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An analysis is made of the problem encountered in investigations of the dynamics of excitation of multilevel 
molecules in a two-frequency field. The solution of this problem can also be used to investigate the influence 
of the width of the radiation spectrum and of the time dependence of the field amplitude on the process of 
excitation by a monochromatic field. An exact solution of the problem is found assuming a total absence of 
correlations between the matrix elements of the dipole moment operator for an interband transition. It is 
shown that a suitable selection of the frequencies of a bichromatic field can accelerate greatly the rate of 
excitation of molecules. This acceleration is due to a change in the nature of the process, which can be 
regarded as a one-dimensional random walk in the monochromatic case and as a two-dimensional walk in the 
bichromatic case. A study is made of the additional opportunities provided by a bichromatic field in 
investigations of the spectral charcteristics of the process of excitation of molecules. 

PACS numbers: 32.80.Bx, 32.70.J~ 

$1. INTRODUCTION The investigation reported below is concerned with 

In investigations of the effects of high-power laser  
radiation on molecules1~4 i t  is necessary to tackle the 
problem of the dynamics of excitation of complex multi- 
level quantum systems in an intense electromagnetic 
field. Knowledge of the exact solutions of model prob- 
lems in which an allowance i s  made for the main fea- 
tures of the process of excitation of spectrally com- 
plex systems gives the correct  overview of the mecha- 
nism of filling of vibrational-rotational states of com- 
plex molecules. Several theoretical papers have been 
devoted to such problems (see, for example, Refs. 
5-11). However, in these theoretical treatments the 
dynamics of excitation i s  usually considered for a 
monochromatic field. 

In describing the excitation of molecules by a mono- 
chromatic field it is convenient to use a band-type 
model of a multilevel systemlo when a study is made of 
the dynamics of filling of groups of levels (bands) lo- 
cated near resonance values of the energy. The band 
populations then obey the balance equation. The ki- 
netic coefficients of the interband transitions a re  pro- 
ducts of three quantities: the square of the intensity of 
the laser field, r m s  value of the matrix element of the 
dipole moment operator, and density of the quantum 
states in the vicinity of a resonance. The distributions 
of the populations within the bands a r e  Lorentzian and 
localized near a resonance value of the energy; the 
width of a distribution is equal to the kinetic coefficient 
of a transition from a given band. In other words, 
laser radiation causes one-dimensional diffusion of 
populations within narrow regions near resonances. 
In view of the one-dimensional nature of this process, 
the rate of energy acquisition by a molecule is gov- 
erned by that minimum value of the kinetic coefficient 
which is encountered in a stage of the process a s  a 
result of a regular or irregular change in the r m s  
value of the matrix element of the transition and in the 
level density considered a s  functions of the band num- 
ber and of the frequency of the field (bottleneck effect). 

the excitation of a complex band-type multilevel sys- 
tem'' in a bichromatic field. Solution of the problem 
of such excitation should give answers to the following 
questions: 1) How does the excitation dynamics change 
when the amplitude of the electromagnetic field becomes 
a function of time? 2) How does the width of the inci- 
dent radiation spectrum affect the excitation process? 
3) How the distribution of the populations between the 
levels in a band changes in a bichromatic field, com- 
pared with a monochromatic field? 4) What a r e  the 
opportunities provided by a bichromatic laser  field for 
increasing the efficiency of the excitation of molecules 
and for investigating in greater detail their structure? 

$2. TWO BANDS IN  A BlCHROMATlC FIELD 

The main features of the behavior of complex sys- 
tems in a bichromatic field a r e  manifested fully in 
the excitation of a two-band system. We shall now 
tackle this problem. As before,"*'' we shall consider 
a two-band system assuming that the matrix elements 
of the dipole moment operator are  completely uncorre- 
lated; this will allow us to use the ensemble averaging 
m e t h ~ d . ' ~ * ' ~  One should also point out that we shall 
consider times much shorter than the values of the 
density of levels in a band multiplied by the Planck 
constant for which the separate levels in a band cannot 
be resolved spectrally. We shall also assume that the 
level densities a r e  the same in the upper and lower 
bands of the system. We shall generalize this prob- 
lem to the case of arbitrary level densities in the bands 
in 54. 

The dynamics of a system comprising two bands and 
two types of photons can be described in the basis of $ 
functions t,!~,,,,,~., where the first  index ( p = O  or  1) la- 
bels the band, the second index (m =0,  i 1, + 2, . . . ) la- 
bels a level in a band, the index A denotes the number 
of photons of the first  type (of frequency w )  and 2' de- 
notes the number of photons of the second type (of fre- 
quency w ' ) ;  A, A' >> 1. We shall select the units s o  that 
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the Planck constant is f i=  1. The characteristic den- 
si t ies of levels gl and g, in the two bands, the band 
width r, and the frequencies w and or satisfy the fol- 
lowing inequality: 

@; ~ ' w r w  1 W-U'I >gl-l; ga-l. (1) 

The numbers of photons fi and ?i' are  such that the cor- 
responding amplitudes of the fields E and E' (assumed 
to be the same, ( E  - E'I <<E) satisfy the following in- 
equality which ensures the existence of a quasicon- 
tinuum : 

E ' P ~ ~ : ~ B  L (2) 

where p =(p2)1/2 is the r m s  value of the matrix ele- 
ment of the dipole moment operator. 

We shall assume that initially the system is in the 
lower band p = 0 in a state with m = 0. The numbers 
of photons a r e  initially fi, and Ci, respectively. We 
shall measure the energy from a level whose energy is 
E, + w?io + w'Zk. Then, the Schrijdinger equation of this 
two-band system is 

i$o.m.~.n-[Eo,m-Eoo+~la~ (N+n-No-no) +'/ro' (N-n-No+no) ]$n,m,~.. 
in' + ~ ~ ~ p ~ ~ ' ~ ~ . ~ ~ , ~ - ~ , ~ - ~ + p ~ ~  $1,m*,~-i,m+1), 

",' 
i~ ,,,, =[E,,m-Eoo+'/zw (N-l+n-No--no) 

We note that for the zeroth band ( p = 0) we have N = No, 
whereas for p = 1,  we have N =No - 1 . The even 
values of n correspond to the lower band, and the odd 
values of n to the upper band. We shall introduce the 
notation 

We shall write the equations of the system (3)  in the 
form 

or  in the equivalent matrix form 

where $,,, is the vector {$, ,,,, }. 

If initially we have 

then Fourier transformation t - E of Eq. (5) gives 

H,,,(e)$,,,- pmm.E$t,m=6~,~6m,w, 
m' 

The solution of the system (6) can be represented a s  a 
series:  

where repeated indices represent summation. Similar 
ser ies  a re  obtained also for the Fourier transforms 
t -5 of the complex-conjugate J, functions $*(t). We 
shall indicate the photon indices of J,*(t) and $(5) 
= F[J ,* ( t ) ]  by superscripts. 

It is convenient to represent each term of the ser ies  
(7) graphically. For example, the third term of the 
ser ies  representing J,,,,(E) can be described by 

whereas the second term of the ser ies  representing 
I)~,,(C) becomes 

In the case of $ (<)  the corresponding terms of the 
ser ies  a r e  described by 

O,m 1,mr O,ml' l,mnr 0 , l  
(9a) 

C 

7,m O,mf l,mn 0,O 
(9b) 

Each point on a straight line corresponds to a matrix 
factor Hit,(&) and a point on a wavy line to H;tm(5). The 
lines joining points (1, m) and (0, m') correspond to the 
matrix factors Ep,,, for a straight line and EP,, for 
a wavy line. A bar above an operator means that i t  
acts on the left side. The photon indices of the matrix 
elements of the operators with a bar will be denoted by 
superscripts. 

We shall be interested in the populations of the va- 
rious states. Each term of the ser ies  for the popula- 
tions, obtained by multiplying the ser ies  ( 7 )  by the cor- 
responding series for the complex-conjugate J, func- 
tions can be represented by a diagram containing 
straight and wavy lines, for example: 

Before summing the ser ies  for the populations, we 
shall use the hypothesis that the matrix elements of the 
dipole moment operators a r e  uncorrelated and we shall 
average each term of the ser ies  using the Wigner distri- 
bution func tion12*13: 

Then, the sum in the ser ies  representing the popula- 
tions contains only those diagrams in which each ma- 
tr ix element occurs twice. For  the terms of the ser ies  
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(10) these are  the diagrams 

For  terms of higher order,  we can also have more 
complex diagrams 

We can show that for times t<g the influence of an 
increase in the statistical weight of the diagrams in the 
case of their self-intersections due to various possible 
types of transition is unimportant, and we can consider 
only the pairwise coalescence of diagrams, neglecting 
the coalescence of the fourth and higher orders. In 
other words, the following inequality satisfied: 

The reason fo r th i s  behavior is the small number of 
the diagrams on the left compared with the number on 
the right. 

In the summation of the se r i e s  for the populations we 
note that the coalescence of diagrams allows us to r e -  
normalize the operators corresponding to points on the 
straight and wavy lines: 

Substituting H and H explicitly and summing the opera- 
tor  geometric progressions (14), we obtain 

~f we assume that A,,, = Fnm (if t <g and g, =g2, this 

assumption does not restrict  the generality of our 
treatment) and if we sum the system (15) with respect 
to  m ,  we obtain the following expressions 

It follows from the inequality (2) that the quantity 
E2p26- >> 1, which gives two exponentially accurate 
solutions of the system (16) and these have the follow- 
ing form i f  allowance is made for the signs of the 
imaginary parts & and 5: 

Substituting Eq. (17) into the system (15) and using the 
definition of the inverse matrix, we obtain 

Rewriting the system (18) in tensor notation and omit- 
ting the indices p and m (the dependences on these in- 
dices occur only in A), we obtain 

The solutions of the system (19) a r e  , 

where J is a Bessel function ([. . .] i s  the integer part 
of a number and {. . .) is the fractional part). 

We note the validity of the expression 

which can be obtained from the system (15) allowing 
for Eq. (17) and f o r  

The use of Eq. (21) permits us  to sum the ser ies  for 
the populations. The terms in this ser ies  (which a r e  
still the operators of photon variables) can be described 
by the following characteristic diagram: 
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which consists of an even number of links for the lower 
band and of an odd number of links for the upper band. 
The population of the lower band is expressed in terms 
of a sum of all  the diagrams of the (23) type containing 
an even number of links and the population of the upper 
band contains an odd number of links. 

It is convenient to introduce constant-sign C and 
variable-sign P sums of all the terms in the series,  
which represent the sum and difference between the 
populations of the lower and upper bands. We shall 
calculate these sums. We shall do this by summing 
each term of the population ser ies  (23) with respect to 
the index m of the final point. Next, we shall intro- 
duce new variables 5 = & - 6 and = c + 5, integrate the 
only 7-dependent factor x,,%, with respect to dq,  and 
sum the geometric progression for C and P. This gives 

The sum and difference of the total populations of the 
lower and upper bands p, and p, can be found using Eqs. 
(24) and (25) a s  follows: 

where p: is the initial value of the density matrix of the 
laser radiation. 

We shall obtain the explicit forms of the operators C 
and P ,  which a re  fourth-rank tensors, by noting that 
they satisfy equations following from Eqs. (24) and (25): 

The solutions of the system (27) a r e  described by 

where the plus sign corresponds to P and the minus 
sign corresponds to C. 

We shall now consider two types of the initial den- 
sity matrix of the laser  radiation: 

where A is the normalization factor. The density ma- 
trix (29) corresponds to the initial state of the field with 
a fixed number of photons, and the density matrix (30) 

corresponds to a fixed value of the field intensity 

< E )  I ,,,=2E cos q.  

Substituting Eqs. (28), (29), and (30) into Eq. (26) 
and then performing the necessary summations and in- 
tegrations, we obtain 

for the density matrix (29) and 

EZp' s i n a t  
p ~ ( t ) = l ,  p p ( t ) = e x p ( - 8 T  [tt - ~ o s ( 2 ~ - a t )  a 1) (32) 

for  the density matrix (30); here, I ,  is a modified Bes- 
se l  function. 

The expression (32) shows that in the case of a bi- 
chromatic field the exact solution of the problem is 
identical with the solution obtained on the assumption 
of a slowly varying field, where the distribution of the 
populations between the bands is governed by the inte- 
gral  of the square of the field intensity with respect to 
time. This conclusion is the answer to the first  of the 
questions formulated in 01. Moreover, the above 
analysis gives the answer to the question of the depen- 
dence of the dynamics of excitation of a system on the 
correlation between the photon phases. In the case of 
small values of the parameters p2E2/a6  << 1 the exci- 
tation dynamics i s  independent of the correlation of the 
photon phases, whereas in the p 2 E 2 / a 0  >> 1 case the 
excitation of the system is faster in a phase-uncorre- 
lated field. Averaging of the expression (32) with r e -  
spect to q can be used to find the dependences p,(t) for 
some other statistics. 

$3. INTERNAL POPULATION DISTRIBUTIONS 
IN BANDS 

We shall now find the distributions of the populations 
between the band levels. We shall be interested in the 
distributions at times longer than that required for one 
transition, when the difference between the populations 
of the lower and upper bands is small. Infinding the 
distribution function we have to sum the ser ies  for the 
populations without summing with respect to the index 
m [see Eq. (23)] labeling the final level. The level 
populations can be expressed in terms of the operators 
C and P (for times longer than the time needed for one 
transition only the operator C is important) a s  well a s  
in terms of the operators X and %: 

- 6k".k"'X..,,.-~. (e, ~ ) ) 6 : : , ' :  e x p [ i ( f - e ) t ] .  (33) 

We shall investigate Eq. (33) in the case p2E2 ~ ~ 6 .  
In this limiting case the expressions for X and sim- 
plify greatly. It follows from the system (20) that 
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where the even values of n and k correspond to the 
lower band, and the odd values to the upper band. It 
follows from Eq. (28) that 

Substituting Eqs. (35) and (34) into Eq. (33) and nor- 
malizing the density matrix p:, we find that the level 
populations a r e  localized within narrow (-2EZp2/6) re-  
gions in the vicinity of resonances na (the distributions 
within these regions a r e  Lorentzian), and the total pop- 
ulations p, in the vicinity of these na resonances obey 
the following kinetic equation 

where-as before-the evenvalues of n correspond to the 
lower band, and the odd values of n correspond to the 
upper band. 

It is much more cumbersome to study the opposite 
limiting case p2E2 >> 0 6 a t  times t 2 a '' >> ~ E - P - ~ .  In 
this case we need consider only the operator C be- 
cause a t  such times the difference between the band 
populations is small. We note also that since the 
poles X and % and the functions q = E +  £J lie on op- 
posite sides of the real  axis, we can restrict  Eq. (33) 
to just one of the four terms: 

Substituting Eqs. (20), (28), and (30) into Eq. (37), 
and using the integral representation of the Bessel 
functions, we obtain 

p(A, 5 )  -1m SjSdA dodo' z (5-2iq,-2am)-'(E-A-2iq,-2am')-' 
-I m.m',m'. 

x [c-4iqI (1-eos A) -2am"l-' exp A-l)  (sin o+sin of) 

Using the relationships 

exp i(o-2q+h) N=2n6 (o-2qf  h )  , 
N 

I ,  (a )  P N D = e x p  (ia sin b )  
P 

duce Eq. (38) to 
and integrating with respect to dq and d l ,  we can re- 

1 " 
p (A ,  t )  - ~ e ;  dh do doj6 (,a-2q+h) 6 ( 2 a t - 2 h - o i ) e p  

-n 

o+a' 
sin h cos -A - (eos A- l) sin - 

2 , (40) 2 

and then we find that in the case A >> E2p2/6, and a t  >> 1 

It follows from Eq. (41) that the populations diffuse 
within the bands and the process is characterized by a 
diffusion coefficient 8E2p2a26-1. Consequently, in a 
time corresponding to one transition 6E-2p-2 the diffu- 
sional broadening of the distribution is of the order of 
a. It also follows from the expression (38) that in a 
single field period the width of the distribution does not 
become greater than 8E2p26-l. 

The analysis in the present section answers the 
second and third questions formulated in the first  sec- 
tion. The influence of the width of the radiation spec- 
trum on the distribution of the level populations in a 
band reduces to an increase (with time) of the size of 
the region in which a l l  the significantly populated levels 
a r e  located in accordance with the diffusion law: the 
characteristic width of this region i s  equal to the char- 
acteristic width of the radiation spectrum multiplied 
by the square root of the number of transitions 
(E2p2t/6)1/2. 

A bichromatic field with a large difference between 
the frequencies populated narrow (-E2pz/6) regions in 
the vicinity of multiphoton resonances of various or- 
ders  na .  When the difference between the frequencies 
is small a <<Ezp26-l, these regions overlap. In this 
case there is no significant broadening of the distribu- 
tion during one field period, so  that the distribution re- 
mains narrow (-E2p26-'). We may therefore conclude 
that the excitation of a system by a laser pulse with a 
smooth envelope and of finite duration 7>6Eap2 can be 
described using a monochromatic field model. The 
width of the distribution inside the band begins to in- 
crease only after times representing many field per- 
iods. 

$4. CASE OF A LARGE NUMBER OF BANDS 

In this section we shall consider the dynamics of 
filling of a multilevel system subjected to a bichro- 
matic field. We shall confine ourselves to the case 
of a large frequency difference a >> E2p26', when only 
narrow regions in the vicinity of a l l  possible resonances 
become filled. Then, the kinetic equation (36) can be 
generalized rigorously to the case when the density of 
levels and the r m s  value of the matrix element of the 
dipole moment operator vary within a band, and also to 
the case of arbitrary field intensities and arbitrary 
number of bands: 

M+l.n+l M+l.n-1 X-i.n+r 
~ M , , = D M , ,  p ~ + i , ~ + ~ + D s r , ~  PM+I.~- I+DM.~ PM-lam+' 

x n X L ( ~  M.* M I  
(42) 

+ D ~ ~ " " - ' ~ , - , , , - , -  (DM;,,.+l+D~;l,n-~+D~-~.n+~+D~~~.n-~)~~.n, 

where the indexM labels the bands and n-the number of 
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a resonance in a band; structure of the kinetic coefficients. 

where (p2)~:~.*+' is the r m s  value of the matrix ele- 
ment of the dipole moment between the n-th resonance 
in the M-th band and the (n+ 1)-th resonance in the 
(M + 1)-th band. 

Equation (42) describes the diffusion of the popula- 
tions between the bands and within each band. If the 
difference between the frequencies of the fields E and 
E' (a = w - w ' )  is such that a typical number of reso- 
nances in the bands is of the order of the characteris- 
tic number of bands of a molecule, the process of ene- 
rgy acquisition occurs automatically in the most 
efficient channel. The influence of a regular depen- 
dence of the kinetic coefficient on the band number 
and field frequency, which results  in a considerable 
slowing down of the rate of excitation in the monochro- 
matic case, is now weak. It has been shown experi- 
mentally14 that illumination of a gas with two consecu- 
tive laser pulses increases the excitation efficiency 
when the frequency of the second pulse is shifted con- 
siderably in the direction of longer wavelengths. When 
the two laser pulses act simultaneously, the same ef- 
fect can be achieved for a much lower frequency shift. 

The essence of the effect is a s  follows. According to 
the current ideas, the process of laser  excitation of 
molecules results  in a strongly nonequilibrium distri- 
bution of the vibrational energy between the degrees of 
freedom. l5 In particular, i t  may happen that the action 
of a field with a frequency corresponding to the main 
transition w,, populates the states which correspond to 
small kinetic coefficients D(w,). A considerable fre- 
quency shift of the monochromatic field during the 
second stage makes i t  possible to tune the field to the 
maximum of the absorption band of these states. In 
the case of bichromatic interaction, the degree of ex- 
citation of molecules can increase considerably for a 
different reason: due to  the diffusion of populations 
within a band, which fills a considerably wider range 
of states, including those corresponding to large ki- 
netic coefficients a t  the frequencies of the field har- 
monics D(w *a) .  

Moreover, a bichromatic laser  field provides addi- 
tional opportunities for investigating certain spectral 
characteristics of molecules. This is due to the fact 
that the determination of the dynamics of excitation of 
a multilevel system does not represent a complete solu- 
tion of the problem of the excitation of a molecule by a 
laser field. We have to find also the kinetic coefficients. 
This requires determination of the molecular vibration 
dynamics. This determination is possible only if a 
number of simplifying assumptions is made. 15*16 In 
view of the complexity of the vibrational dynamics of 
multilevel molecules we cannot expect to be able to de- 
termine in detail the kinetic coefficients. Therefore, 
we a r e  faced with the important question whether an ex- 
perimental study of the excitation of molecules by a 
bichromatic field can provide any information on the 

In strong fields the kinetic coefficients describing the 
excitation of a molecule become automatically averaged 
over the whole region in the vicinity of a resonance 
(locking region). The question remains a s  to whether 
the coefficients obtained in this way a r e  regular func- 
tions of the position in a band o r  whether one can ex- 
pect complex irregular behavior? The answer to this 
question can be obtained by experiments involving bi- 
chromatic excitation of molecules. We shall ignore, 
for the time being, the regular variation of the band 
parameters on increase in the energy discussed above 
and we shall consider only the irregular changes. 
Such a situation is encountered when a field is  applied 
to previously excited molecules. If irregular changes 
in the kinetic coefficients a r e  small, then the excitation 
of a molecule by a bichromatic field does not give any 
information additional to that which can be obtained us- 
ing a monochromatic field. However, if there a re  
strong irregular changes, the situation is different. 
Let us assume that IJ is the correlation size of such 
irregular changes: 

In the case of multistate monochromatic excitation 
one must necessarily encounter a transition with a 
small  kinetic coefficient, which reduces the energy 
acquisition rate. A similar situation also occurs in a 
bichromatic field if the difference between the f re-  
quencies of the two fields is small. The nature of the 
excitation changes in a radical manner i f  the difference 
between the frequencies becomes greater than the cor- 
relation size. The diffusion of the population between 
the bands then becomes two-dimensional and the ques- 
tion of the rate of excitation of the system reduces to 
solution of the problem of the effective conductivity of 
a randomly inhomogeneous two-dimensional medium. 
A complete solution of the problem is not yet known for 
an arbitrary change in the conductivity. However, we 
can say that because of an increase in i ts  dimensionality, 
the problem of energy acquisition becomes less sub- 
ject to the influence of fluctuations and the rate of 
molecular excitation increases. 

We shall explain this by considering two examples. 
1) We shall assume that the kinetic coefficient can as- 

sume zero values. Then, the question of the possi- 
bility of a strong excitation of a molecule reduces to the 
familiar problem of percolation. l7 There is no exci- 
tation in the one-dimensional case. In the two-dimen- 
sional case there is some critical fraction of transi- 
tions with zero values of the kinetic coefficient for 
which the energy acquisition ceases. 

2) If the kinetic coefficient can assume two values Dl 
and D, for statistically equivalent regions, the effec- 
tive kinetic coefficient is then equal to the geometric 
mean1' of Dl and D,, D,,, = (D,D,)'/~, s o  that if D, <<D,, 
which is much greater than in the one-dimensional case 
when D,,, =DID,(Dl + D,)-'. 

We can thus see that when the difference between the 
frequencies of two fields is of the order of magni- 
tude of the correlation size of the change in the kinetic 
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coefficient, the dimensionality of the process of exci- 
tation by diffusion changes and this reduces greatly 
the threshold values of the laser  pulse energy and in- 
creases the efficiency of the energy acquisition pro- 
cess.  Consequently, the experimentally observed de- 
pendence of the efficiency of excitation of molecules on 
the relative difference between the frequencies of the 
two fields can be used to determine the characteristic 
correlation size of the frequency dependence of the 
kinetic coefficient. 

In an experimental investigation carried out a t  high 
rotational temperatures we encounter the kinetic coef- 
ficients not of purely vibrational transitions but of vi- 
brational-rotational transitions. The occurrence of 
absorption bands corresponding to different changes in 
the total angular momentum A J = O ,  i 1 complicates 
greatly the behavior not only in the case of the lower 
levels, where this effect can be allowed for because of 
the rigidity of the molecules, but also a t  the higher 
levels, when the molecules can no longer be regarded 
a s  rigid tops and the rotational degrees of freedom 
participate partially in the formation of a quasicon- 
tinuum. Additional degrees of freedom may flatten 
greatly the correlation function of the kinetic coeffi- 
cients or change the correlation size. Therefore, it 
would be desirable to carry  out experiments not only 
at high but also a t  low rotational temperatures, when 
a suitable selection of the field polarization can sup- 
press the influence of the rotational absorption bands. 
In principle, one can formulate a suitable program and 
study theoretically in greater detail the influence of an 
irregular structure of the kinetic coefficients on the 
energy acquisition process, but the desirability of in- 
vestigations of this kind depends directly on whether 
the above very simple irregularity is observed exper- 
imentally. 

35. CONCLUSIONS 

We shall now formulate the main conclusions. 

1. Solutions of the problem of the excitation of a band 
system by an external time-dependent field obtained on 
the assumption of slow variation of the amplitudes of a 
bichromatic field a r e  identical with the exact solution. 

2. The rate of excitation of a band system depends 
on the statistics of the phases of photons of the exciting 
radiation. 

3.  The width of the radiation spectrum results in 
diffusion broadening of the distribution of the popula- 
tions between the band levels. 

4. A bichromatic field with a large difference be- 
tween the two frequencies populates only narrow re-  
gions near all possible multiphoton resonances. In 

fields with a small frequency difference these regions 
overlap. 

5. A bichromatic interaction with a suitably selected 
frequency difference may reduce considerably the 
threshold values of the energy of the exciting laser 
pulses and may increase the efficiency of the excitation 
of molecules for a relative small shift of the field fre- 
quencies from the frequency of the main transition. 

6. Determination of the dependence of the efficiency 
of the excitation of molecules on the difference between 
the frequencies of a bichromatic field can give valuable 
information on the correlation size of the kinetic coeff- 
icients which provides effectively some form of "inte- 
gral  spectroscopy" of multilevel molecules. 
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