflected waves go to zero as  To lowest order eikonal approximation this relation can 
exp(- 1/A). Thus they cannot be obtained by a method be written5 
which i s  essentially a power series expansion in A/L. GHab (x) =eabGd (2, k )  GFd ( x ) ,  (1.5) 
In the eikonal method i t  i s  assumed that the four-poten- 
tial of the waves 6Ai(x) can be written as  and, in the absence of external currents, leads to 

wherethe scalar f i s  the amplitude, the suitably normal- GH"bkb-ife"bdkb(k%d-arkd) e4=0. 

ized four-vector h ( ~ )  is the polarization vector, and The trivial symmetry relations for EZ are 
#(x) i s  the eikonal. f(x) and ab(x) are  slowly varying 

eabd=?-ebad=-e*bdrI 

functions of x, whereas the eikonal $(x) describes the 
rapid oscillations of the waves, I):,:= ki, where k, i s  the and for a loss-free medium due to the Onsager relations 
wave four-vector. The four components of ki a re  not 
independent, but for a given medium they are  related by emb.d-ed.br (1.7) 

a scalar relation which i s  characteristic for the medium where the asterisk denotes the complex conjugate quan- 
and which i s  called the dispersion relation, tity. Introducing L ~ = c ~ ~ ~ ~ ~ & ~  , Eq. (1.6) can be written 

In order to solve the eikonal equation Due to the symmetry relations of c, this equation has 
the trivial solution ad= k,. This implies that detll~"II=~, 

D(rp;i, 2,) =0 i .e. det\lLall =O i s  not the dispersion relation. It can be 
and to construct #(x) one used the method of ray trac- shownS that a covariant dispersion relation i s  obtained 
ing,' i.e. one solves for the ordinary differential equa- if one chooses a specific gauge for a,, for example a,l@ 
tions =0, and adds this gauge condition 
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to ~ * a , .  ~etI iL"~+Vk~ll= 0 i s  then the dispersion relation 
(including the spurious mode kiki= 0 corresponding to 
k'ai=O). 

Equation (1.8) determines further the polarization vec- 
to r  a' (up to a gauge mode). In order to determine the 
amplitude f,  however, dynamical quantities a re  needed 
(and one has to proceed to first  order approximation to 
obtain these). 

Ingeometric optics3 Landau and Lifshitz use the physi- 
cal argument that in a loss-free medium energy must be 
conserved on the average, leading to the requirement 
div S=O from which the amplitude can be obtained by 
simple ray tracing since S points in the direction of the 
group velocity. In a medium in arbitrary motion energy 
i s  not conserved but the number of "photons," a s  repre- 
sented by the numbers of rays, still is. Multiplying Eq. 
(1.8) by a,* we obtain 

It i s  easy to show that Z i s  proportional to the dispersion 
relation,' and in geometrical optics the space part of 

coincides with w-'S, i.e. i t  satisfies NaZa=O. The rela- 
tivistic generalization of the conserved current there- 
fore will be (1.9), if we can show t h a t N i ; i = ~  ingeneral. 
N' i s  sometimes called wave-vector action, and i ts  con- 
servation gives rise, in the standard manner, to the adi- 
abatic invariant I=N'~z:~=NO~V, where dV i s  an aribtrary, 
infinitesimal volume element which i s  propagated along 
the rays of Eq. (1.2). In linear theory the average ener- 
gy-momentum tensor Ti* is related to Nk a s  f o l l ~ w s ~ , ~  

Now suppose the physical system under consideration 
(crystal, plasma, etc.) can be derived from a Lagran- 
gian. In this case Eq. (1.10) i s  nothing but the averaged 
canonical energy momentum t e n s ~ r , ~  and for the diver- 
gence of T* we would obtain 

T'*,=-z:* (1.11) 

Using Z=O a s  the dispersion relation in (1.2) then im- 
mediately leads to (Z;' i s  the functional and not the total 
derivative with respect to xi) 

The method of an averaged Lagrangian, which was first  
considered by Whitham7 and subsequently investigated 
by many authors, for example,83g i s  therefore an ele- 
gant and powerful means to provide a manifestly covari- 
ant basis for relativistic geometrical optics. [Note that 
Na was introduced for the first  time by Sturrock6 (1962), 
although his work did not have much influence on later 
development]. 

However, the price one pays i s  a loss of generality in 
that one does not always know how to construct a La- 
grangian for a given physical system. Moreover, if one 
i s  interested in the phase of the amplitude one has to 

take recourse to the full system of differential equa- 
t i o n ~ . ~ ' ~  On the other hand, if one has a Lagrangian at 
hand, many results follow with considerable ease from 
i ts  invariance properties via E. Noether's theorems. In 
particular, Eq. (1.12) i s  a direct consequence of the 
eikonal ansatz (1.1) and holds rigorously and not only to 
lowest order eikonal approximation. 

As mentioned above, to establish Eq. (1.12) &",bust 
be known to first  order eikonal approximation. This fact 
was overlooked by the authors of Ref. 5, and their result 
concerning the divergence of N' i s  wrong. 

A second gratifying aspect i s  that our treatment can 
immediately be extended to curved space-time. 

The outline of the paper i s  a s  follows. In the 62 we 
review the previous work of Sturrockl0 and F. E. Low,'' 
and we combine the procedure of both into a relativistic 
Lagrangian for a hot, magnetized plasma in arbitrary 
motion. We show that this Lagrangian leads to the cor- 
rect "field" equations to all orders.  Unfortunately, this 
Lagrangian i s  a hybrid in that i t s  electromagnetic part 
i s  a density in the four-dimensional position space 
whereas the particle and interaction parts a re  densities 
in the seven-dimensional phase space. This leads to 
some modifications of the proof of Eq. (1.11) which are  
also given in 92. In 93 we explore the consequences of 
the eikonal ansatz (1.1) and go over to the averaged La- 
grangian. In the following sections we show how useful 
physical results can be derived if the Lagrangian is ex- 
panded in powers of the small amplitudes of the fields, 
In 94 we drive the linearized Boltzmann-Vlasov equa- 
tion from the requirement of gauge invariance. In 85 
we derive the permeability tensor and prove the conser- 
vation of wave-vector action for a hot, magnetized plas- 
m a  in arbitrary motion. In the final section we show how 
nonlinear phenomena can be treated and rederive the re- 
lativistic Manley-Rowe relations for nonlinear three- 
wave interaction. 

$2. THE FIELD LAGRANGIAN FOR PARTICLE 
DISPLACEMENTS 

I t  i s  well known how to describe particle motion in 
given exterior fields by means of a variational principle 
and so i s  the representation of field equations for the 
electromagnetic field by similar principles.' The syn- 
thesis of both into one single principle is complicated 
by the fact that particles and fields a re  described by dif- 
ferent types of variables: "Lagrangian" for the parti- 
cles and "Eulerian" for the fields.' SturrocklOand LOW" 

have devised a procedure to overcome this difficulty at 
least in part. They introduce displacements tk which 
describe the motion o r  particles under the action of aper- 
turbation field such that the unperturbed trajectory xk 
=xk(s) goes over into7ck =xk + 6'. The displacement tk will 
be a "field-like" variable if we require that P=xk+lk(x).  
It i s  well known that such a labelling i s  not unique since 
the transformation 

in which ds may be regarded a s  an arbitrary infinitesi- 
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ma1 function, generates a set of representations of the 
same physical system.'O This gives rise to a further 
gauge invariance of the theory (apart from the indeter- 
minacy of the potentials of the electromagnetic field') 
and leads to a "strong conservation law",239" which, as  
we shall show, i s  just the conservation of particles for 
each species (whereas the gauge invariance of the elec- 
tromagnetic potentials leads only to charge conservation 
of the total charge,' which i s  weaker, and only for a 
charge-separated plasma do the two coincide). 

The result of the procedure, however, i s  formal, and 
only if the displacements are  small so that the Lagran- 
gian allows a power series expansion in the displace- 
ment amplitude does one obtainphysically useful Lagran- 
gians which can be treated in the standard manner.' 
However, the advantage of the more formal treatment 
i s  that i t  leads to manifestly covariant expressions, 
valid rigorously, and that it allows one to investigate 
easily the invariance properties of the Lagrangians to 
all orders of approximation. 

Sturrock starts from the particle action 

where the sum over A i s  over the different charged-par- 
ticle species and wherea 

Henceforth we shall drop the index A and consider each 
kind of particles separately; in the final result one can 
easily restore the sum over all species. The equations 
of motion for the background plasma are (for each spe- 
cies) 

The electromagnetic field equations follow from the to- 
tal action S,,, = S + S f  

stat-S+Sf, 

and reada 

If, under the action of a perturbation force, the parti- 
cles at x go to 2, the new equations will follow from the 
actions 

N 

SE-W xj dSl + 5 2~ x, dzIb 
I - ,  8-1  

and 

respectively, and give 

F P z i , g h  =CF~~Z~.  Ei==E'(s).  Eiii(=-1, 
me' (2.9) 

We derive now the above equations from the following 
"field" Lagrangian: 

-mc N ( r ,  u )  [ -  (u'+k8) (ui+kI)  ]'"d'ud4z. (2.11) 

Here ti= ti(x,u) has been extended to cover the hot plas- 
ma case where particles pass with different four-velo- 
city ui, 5'=ti(x,u) through each point in coordinate 
space. Consequently, the total derivation of 5' i s  now 

a 
e i =  DEieE; , u h + g r ,  urbh,  i t ,  ,,,= - i f ,  

ds ' duh 
(2.12) 

N(x,u) i s  the distribution function of the background 
plasma. We shall show below that due to the gauge in- 
variance under transformation (2.1) N must obey the 
Boltzmann-Vlasov equation 

N =  - N=N; +u'+N, , ,b*=O,  
d s  

(2.13) 

where bi i s  given by (2.4) so that bi ,,i =o. Note that in- 
stead of working in the physical seven-dimensional, 
curved phase space we prefer to work in a fictitious1' 
eight-dimensional flat phase space by taking into account 
the identity Gigi=- 1 by means of a 6 function and the 
fact that ZcO >-I by means of a 8-function. Our function N 
i s  related to the usual f, by 

N ( z ,  u)=%(u0)6(- i - -u'ui )  fo(z, u ) ,  (2.14) 

and the four-current j' i s  defined 

Integrating (2.12) over duo, using bO,,=O and that N van- 
ishes fast enough in velocity space, i.e. uON(x,u)-0 
as  U O - ~ ,  we obtain the well-known form of the Boltz- 
mann-Vlasov equation for fo(x, u)= f (x, v / c ) ,  with y =uO 
the Lorentz factor 

(2.16) 

and (2.14) becomes 

as  it  must. 

As we are  considering only electromagnetic forces, 
Eq. (2.4) o r  (2.9) guarantees that the "current" j A  
=(Nua, Nba) in phase space i s  conserved 

jA;A=(Nu");.+(NDm) ,,.=O, 

which in turn guarantees particle-number conservation 

dN=Nu0d9zd'u-dE"dSf dlE (2.17) 

under the action of a perturbation force. N=fi(%, 2) i s  
the new distribution function and obeys 

D dl rn (3, -0, (2.18) . 

where D/dS i s  to be taken along the perturbed orbit. It 
does not seem to be possible to derive Eq. (2.18) from 
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the defining equation (2.17) eight-dimensional phase space. Using the field equa- 
tions and performing some simple  manipulation^,^ one 
easily arrives at (2.22). In order to reduce (2.26) to the 
standard result [ ~ q .  (1.11) without averaging] we have 
to show that the integral vanishes. To this end we note 
[see (2.21)lthat can be written ~ = N L  and that N does 
not depend on the field 5 ,  so that the functional deriva- 
tive of N is just the total derivative 

but we shall show later that in  the linearized case this 
i s  in fact possible, i.e. the linearized Vlasov equation 
follows from gauge invariance under transformations 
(2.1) and the equations of motion (2.9). Let us postulate 
then (2.1 7) for the time being. It i s  easy to show then 
that (2.11) leads back to (2.7) and (2.81, respectively, 
which guarantees Lorentz invariance of our "Lagran- 

d 
i . u ' = i ; - ~ + ~ ~ , - i ,  

d u ,  

Partial integration of the first  term then gives [with the 
usual requirement that N(u)  vanishes fast enough at the 
boundary of velocity space] 

gian9'and also its gauge invariance under transforma- 
tions (2.1). 

Let us next show that a variation of (2.11) with respect 
to the "field" ti(x,u) leads to Eq. (2.9). The variation is 
to be performed in phase space and leads to 

which in fact vanishes due to Eq. (2.23). 

So far we have not made any approximations, which 
guarantees that our later results will inherit the invari- 
ance properties to all orders  of approximation. 

where 
t- -mcN[- (u i+gi )  (ui+6,) I"+: N ( U ~ + ~ ~ ) K , ( X + ~ ) - - N L ,  (2.21 ) 

and the definition for i i  [Eq. (2.12)j should be remem- 
bered. We find $3. THE AVERAGED LAGRANG IAN 

In order to proceed we make the further assumption 
that the solutions of (2.9) and (2.10) a re  strictly periodic. 
It i s  then possible to introduce IC, a s  a new, independent 
variable and to formulate a modified variational princi- 
ple. To this end we define new fields Invariance under the gauge transformation (2.1) leads 

to (2.22) contracted by iii a s  a strong conservation law, 
(i.e. for arbitrary ii andx) ,  which implies B'(x ,  Q) =A' ( x )  qL(x, u, $) =b'(x,  u) . (3.1 

For the partial derivatives we then have 

a s  we mentioned earlier. Equation (2.22) agrees 
with that of SturrockIo derived for the cold plasma, and 
in the nonrelativistic limit our Lagrangian (2.11) goes 
over into Low's ~agrangian?'  Note that variation with 
respect to A(x)  i s  trivial if one uses the equivalent form 
(2.8) which goes over into (2.11) by means of (2.19) and 
a relabelling of the coordinates 

and the new Lagrangian will be 

Now suppose we have a solution of Eqs. (2.9) and 
(2.10). k,  i s  then a known function of x, ka= k,(x). 
We will insert this function into (3.2) and (3.3), so thaP2 
L i s  a function of I) only: 

Invariance of the total action under coordinate trans- 
formations 

Since B and 7 are  periodic, so is L. 

We now consider the following action 
with constant ci leads to the pseudo-energy-momentum 
tensor 

and vary S first  with respect to B'. We obtain 

which obeys 
T",=-L:'- J - '  fi", d4 u .  

Here in"' and L" a re  again the functional (not the total) 
derivatives with resp_ect to ui and xi, i.e. only the ex- 
plicit dependence of L and L on x and u is to be differ- 
entiated. 

and an analogous equation for 7'. For periodic bBi the 
"surface term" in (3.6) vanishes since L is periodic, 
and we obtain 

The complicated form of our pseudo-energy-momen- 
tum tensor i s  a consequence of the hybrid nature of our 
Lagrangians; Lf is a den_sity in +e four-dimensional 
position space whereas Lf, and L, are  densities in the which i s  nothing but the original 
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Therefore we can introduce the averaged Lagrangian 
Y 

L=- j ~ d * .  (3.9) 
D 

This Lagrangian i s  invariant under the gauge transfor- 
mation $- I)+ a! for constant a, and therefore leads to a 
conserved current (E. Noether, first part one of her 
the0 remZ3) - 

aL 
Ni;,--0, N' - - 

ak*' 
(3 .lo) 

For a direct proof one integrates the identity 

and uses the modified field equations (3.7). One then 
obtains 

and inspection of (3.4) shows that in fact 

We have therefore shown that even for such a compli- 
cated nonlinear Lagrangian there still exists a con- 
served current if the Lagrangian allows for periodic 
solutions. This i s  certainly true for those small ampli- 
tude oscillations where the dispersion relation allows 
for real solutions so that the eikonal ansatz (1.1) i s  justi- 
fied. 

$4. SMALL AMPLITUDE WAVES: THE LINEARIZED 
VLASOV EQUATION 

We now expand our Lagrangians (2.11) into a power 
series of the amplitude. We write 

A '=A'+GAi, 

where A' i s  the four-potential of the background plas- 
ma. Note that our definition i s  slightly inconsistent with 
(1.1) and that we are  considering now only real quanti- 
ties. Lf leads to only two terms. 

L,'==-ai$'/4n, L,'--- fufuli6n, fa=ar;i-ai;r. 

All  higher order terms vanish. In Low's nonrelativistic 
treatment the same would be true for the matter Lagran- 
gian, but the relativistic Lagrangian gives contributions 
to all orders. 

We define the grojection operator into the local rest 
frame ht = 6; + uau, and write 

[ - ( u i + e )  ( U ~ + Q ~ ) ] ' ~ - ( ~ - U ~ $ )  [ l - L Q . ~ b l ( l - ~ ' B a ) a l ' J ' I  (4.1) 
~~. . 

The power series expansion of (2.11) is then straight- 
forward. 

Adding to the first order Lagrangian the divergences 
(which do not change the field equations) ( 1 / 4 n ) ( a ~ ~ ' ~ ) , ~  

and C, with the first order Lagrangian is seen to vanish 
identically because of the field equations of the back- 
ground plasma. To second order approximation, after 
adding C,, where 

1 c.=-- N ai + - A * , ~ P ) E ; .  

we obtain 
: (  2 

t , ~ = - t l z m c N h ~ ~ 8 b + ( e N ~ 2 c )  (F.bS"&b+u,F'.,b~bb), (4.2) 

L,,,,'=-(eNlc)F$ub. Ltz= (16n) -'f"f,,. 

Variation with respect to a' gives Maxwell's equation 

and with respect to f gives the equation of motion 

We shall now show that 6j' in Eq. (4.3) i s  given by the 
usual definition for the current Eq. (2.15) 

81' -- j 6Nu' d'u, (4.5) 

and that 6N obeys the linearized Vlasov equation. To 
this end we define the perturbed distribution function by 
(2.19). To linear order we have 

dS/ds=l-ua&, 

a i i * / a ~ ~ = d ~ ~ +  (ha.g) 

zu=z++t", a z v a z b = v + p j b ,  
(4.6) 

d~ a.2 aau 
be---  

ds a4z a4n - i-~'6~-S";.-(h"b$') ,,, 

and from (2.19) together with (4.6) we obtain 

8 N s - ( N f )  )- (Nh",Bb) . u a - ( ~ e )  N. (4.7) 

Inserting (4.7) into (4.5), we obtain after integrating by 
parts 
8ji=e [U'-!NE~).~-(N~.~~~),~.- ( U $ ) N ] ~ ~ U = ~  [ (ui tkN) ,r+giN]d4u. 

Using N=O, the last term can be written (['N)', and a 
second integration by parts using biBUi=O yields (4.3). 
It remains to be shown that N of Eq. (4.7) obeys the 
linearized Vlasov equation: 

Equations (4.6) and (4.7) are  invariant only under the 
restricted gauge transformation f a -  5'+uua with con- 
stant a, whereas (4.3) and (4.4) are invariant under the 
gauge transformation with arbitrary a. Therefore we 
can choose the gauge uata=O without a loss of generality 
and still have the freedom of the restricted gauge trans- 
formation. 

Using the identities 

we obtain at N=O 
&N=- (NL") .,, 

where La was defined in (4.4) and i s  now 

684 Sov. Phys. JETP 54(4), Oct. 1981 H. Heintzmann and E. Schrufer 684 



according to which Lga = 0, so  that the linearized Vlasov 
equation follows in fact. Equation (4.9) was derived 
(nonrelativistically) in Low's paper. Low noted that 
this does not yet finish the proof since the c lass  of solu- 
tions of the equation of motion (4.4) can actually be 
larger than the class for which (4.9) holds. 

We shall show that we can use the remaining gauge 
freedom to establish a one-to-one correspondence be- 
tween the two classes of solutions [without changing the 
current (4.3) o r  (4.5), respectively]. Multiplying Eq. 
(4.10) by u,, we obtain by means of (4.4) Laua=O. This 
may be written a s  

so that uaEa=c for all solutions of (4.10). If this con- 
stant C happens to be different from zero, we can gauge 
i t  to zero with a restricted gauge transformation 5" - 5" 
+C.ua (without affecting the physical components t", as 
i s  easily seen in the local res t  frame). 

The proof of (4.9) i s  somewhat tedious but can be sim- 
plified if one proceeds a s  follows. One s tar ts  from 6N 
=NA-N(Z,8) and uses k(x,  u)=o. This  gives 

which i s  just - N,uiLi according to (4.4), (2.4) and (2.9) 

and 
-N;.Y-N, , .h'bEb~N(i ,  ti) =O. 

The remaining terms a r e  then just - N,, La, which 
proves (4.9). We have therefore shown that although the 
Vlasov equation does not follow a s  a variational equa- 
tion from the Lagrangian, i t  is contained implicitly i n  
the field equations and may replace Eq. (4.4). 

55. THE EQUIVALENT PERMEABILITY TENSOR 

Having established that our  basic equations (2.9) and 
(2.10) follow from the Lagrangians (4.1) and (4.2), we 
can now apply the result of 83, Eq. (3.10), if we make 
the eikonal ansatz (1.1). As the next step we use the 
virial theorem to eliminate ti from the total averaged 
Lagrangian. Since LL i s  quadratic in 5 and Lmf i s  lin- 
ear ,  we obtain 

so that 

L=Z,+L,,+L,=L,+'/,Z,,. 

Defining 
4ne 

6 P b  =- - j N ( ~ u ~ - u " E ~ )  d ' ~ + f " ~ ,  

we obtain finally 

which agrees with Ref. 5. Applying (3.10), we see that 
the wave action Ni= 8Z/aki i s  conserved. 

We only have to determine the linear response tensor 
which relates 5' to f ". For  a cold plasma this i s  
straightforward. With the eikonal ansatz (1.1) we have 
to invert (4.10), which now reads to lowest order eikon- 
a1 approximation 

- (ku)  'p"+i(ku) S2"bfb-- (elmcz)f"bub, (5.3) 
in order  to obtain 

where 

and * a ;  =eO,,OQ i s  the dual to  52;. The result is 
1 (ku)'iiob+i (ku) 'O"a-'Wo'Sa'r ,-y =- 

(ku)' - (ku)z+i/,(Q,,Q'J) (5.5) 

The final result (5.5) can be easily derived from CI:ub 
=0, which holds to lowest-order eikonal approximation, 
so  that a s  a consequence we have *OzQ,C =O. Using 
further the identity 

one easily shows that (5.5) i s  the inverse of (ku)'6; 
- i(ku)QO,. In the local res t  frame of the plasma the 
space part  of Eq. (5.5) reduces to the well-known con- 
ductivity tensor a: if we put 

(ku)  '=mZ, '/, ( s i jQu)  =S2,'=Q2, 

where W, i s  the Larmor frequency in the particle's res t  
frame. From (5.4) and (5.5) we read off the permeabil- 
ity tensor, using (5.1) and (1.5), (1.6) 

where 

Note that in the case of a cold plasma i t  would still be 
possible to derive the f i rs t  order  approximation to o O,. 
To the required accuracy one may replace O;;,ub by 
ba;, and replace i(h)Wab in  (5.3) by 

Repeating the analysis of Ref. 5 shows that the impor- 
tant term i s  nab which makes E$ nonhermitian and 
guarantees that now N' , ,=O to f i rs t  order, as it must. 

Instead of solving Eq. (4.10) for the hot plasma case 
(where u i s  an independent variable), we use the linear- 
ized Vlasov equation (4.8), which, a s  we have shown, i s  
equivalent. To this end we employ a technique due to 
Sagdeev and ~ h a f r a n o v l ~  (as described by S t i t 4  and 
Clemnow and Dougherty15). To put the method in covari- 
ant form we borrow the formalism from B~neman. '~ 
One first  solves Eq. (4.8) in Lagrangian coordinates for 
the perturbation 6N so that i t  i s  sufficient to insert  the 
zero-order orbits  into the right-hand side of Eq. (4.8) 
since f i k  i s  already a quantity of f irst  order. These or-  
bits a r e  parametrized so that at proper time sl=s they 
pass through xi and ui, respectively. For a magnetized 
plasma the orbits a r e  to lowest order  
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Equations (5.7) are  the appropriate generalization of the 
Lorentz rotators given by Bunemanl6 [the notation i s  that 
used in Eq. (5.5) and below]. 

If one wishes to take into account particle drifts, high- 
e r  order harmonics, and the change in the amplitude of 
gyration via an adiabatically conserved magnetic mo- 
ment, covariant formulations are  also a~ailable.'~ Re- 
placing the Lagrangian by Eularian coordinates, one ob- 
tains14 

S 

~ ( ~ , u ) = - e j  E, ( s ' ) r l ( f  ( s l ) ) N , ( f  ( s ' ) ,  ~ ( s ' ) ) , ~ ~ d s ' + 6 N ( x , ,  u , ) .  
mcZ 

80 (5.8) 

To make the integral independent of the initial data we 
imagine the perturbation to be switched on adiabatically 
in the infinite past and introduce the integration variable 
t= st- s to obtain 

e 

6 N ( z , u ) = L l  C i l ( t ) f ' l (Z ( t ) )No( f  ( t ) , i i ( t ) ) , - d t .  
mc' (5.9) 

-- 

By this trick the integral has become independent of the 
proper times. With our eikonal ansatz (1 .l) we obtain 
finally 

6N ( z ,  u )  =- (e lmcz)  p\'(z) s,, ( u )  , 

I (5.10) 
sk, = 5 HIN exp[i(k..r"bub+k.u"t) ]d t .  

-- 

Instead of continuing the discussion in general form, 
we shall illustrate the procedure by a simple example: 
we consider a one-dimensional relativistic gas. (For a 
treatment of a magnetized plasma with an isotropic re- 
lativistic Boltzmann distribution function c f .  Bune- 
man.l8) In the absence of a magnetic field the particle 
trajectories are  simply Z'=ui and ~ + u i ( s ' -  s )  and s,, 
of Eq. (5.10) i s  given by 

For the current we obtain 

In evaluating this integral, the Landau rule must be 
used. Putting f ab = i(ka6Ab - 6Aa kb ) and using Maxwell's 
equation (4.3) we obtain 

o r  
(Pkb-kz6"b) 6Ab=flb6Ab, (5.14) 

4ne' d'u 
b b  Ez jE [urn( ( N , u c k c ) ~ b - ( ~ * k n ) N , u ~ )  1 

The last equation of (5.14) was obtained by integtating by 
parts. The symmetry of at  and satisfaction of a ; p  = 0 
then become obvious. Note that (5.14) coincides with 
(5.5) inserted into (5.1) at zero magnetic field. How- 
ever, in general this i s  not true, a s  can be easily 
proved since (5.5) has only one resonance at the funda- 
mental Larmor frequency 51,. We assume now that 

where we have chosen x1 for the direction of the aniso- 
tropy. Such a plasma may exist for example around a 
pulsar. We have 

and (5.15) 

For longitudinal oscillations we obtain from 6Aa= 0 (a 
= 1,2,3) the dispersion relation 

kaka=-ozo"Pk.k,, (5.16) 

whereas for transverse waves in the Landau gauge 6A0 
=0, we get with the help of (5.14) 

and for the principal modes (parallel o r  perpendicular to 
x'), for which ka6Aa=0 i s  possible, we have the disper- 
sion relation 

1-n2=c2a/oZ, (5.18) 

where 

To estimate the influence of a large velocity dispersion 
on the propagation of the mode parallel to the 2 we ap- 
proximate f (u) by 

f ( u )  ='/zOe-wu", 

where 2V1=kT=(3) i s  an effective temperature and 
measures the velocity dispersion. We obtain 

In the limit as  8-I-0 we obtain al l=w~/c2,  as  we must, 
and as  8-0 we get 

from which it  follows that 1 - n2- wi/wa(y), i.e., the 
plasma frequency i s  decreased by a factor (y)-lh, a 
well-known' result. 

In conclusion, we give the result for an isotropic dis- 
tribution function. We choose x3 for our reference axis 
and obtain15 

., .T uSdu sin'Ocosl*] , (5.21) 
all=,a,=a, = % I d p  I r i n g  d0 1 - [- I  

u0 1-2 cos 8 
0 0 I 

where the following convention i s  used 

ua= ( U  sin0 cos Q, u sin 0 sin I), u cos 9)  , 
6A1=(O, 6A,  0 ,  O) ,  kt= ( o l c ,  0 ,  0, k ) .  

The integral over the angles i s  elementary, and it i s  
convenient to consider first a11 +2u,, which shows that 
the integrals behave like l / ( d l n ( ~ ) ,  again a known re- 
sult. 
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$6. NONLINEAR WAVE-WAVE INTERACTION 

A nonrelativistic treatment of the interaction of three 
waves at resonance was given for example by Vedenov,18 
so we confine ourselves here to pointing out the differ- 
ences which arise in a relativistic treatment. As al- 
ready mentioned at the beginning of 64, in the relativis- 
tic treatment we obtain contributions to the matter La- 
grangian to all orders, whereas the Low Lagrangian 
stops with second order. We find using Eq. (4.1) 

To check the gauge invariance of the above equations 
would be extremely tedious, a s  both the equations of 
the background medium and the first-order equations 
(4.3) and (4.4) must be used. Thus it now pays off that 
we have proved the gauge invariance of the exact equa- 
tions (2.9) and (2.10). In order to-derive Eqs. (6.1) and 
(6.2) we have added the term - 2 C3 where 

The relativistic version of the resonance condition i s  

Applying our exact relation 

to the Lagrangian for three waves 

where only one pair of variables (a, 5 )  i s  assumed to be 
unknown1" and the other two assumed to be determined 
from the second-order approximation, we find for each 
of the three waves in turn 

k,"N,",b=-i(k:-k,")53=ik,"LJ, (6.8) 
k,aN,b,h=-i(k,n-k,o) L3=ikZaLJ, (6.9) 

k,"N,b,b=-i (k,"+k,") L,=-ik,ntr, (6.10) 

from which we obtain the so-calleds Manley-Rowe rela- 
tions in their relativistic form 

N,",.=Nz";,=-N;,a. (6.11) 

To prove Eqs. (6.8)- (6.10) one writes L=L2+L3, where 
L2 i s  the quadratic and L3 the cubic Lagrangian and uses 
the fact that the divergence of 'Na= aL2/8ka tends to zero 
because of the linearity of the equations, and further- 
more that Z2=0 because of the dispersion relation, and 

in accord with the ray tracing. Thus upon averaging one 
obtains the exact relation 

Here ZSsa denotes d/dx,xZ3, which i s  small compared 
to x,'" which i s  proportional to ika. For a homogeneous 
medium ka: ,,= 0, so that 

ka;dVb+k"Nb;bzPP;b , 

at least as long as  the inhomogeneities of the medium 
a r e  not too large. In a strongly inhomogeneous medium, 
however, the resonance may not occur. For the actual 
calculation of the interaction forces the reader can con- 
sult the article by Vedenov," a s  well a s  the paper by 
Galloway and Kim.25 

It i s  obvious that the above methods can be applied to 
curved space-time, i.e., to plasma in gravitational 
fields; see also the work of Breuer and Ehlers.lg What 
remains to be done i s  to extend the formalism in the 
way used by ~ e w a l . 2 ~  for magnetohydrodynamics. So a s  
to include the reaction of the waves on the background 
by the same formalism. Note further that the formal- 
ism cannot treat internal reflection o r  parametric reso- 
nance, which a re  of particular interest for pulsar mag- 
neto-spheres. The reader who i s  interested in  applica- 
tions of the developed theorrn is referred to our earlier 
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